Лопастная машина



Лопастная машина
Лопастная машина

Владельцы патента RU 2640864:

СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Изобретение относится к лопастной машине. Лопастная машина содержит внутренний корпус, радиально ограничивающий проточный канал машины. Вокруг внутреннего корпуса расположен нанесенный на наружную сторону стенки внутреннего корпуса теплоизоляционный слой, который представляет собой покрытие (1), которое содержит базовый материал (2). Материал (2) содержит микропористую пластмассу, выбранную из группы, включающей в себя полиуретан, полиэтилен, полиолефин, полиэфир, полипропилен, политетрафторэтилен, эпоксидную смолу, эластомеры, цеолиты и смесь этих материалов или неорганические материалы. Изобретение направлено на создание легко изготавливаемой теплоизоляции для лопастной машины. 12 з.п. ф-лы, 1 ил.

 

Изобретение относится к лопастной машине, которая содержит внутренний корпус, радиально ограничивающий проточный канал, причем вокруг внутреннего слоя расположено покрытие.

Понятие лопастной машины относится в данном случае к турбине, особенно газовой турбине, паровой турбине и, в частности, турбине низкого давления. В дальнейшем контексте описания изобретения понятие турбины следует понимать как синоним для паровой турбины или турбины низкого давления.

Паровые турбины в зависимости от давления пара, с которым поток пара входит в турбину, подразделены на турбины высокого давления, турбины среднего давления и турбины низкого давления, которые называют также частичными турбинами, поскольку они представляют собой части общей турбинной установки. При этом турбины низкого давления обычно в соответствии с перепадом давления пара внутри турбинной установки следуют за турбинами высокого давления или турбинами среднего давления. При этом также происходит снижение температуры пара, причем температура пара между частичными турбинами может быть вновь увеличена с помощью так называемого промежуточного пароперегревателя.

Температура внутри частичной турбины между областью входа потока и область отработавшего пара внутреннего корпуса не является однородной, так как температура входящего пара является весьма высокой по сравнению с отработавшим паром. Далее, существуют перепады температур между внутренней стороной и наружной стороной стенки внутреннего корпуса. В результате этого возникают напряжения внутри материала, которые могут привести к деформациям корпуса.

Для противодействия перепадам температур и обусловленным этим напряжениям или деформациям внутренние корпуса паровых турбин обычно оснащают конструкцией из листовой стали. Эта конструкция из листовой стали служит для термической изоляции внутреннего корпуса в наружном направлении и для гомогенизации температур на протяжении всего внутреннего корпуса турбины. В настоящее время теплоизоляционные конструкции из листовой стали для турбин изготавливают из отдельных частей из листовой стали. Листы должны быть исполнены в соответствии с конструкцией и согласованы с корпусом. Листы насаживают на отлитые или приваренные проставки и там закрепляют болтами, в результате чего возникает полое пространство между внутренним корпусом и конструкцией из листовой стали. Полое пространство заполняют неподвижным паром, в результате чего достигают изоляционного эффекта.

Недостаток конструкций из листовой стали заключается в том, что их необходимо каждый раз вновь конструировать для каждого типового ряда турбин. Также конструкции из листовой стали внутри одного типового ряда необходимо вновь согласовывать для каждого конструктивного изменения. В этой взаимосвязи следующий недостаток заключается в том, что монтаж конструкций из листовой стали является дорогостоящим и занимает длительное время. К тому же в результате вибраций и износа возможно отрывание отдельных листов из конструкции и отсоединение резьбовых соединений листов, что негативно влияет на стабильность, теплоизоляцию и, следовательно, коэффициент полезного действия турбины.

В документе ЕР 0374603 А1 раскрыта теплоизоляция конструктивных элементов с двойными стенками, проводящих горячие газы. Документ US 6641907, В1 раскрывает систему материалов с близко упакованными полыми формами с герметичной структурой стенок.

Таким образом, задача заключается в создании теплоизоляции для лопастной машины, причем теплоизоляция должна быть легко изготавливаемой.

Задача решена в соответствии с признаками независимого пункта 1 формулы изобретения. Предпочтительные исполнения в этой связи указаны в зависимых пунктах формулы изобретения.

Было установлено, что задачу решают с помощью лопастной машины, которая содержит внутренний корпус, радиально ограничивающий проточный канал лопастной машины, причем вокруг внутреннего корпуса расположен теплоизоляционный слой, который представляет собой покрытие, которое содержит базовый материал, содержащий микропористую пластмассу. Лопастная машина представляет собой предпочтительно турбину, еще более предпочтительно паровую турбину и особо предпочтительно турбину низкого давления.

Теплоизоляционный слой можно называть также теплозащитной оболочкой или оболочкой; вследствие характера покрытия предпочтителен термин «теплоизоляционный слой».

Соответствующий изобретению теплоизоляционный слой внутреннего корпуса является предпочтительным, поскольку покрытие может быть легко изготовлено путем нанесения на наружную сторону внутреннего корпуса. Таким образом, нет необходимости в размещении проставок на внутреннем корпусе, как для обычных оболочек. Далее, соответствующий изобретению теплоизоляционный слой является предпочтительным, так как он может быть нанесен на элемент с любой формой; в результате этого снижаются время, расходы, количество материала и, следовательно, также издержки, необходимые для длительных согласований и монтажа обычных оболочек. За счет благоприятного соотношения цена/производительность изобретение имеет также высокий коэффициент полезного действия.

В одном предпочтительном варианте исполнения изобретения внутренний корпус кольцеобразно покрыт теплоизоляционным слоем. Иными словами, теплоизоляционный слой охватывает внутренний корпус предпочтительно полностью. Предпочтительно нанесение покрытия на весь корпус, так как за счет этого достигается теплоизоляция внутреннего корпуса; обусловленная этим гомогенизация температур снижает перепады температур внутри внутреннего корпуса и снижает опасности деформаций внутреннего корпуса.

Предпочтительно вокруг внутреннего корпуса и теплоизоляционного слоя расположен наружный корпус. Наружный корпус обеспечивает механическую защиту расположенных внутри конструктивных элементов и типичным образом является конструктивным элементом лопастных машин. При этом следующее преимущество соответствующего изобретению теплоизоляционного слоя внутреннего корпуса заключается в том, что термическую нагрузку на материал наружного корпуса удерживают на малой величине.

В соответствии с изобретения базовый материал покрытия лопастной машины содержит микропористую пластмассу или микропористый неорганический материал, например стекло или керамику. Здесь базовый материал называют также в качестве синонима матрицей. Микропористыми называют пористые материалы, размеры пор которых составляют менее 2 мм, в частности лежат в диапазоне нескольких микрометров. Использование микропористых материалов является предпочтительным по той причине, что этот материал отличается низкой теплопроводностью и, следовательно, хорошими теплоизоляционными свойствами, имеет малый вес и хорошие механические свойства. Далее, микропористые пластмассы могут хорошо смешиваться с различными заполнителями. Степень пористости материала, то есть соотношение между общим объемом пор и наружным объемом покрытия, составляет от 10% до 90%, предпочтительно от 20% до 70%, еще более предпочтительно от 25% до 50% и совсем особо предпочтительно от 20% до 40%.

Предпочтительно микропористую пластмассу матрицы покрытия выбирают из группы, охватывающей органические полимеры, в частности полиуретан, полиэтилен, полиолефин, полиэфир, полипропилен, политетрафторэтилен, эпоксидную смолу, эластомеры, цеолиты или их смеси или неорганические материалы, в частности керамику. При этом более предпочтительными являются полиуретан, полиэтилен, полипропилен, эпоксидная смола, фенольные смолы, например Novolak, и эластомеры. Особо предпочтительно использование полиуретана. Для повышения термической стабильности покрытия предпочтительно также, если пластмасса обладает свойствами дуропласта. При этом матрица может быть изготовлена из смолы, пены, заливочной массы, литьевой смолы, дисперсии, раствора, двухкомпонентной системы, твердеющего под воздействием влаги форполимера, или, однако, также в качестве гранулята или порошка для покрытия.

Матрица покрытия может содержать заполнители, которые влияют на профиль характеристик покрытия из микропористой пластмассы. Предпочтительно, если матрица покрытия содержит в качестве заполнителя полые шарики. Добавление полых шариков в матрицу является предпочтительным, поскольку за счет этого, прежде всего, могут быть улучшены теплоизоляционные свойства и за счет уменьшения толщины покрытия может быть уменьшен вес покрытия. Кроме того, содержание полых шариков противодействует возможной тенденции матрицы к усадке, в соответствии с этим уменьшает склонность материала покрытия к короблению и способствует стабильности покрытия. Покрытия с полыми шариками являются, таким образом, более легкими, изолирующими, стабильными и также менее дорогими вследствие меньшего расхода пластмассы.

Изобретение поясняется более подробно на основании единственной фигуры, на которой показана структура содержащего микропористую пластмассу покрытия, в которую введены полые шарики.

Введенные в матрицу 2 полые шарики 3 могут состоять при этом из органического материала, в частности перечисленных выше полимеров или также полиакрилата, однако также и из неорганических материалов, в частности стекла или керамики.

Существенным фактором, влияющим на теплоизоляцию и вес покрытия 1, является при этом размер полых шариков 3. Чем больше полые шарики 3, тем выше степень заполнения и в соответствии с этим тем ниже вес покрытия 1 и тем ниже также теплопроводные свойства. Размер полых шариков 3 следует выбирать, однако, таким образом, чтобы не ухудшалась механическая прочность покрытия. Размер полых шариков 3 определяется своим диаметром. Предпочтительно, если диаметр полых шариков составляет от 5 мкм до 1000 мкм, предпочтительно от 10 мкм до 500 мкм, еще более предпочтительно от 20 мкм до 300 мкм и еще более предпочтительно от 25 мкм до 200 мкм.

В одном варианте исполнения изобретения все использующиеся в качестве заполнителя полые шарики 3 могут иметь одинаковый диаметр. Возможно, однако, что различные полые шарики 3 имеют различные диаметры, то есть в качестве заполнителя используют полые шарики 3 различной величины. Использование различных величин является более предпочтительным по той причине, что меньшие по размеру шарики попадают в пространства между большими по размеру шариками и в результате этого в покрытии 1 полыми шариками 3 может быть заполнено большее пространство. Иными словами, при использовании полых шариков 3 различного размера достигают большей плотности набивки.

В одном варианте исполнения изобретения на наружные стенки самих полых шариков 3 могут быть нанесены покрытия 4. При этом полые шарики 3 могут содержать органические и/или неорганические покрытия 4. Органические покрытия 4 могут состоять из всех пригодных соединений полимеров, предпочтительно, однако, из полиуретана, поливинилфторида или полиэфира. Неорганические покрытия 4 могут также содержат все пригодные для этого вещества или соединения, например стекло, керамику, силикат, металлы, сплавы металлов, а также соли и оксиды металлов или иные элементы. Оснащение полых шариков 3 покрытием 4 производят в зависимости от вида покрытия с помощью обычных пригодных методов. Покрытие 4 полых шариков 3 является предпочтительным, поскольку они изменяют свойства материала шариков, например, в отношения распределения полых шариков 3 в матрице 2, а также механической прочности и повышения эффекта теплоизоляции покрытия 1.

Относительно общего объема покрытия 1 доля полых шариков 3 составляет предпочтительно от 10% до 90%, еще более предпочтительно от 20% до 70%, еще более предпочтительно от 30% до 60% и еще более предпочтительно от 35% до 50%.

В одном варианте исполнения изобретения внутренние пространства 5 полых шариков 3 заполнены газом или жидкостью. Заполнения в зависимости от вида заполнения оказывают влияние на вес полых шариков 3 и, таким образом, на общий вес покрытия 1, однако также в особой мере влияют на характеристики теплоизоляции. При этом предпочтительно заполнение газом, поскольку газы легче и имеют меньшую по сравнению с жидкостями теплопроводность. При этом в простейшем случае полые шарики 3 могут быть просто заполнены воздухом при приблизительно нормальном давлении. Возможно, однако, также заполнение газом с избыточным давлением. Избыточное давление предпочтительно по той причине, что за счет этого покрытие может дополнительно действовать с демпфированием колебаний. Кроме того, избыточное давление предпочтительно по той причине, что за счет этого полые шарики 3 могут противодействовать механическому давлению со стороны материала матрицы 2. Возможно, однако, также, что заполнение газом произведено с незначительным разрежением. Далее, возможно, что в различных полых шариках 3 действуют различные давления, то есть нормальное давление, повышенное давление и/или разрежение.

Для заполнения внутренних пространств 5 полых шариков 3 помимо воздуха можно использовать также любой другой пригодный газ, например азот или углекислый газ. В случае использования жидкостей представляется возможной любая пригодная жидкость.

В другом предпочтительном варианте исполнения полые шарики 3 вакуумированы, то есть в полых шариках действует вакуум или, по меньшей мере, приблизительно вакуум. Вакуумированные полые шарики являются предпочтительными, поскольку в вакууме не происходит передачи тепла и, таким образом, увеличивают термический эффект изолирования теплоизоляционного слоя. Далее, предпочтителен случай, когда вакуумированные полые шарики смешаны с наполненными газом и/или жидкостью полыми шариками, причем в заполненных газом полых шариках могут действовать различные давления.

Предметом изобретения является, кроме того, применение микропористой пластмассы для нанесения покрытия на внутренний корпус лопастной машины. Лопастная машина представляет собой при этом предпочтительно паровую турбину и еще более предпочтительно турбину низкого давления. В одном предпочтительном варианте исполнения для нанесения покрытия используют микропористую пластмассу, которая смешана с полыми шариками в качестве заполнителя. При этом тип микропористой пластмассы и полых шариков 3 описаны выше.

Микропористую пластмассу выбирают из описанных выше микропористых пластмасс. Микропористые пластмассы могут быть подготовлены в форме заливочного компаунда или также шпатлевки. Использование шпатлевки предпочтительно по той причине, что нанесение покрытия на внутренний корпус лопастной машины может быть произведено путем несложного нанесения шпателем. Схватывание микропористого материала с материалом внутреннего корпуса и отверждение образующегося покрытия 1 происходит в процессе последующей сушки. При этом материал наружной стенки корпуса для лучшего схватывания покрытия можно обрабатывать с помощью обычных методов.

Предпочтительным является то, что перед отверждением материала в покрытие 1 вводят пазы. Введение пазов является предпочтительным, так как за счет этого при необходимости присутствуют рабочие места для обеспечения возможности снятия без повреждения покрытия 1 и его повторной установки.

В одном предпочтительном варианте исполнения микропористая пластмасса содержит в качестве заполнителя полые шарики 3. Полые шарики 3 являются предпочтительными, так как они катятся рядом друг с другом или друг под другом аналогичным образом, что и в шарикоподшипнике, и придают микропористой пластмассе высокую вязкость и хорошие свойства текучести. При этом выбор материала для полых шариков 3 производят в соответствии с описанным выше.

Несмотря на то что изобретение было более подробно проиллюстрировано и описано в деталях в соответствии с предпочтительным примером исполнения, оно не ограничено раскрытыми примерами и специалист может вывести из них другие вариации без выхода за пределы объема защиты изобретения.

1. Лопастная машина, содержащая внутренний корпус, радиально ограничивающий проточный канал лопастной машины, причем вокруг внутреннего корпуса расположен нанесенный на наружную сторону стенки внутреннего корпуса теплоизоляционный слой, который представляет собой покрытие (1), которое содержит базовый материал (2), содержащий микропористую пластмассу, причем микропористая пластмасса выбрана из группы, включающей в себя полиуретан, полиэтилен, полиолефин, полиэфир, полипропилен, политетрафторэтилен, эпоксидную смолу, эластомеры, цеолиты и смесь этих материалов или неорганические материалы.

2. Лопастная машина по п. 1, в которой теплоизоляционный слой покрывает внутренний корпус в окружном направлении в виде оболочки кольцевой формы.

3. Лопастная машина по п. 1 или 2, в которой вокруг внутреннего корпуса и теплоизоляционного слоя расположен, далее, наружный корпус.

4. Лопастная машина по п. 1 или 2, в которой базовый материал (2) покрытия (1) содержит в качестве заполнителя полые шарики (3).

5. Лопастная машина по п. 4, в которой материал полых шариков (3) выбран из полимеров, стекла или керамики.

6. Лопастная машина по п. 4, в которой диаметр полых шариков (3) составляет от 10 мкм до 500 мкм.

7. Лопастная машина по п. 4, в которой различные полые шарики (3) имеют различные диаметры.

8. Лопастная машина по п. 4, в которой полые шарики (3) содержат органические и/или неорганические покрытия (4).

9. Лопастная машина по п. 4, в которой доля полых шариков (3) составляет от 35 до 50 объемных процентов относительно общего объема покрытия (1).

10. Лопастная машина по п. 4, в которой внутреннее пространство (5) полых шариков (3) заполнено газом или жидкостью.

11. Лопастная машина по п. 4, в которой внутреннее пространство (5) полых шариков (3) вакуумировано.

12. Лопастная машина по п. 4, которая выполнена в виде турбины низкого давления.

13. Лопастная машина по п. 1, в которой в качестве неорганических материалов используется керамика.



 

Похожие патенты:

Изобретение относится к области турбомашиностроения, а именно к конструкции компенсаторов относительных перемещений внутреннего и внешнего корпусов турбомашин. Компенсатор относительных перемещений внутреннего и внешнего корпусов турбомашины содержит жестко закрепленный на внутреннем корпусе полый элемент, проходящий через внутренний и внешний корпуса, подвижное соединение, установленное на внешнем корпусе и включающее кольцевой элемент и средство соединения кольцевого элемента с полым элементом.

Изобретение относится к энергетике. Газовая турбина, содержащая ротор в сборе и корпус компрессора.

Изобретение относится к энергетике. Способ эксплуатации газотурбинного двигателя, при котором во время работы газотурбинного двигателя при полной нагрузке клапанную систему поддерживают в закрытом положении для того, чтобы по существу предотвратить проход воздуха через систему трубопроводов системы рециркуляции воздуха оболочки.

Изобретение относится к турбостроению и может быть использовано в отраслях техники, где применяются газовые турбины, в частности в турбонасосных агрегатах жидкостных ракетных двигателей.

Предложена паровая турбина (100), которая может содержать турбинную секцию (101), содержащую ротор (102). Вокруг турбины (100) расположен внутренний корпус (122), имеющий верхний по потоку конец (130), нижний по потоку конец (132) и выпускное отверстие (134), расположенное у нижнего по потоку конца (132) и обеспечивающее возможность выпуска отработанного пара из внутреннего корпуса (122).

Турбоустановка содержит центральную секцию, детандер, компрессор, блок и электрический разъем. Центральная секция имеет внешний кожух с первым и вторым концами, причем детандер присоединен к ее первому концу, а компрессор - ко второму.

Турбина, в частности газовая турбина, содержит внутренний корпус, предназначенный для установки по меньшей мере одной статорной лопатки турбинной ступени, и наружный корпус, расположенный вокруг внутреннего корпуса таким образом, что образуется наружный охлаждающий канал между внутренним корпусом и наружным корпусом.

Изобретение относится к теплоэнергетике и может быть использовано при разработке или модернизации паровых турбин. Цилиндр паровой турбины с регулирующим отсеком, состоящим из наружного и внутреннего корпусов, патрубков паровпуска, кольцевой пароподводящей камеры подачи пара в проточную часть с однонаправленным движением парового потока, состоящую из нерегулируемых ступеней давления, обойм, устанавливаемых в наружном корпусе цилиндра.

Устройство для соединения корпусов двухконтурного газотурбинного двигателя содержит тяги, концы которых шарнирно прикреплены к корпусам, размещенные под углом к продольной оси двигателя.

Газовый канал для газовой турбины образован концентрическими внутренним и охватывающим его на расстоянии наружным корпусами. Внутренний корпус и наружный корпус взаимосвязаны посредством множества радиальных поддерживающих стоек.

Изобретение относится к авиадвигателестроению и может быть использовано в конструкциях узла уплотнения турбин авиационных газотурбинных двигателей и газотурбинных установках наземного применения.

Способ изготовления кожуха турбомашины из композитного материала, содержащего волокнистое усиление, уплотненное основой, включает операцию, на которой выполняют защитный слой от гальванической коррозии на основе шнура из стекловолокон, ленты из стекловолокон или спирали из стекловолокон для получения полужесткого защитного слоя от гальванической коррозии.

Ступень турбины турбомашины содержит неподвижный сопловой направляющий аппарат и колесо турбины. Сопловой направляющий аппарат подвешен на картере и на выходе аксиально удерживается опиранием на разрезное кольцо, установленное в кольцевой выточке рельса картера.

Изобретение относится к области энергетики и может быть использовано в энергоблоках с паротурбинными установками (ПТУ), имеющими выхлоп в конденсатор. Предложен двухпоточный цилиндр низкого давления (ЦНД) паровой турбины, соединенный с входным патрубком конденсатора, включающий корпус, расположенные по его концам входные патрубки, лабиринтовые концевые уплотнения и облопаченный ротор, опирающийся на подшипники, соединенный с генератором и содержащий группу влажнопаровых ступеней прямого, направленного в сторону генератора, потока пара с выхлопным осерадиальным диффузором и группу влажнопаровых ступеней обратного потока с выхлопным осерадиальным диффузором, при этом диффузоры расположены внутри выхлопного патрубка ЦНД, соединенного с входным патрубком конденсатора, находящимся под вакуумом, и образованы парой кольцевых лопастей, осуществляющих конфузорный поворот потока от осевого направления к радиальному, внешние лопасти заканчиваются радиальными стенками, перпендикулярными оси вращения, ограничивающими осевой размер выхлопной части осерадиальных диффузоров и образующими объединенную выхлопную часть осерадиальных диффузоров обеих групп ступеней, кроме этого выхлопной патрубок и выхлопные части диффузоров, ограниченные радиальными стенками и размещенные внутри выхлопного патрубка, расположены в средней части ЦНД, а внутренняя образующая лопасти со стороны потока выполнена с прямоугольными уступами.

Разделенный на сектора направляющий аппарат компрессора турбомашины содержит скрепленные сектора, образующие внешнее и внутреннее концентрические кольца, между которыми размещены лопатки.

Изобретение относится к области энергетического машиностроения и может быть использовано при конструировании и изготовлении паровых турбин для тепловых и атомных электростанций.

Изобретение относится к конструкции узла с болтовым креплением в турбомашине и к турбомашине и направлено на уменьшение осевого усилия на болт. Конструкция болтового крепления включает в себя первый элемент, имеющий болтовое отверстие; второй элемент, имеющий участок с внутренней резьбой; болт, вставляемый в болтовое отверстие и в участок с внутренней резьбой для крепления первого элемента и второго элемента одного к другому; и гайку, размещаемую на первом элементе, имеющую выпуклый участок, выступающий в сторону второго элемента.

Изобретение относится к электростанции с комбинированным циклом. Электростанция содержит системы газовой и паровой турбины, выполненные на едином валу и объединенные с теплоэлектростанцией, имеющей потребитель тепла в виде системы централизованного отопления или промышленного предприятия, и по меньшей мере один отбор пара в паровой турбине среднего давления и трубопроводы отбора пара.

Изобретение относится к энергетике. Узел турбины содержит первую неподвижную конструкцию и вторую неподвижную конструкцию, расположенную радиально снаружи относительно первой неподвижной конструкции.

Сектор лопаток статора для прикрепления к корпусу осевой турбомашины содержит несколько лопаток с платформами, соединенных таким образом, чтобы описывать дугу окружности, и с аэродинамическим профилем, выступающим из внутренней поверхности каждой платформы и направленным к центру дуги окружности, описанной платформами.

Газотурбинный двигатель включает внешний кожух, канал для отвода выхлопных газов, охлаждающий канал, панельную структуру и воздуховод. Канал для отвода выхлопных газов расположен внутри внешнего кожуха и содержит внешнюю и внутреннюю стенки канала, формирующие кольцевой проход и распложенные радиально внутрь от внешнего кожуха.
Наверх