Ракетный разгонный блок

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с основными продольными перегородками, дополнительными придонными перегородками и заборным устройством, маршевый двигатель и дополнительную автономную двигательную установку системы ориентации и обеспечения запуска. Криогенный бак окислителя снабжен демпфирующей горизонтальной кольцевой перегородкой, размещенной с зазором по отношению к оболочке криогенного бака окислителя. Демпфирующая горизонтальная кольцевая перегородка выполнена в виде секторов, каждый из которых закреплен к соответствующим основным продольным перегородкам. Каждый сектор имеет отбортовку в сторону нижнего днища криогенного бака окислителя. Криогенный бак окислителя снабжен придонной сетчатой перегородкой, размещенной между дополнительными придонными перегородками и заборным устройством. Техническим результатом изобретения является обеспечение надежного запуска маршевого двигателя разгонного блока. 4 ил.

 

Изобретение относится к ракетно-космической технике, а именно к конструкции ракетных разгонных блоков, входящих в состав ракет космического назначения, предназначенных для выведения аппаратов космического назначения на заданные орбиты.

Применение в ракетно-космических системах разгонных блоков, в состав которых входят баки большого объема, заправляемые жидким криогенным компонентом, может привести к возникновению проблемы, которая связана с гидродинамическими процессами, проходящими в баках при выполнении динамических операций в процессе работы нижних ступеней ракеты космического назначения, в процессе запуска маршевого двигателя разгонного блока, его ориентации и стабилизации в пространстве после отделения от ракеты космического назначения и после отделения разгонного блока от космического аппарата. На всех этих этапах полета ракеты космического назначения для обеспечения надежного управления полетом необходимо удержание жидкого криогенного компонента в заданном пространстве баков в целях снижения значительных нагрузок на корпус ракеты космического назначения от воздействия сил, возникающих в результате гидродинамических процессов в баках разгонного блока в процессе полетных эволюций составных частей ракеты космического назначения.

Удержание жидкого компонента в заданном пространстве баков обеспечивается установкой внутри баков горизонтальных, продольных и придонных перегородок.

Известны криогенные баки (В.В. Костюк, В.П. Фирсов. Теплообмен и гидродинамика в криогенных двигательных установках. - М.: Наука, 2015 г., стр. 270-289), содержащие демпфирующие горизонтальные перегородки - аналог.

Недостатком аналога является то, что в невесомости в центре криогенного бака образуется газовый сфероид, а криогенный компонент находится на поверхностях внутрибаковых устройств и на оболочке криогенного бака. При создании предпусковой перегрузки происходит частичное осаждение криогенного компонента в сторону заборного устройства криогенного бака. При создании продольной перегрузки криогенный компонент стекает с демпфирующей горизонтальной перегородки и с внутрибаковых устройств и поступает в придонную часть бака. Слив криогенного компонента с демпфирующей горизонтальной перегородки вызывает повторную загазованность в придонной части бака, в результате чего не достигается требуемая кондиция криогенного компонента по газосодержанию на выходе из криогенного бака.

Известен ракетный разгонный блок (RU 2412088 C1, B64G 1/22 (2006.01), опубл. 20.02.2011 г.), принятый за прототип, содержащий криогенный бак окислителя с основными (продольными), дополнительными (придонными) перегородками и заборным устройством, маршевый двигатель и дополнительную автономную двигательную установку системы ориентации и обеспечения запуска.

Недостатком прототипа является возникновение значительных нагрузок на корпус предыдущей ступени ракеты космического назначения при работе двигательных установок ступеней ракеты-носителя, разгонного блока или совершении маневра этими ступенями.

Задачей предложенного изобретения является создание ракетного разгонного блока, который при работе двигательной установки ступеней ракеты-носителя, разгонного блока или совершении маневра этими ступенями обеспечивает снижение значительных нагрузок на корпус предыдущей ступени ракеты космического назначения при сохранении гидродинамических характеристик в криогенном баке разгонного блока, которые в свою очередь обеспечивают надежный запуск маршевого двигателя разгонного блока.

Техническим результатом является удержание жидкого криогенного компонента в заданном пространстве бака и достижение требуемой кондиции криогенного компонента по газосодержанию на входе в маршевый двигатель, а также сохранение гидродинамических характеристик в криогенном баке окислителя ракетного разгонного блока, обеспечивающих надежный запуск его маршевого двигателя.

Технический результат достигается тем, что в ракетном разгонном блоке, содержащем криогенный бак окислителя с основными продольными перегородками, дополнительными придонными перегородками и заборным устройством, маршевый двигатель и дополнительную автономную двигательную установку системы ориентации и обеспечения запуска, в криогенный бак окислителя введена демпфирующая горизонтальная кольцевая перегородка, размещенная с зазором по отношению к оболочке криогенного бака окислителя, причем демпфирующая горизонтальная кольцевая перегородка выполнена в виде секторов, каждый из которых закреплен к соответствующим основным продольным перегородкам, при этом каждый сектор имеет отбортовку в сторону нижнего днища криогенного бака окислителя, причем в криогенный бак окислителя введена придонная сетчатая перегородка, размещенная между дополнительными придонными перегородками и заборным устройством криогенного бака окислителя.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображена ракета космического назначения, на фиг. 2 изображен ракетный разгонный блок, на фиг. 3 изображен криогенный бак окислителя разгонного блока, на фиг. 4 изображен вид сверху на демпфирующую горизонтальную кольцевую перегородку, где:

1. ракетный разгонный блок;

2. криогенный бак окислителя;

3. основные продольные перегородки;

4. дополнительные придонные перегородки;

5. заборное устройство;

6. маршевый двигатель;

7. дополнительная автономная двигательная установка системы ориентации и обеспечения запуска;

8. демпфирующая горизонтальная кольцевая перегородка;

9. зазор;

10. оболочка;

11. секторы;

12. отбортовка;

13. нижнее днище;

14. придонная сетчатая перегородка;

15. ракета космического назначения;

16. корпус предыдущей ступени ракеты космического назначения;

17. внутрибаковые устройства;

18. придонная часть.

В ракетном разгонном блоке 1, содержащем криогенный бак окислителя 2 с основными продольными перегородками 3, дополнительными придонными перегородками 4 и заборным устройством 5, маршевый двигатель 6, дополнительную автономную двигательную установку системы ориентации и обеспечения запуска 7, в криогенный бак окислителя 2 введена демпфирующая горизонтальная кольцевая перегородка 8, размещенная с зазором 9 по отношению к оболочке 10 криогенного бака окислителя 2, причем демпфирующая горизонтальная кольцевая перегородка 8 выполнена в виде секторов 11, каждый из которых закреплен (например, с помощью переходных кронштейнов и винтов) к соответствующим основным продольным перегородкам 3, при этом каждый сектор 11 имеет отбортовку 12 в сторону нижнего днища 13 криогенного бака окислителя 2. Также в криогенный бак окислителя 2 введена придонная сетчатая перегородка 14, размещенная между дополнительными придонными перегородками 4 и заборным устройством 5 криогенного бака окислителя 2 и закрепленная своими торцами соответственно к дополнительным придонным перегородкам 4 и заборному устройству 5 криогенного бака окислителя 2. Придонная сетчатая перегородка 14 может быть выполнена, например, в виде цилиндра или многогранника.

Демпфирующая горизонтальная кольцевая перегородка 8 заглублена в компонент криогенного бака окислителя 2 на величину, обеспечивающую демпфирование колебаний компонента в криогенном баке окислителя 2 при работе двигательных установок ступеней ракеты-носителя, разгонного блока или совершении маневра этими ступенями на активном участке полета.

Демпфирующая горизонтальная кольцевая перегородка 8, установленная с зазором 9 по отношению к оболочке 10 криогенного бака окислителя 2, при этом зазор 9 определяет уровень демпфирования криогенного компонента (например, с зазором 50 мм), и отбортовка 12, выполненная в сторону нижнего днища 13 криогенного бака 4, обеспечивают слив криогенного компонента вдоль оболочки 15 криогенного бака окислителя 2 за время действия предпусковой перегрузки (например, угол отбортовки 12 может составлять 45° на ширине 100 мм), обеспечивая при этом минимальное повторное газообразование криогенного компонента, а придонная сетчатая перегородка 14 препятствует поступлению газовой составляющей криогенного компонента в заборное устройство 5 криогенного бака окислителя 2.

Зазор 9, угол и ширина отбортовки 12 демпфирующей горизонтальной кольцевой перегородки 8 криогенного бака окислителя 2 в составе конкретного ракетного разгонного блока определяются расчетом и подтверждаются экспериментом.

Предложенный ракетный разгонный блок функционирует следующим образом.

В составе ракеты космического назначения 15 при выполнении динамических операций в процессе ее работы в криогенном баке окислителя 2 ракетного разгонного блока 1 в результате колебаний криогенного топлива на корпус предыдущей ступени ракеты космического назначения 16 передаются нагрузки, которые значительно снижены за счет применения демпфирующей горизонтальной кольцевой перегородки 8, заглубленной в компонент криогенного бака окислителя 2 разгонного блока 1.

После отделения ракетного разгонного блока 1 от предыдущей ступени ракеты космического назначения 15 и после многократных запусков маршевого двигателя 6 ракетного разгонного блока 1 уровень компонента в криогенном баке окислителя 2 находится ниже уровня демпфирующей горизонтальной кольцевой перегородки 8.

При выключении маршевого двигателя 6 ракетного разгонного блока 1 в космических условиях наступает практическая невесомость. Под действием капиллярных сил и смачивания возникает движение криогенного компонента по внутренним поверхностям оболочки 10 криогенного бака окислителя 2 и его внутрибаковым устройствам 18 (например, перегородки, заправочная магистраль, коллектор наддува, штанга датчика уровня криогенного топлива и т.п.). В результате этого в центре криогенного бака окислителя 2 образуется газовый сфероид, а криогенный компонент находится на поверхностях внутрибаковых устройств 17 и на оболочке 10 криогенного бака окислителя 2.

В невесомости над и под демпфирующей горизонтальной кольцевой перегородкой 8 образуются кольцевые мениски криогенного компонента значительного объема. При создании предпусковой перегрузки с помощью дополнительной автономной двигательной установки системы ориентации и обеспечения запуска 7 обеспечивается частичное осаждение криогенного компонента в сторону заборного устройства 5 криогенного бака окислителя 2. При включении маршевого двигателя 6 ракетного разгонного блока 1 криогенный компонент стекает с демпфирующей горизонтальной кольцевой перегородки 8 и с внутрибаковых устройств 17. С демпфирующей горизонтальной кольцевой перегородки 8 криогенный компонент стекает по отбортовке 12 в зазор 9 по оболочке 10 криогенного бака окислителя 2 и поступает в его придонную часть 18. Организованный слив криогенного компонента с демпфирующей горизонтальной кольцевой перегородки 8 криогенного бака окислителя 2 с помощью придонной сетчатой перегородки 14 обеспечивает защиту отсепарированного криогенного компонента в придонной части 18 криогенного бака окислителя 2 от повторной загазованности, последующее успокоение его колебаний около заборного устройства 5 криогенного бака окислителя 2 и требуемую кондицию криогенного компонента по газосодержанию на входе в маршевый двигатель 6.

Реализация настоящего предложения в ракетном разгонном блоке 1 позволяет обеспечивать при совершении маневра предыдущей ступени ракеты космического назначения 15 снижение значительных нагрузок на корпус этой ступени при сохранении гидродинамических характеристик в криогенном баке окислителя 2 ракетного разгонного блока 1, обеспечивающих надежный запуск его маршевого двигателя 6.

Ракетный разгонный блок, содержащий криогенный бак окислителя с основными продольными перегородками, дополнительными придонными перегородками и заборным устройством, маршевый двигатель и дополнительную автономную двигательную установку системы ориентации и обеспечения запуска, отличающийся тем, что криогенный бак окислителя снабжен демпфирующей горизонтальной кольцевой перегородкой, размещенной с зазором по отношению к оболочке криогенного бака окислителя, причем демпфирующая горизонтальная кольцевая перегородка выполнена в виде секторов, каждый из которых закреплен к соответствующим основным продольным перегородкам, при этом каждый сектор имеет отбортовку в сторону нижнего днища криогенного бака окислителя, причем криогенный бак окислителя снабжен придонной сетчатой перегородкой, размещенной между дополнительными придонными перегородками и заборным устройством.



 

Похожие патенты:

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на одной прямой.

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с дополнительными придонными перегородками, заборным устройством, штангой датчика уровня криогенного топлива, маршевый двигатель.

Изобретение относится к космической технике и может быть использовано для освобождения отделяемых в процессе эксплуатации и многоразовой отработки силовых крупногабаритных агрегатов, например головных обтекателей, отсеков и ступеней ракет-носителей, подвесных баков летательных аппаратов, космических аппаратов и других полезных нагрузок (ПН).

Изобретение относится к космической технике. В стартовой системе для космических летательных аппаратов старт летательного аппарата, закрепленного на стартовой платформе с электродвигателем, осуществляется из горизонтального положения.
Изобретение относится к области медицины, а именно к урологии, андрологии и сексопатологии. Для лечения эректильной дисфункции ежедневно однократно в течение 10-12 минут проводят гравитационное воздействие на пациента в направлении голова-нижние конечности.

Изобретение относится к ракетно-космической технике и предназначено для создания современных, экономически эффективных средств выведения малых космических аппаратов (МКА) массой от 100 кг до 1000 кг на орбиты с высотой Нкр, от 200 км до 1500 км без ограничений по азимутам трасс запуска.

Изобретение относится к космическим аппаратам (КА) для научных исследований физических явлений и отработки различных систем и элементов КА на орбите ИСЗ и при спуске в атмосфере.

Использование: в области электротехники в системах электроснабжения (СЭС) космических аппаратов (КА). Технический результат - обеспечение штатного отключения сеансной нагрузки при нештатной ситуации.

Изобретение относится к области ракетно-космической техники, а именно к транспортно-пусковым контейнерам (ТПК). В ТПК для запуска малых космических аппаратов, выполненном в виде корпуса с четырьмя боковыми стенками, из которых две противоположные стенки имеют направляющие, задней стенкой, переходной рамкой и поворотной крышкой.

Изобретение относится, главным образом, к конструкции высокоскоростных двухступенчатых ракет. Первой ступенью может служить носовой обтекатель, а второй – остальная часть ракеты.

Группа изобретений относится преимущественно к внешнему оборудованию спутников (солнечным батареям, антеннам и т.п.). Устройство содержит упруго трансформируемые ленты («рулетки») (31а, 31b, 31c), согнутые U–образно и закрепленные на гибкой плёнке или полотне (30). Выдвижение и уборка рулеток производятся с помощью ротора (33), установленного в статоре (32). Первый конец (16) первой ветви рулетки (31) жестко связан с первым креплением (36), которое может быть неподвижно соединено со статором (32). Второй конец (17), пропущенный через прижимные (фасонные) губки, намотан на ротор (33). При размотке с ротора рулетка самопроизвольно (упруго) переходит в рабочее состояние. Технический результат состоит в создании малогабаритного, простого в работе, оптимально сопрягаемого с развёртываемой конструкцией устройства, обеспечивающего необходимую жесткость и устойчивость конструкции в рабочем положении. 3 н. и 17 з.п. ф-лы, 16 ил.

Группа изобретений относится к построению и управлению космическими аппаратами на орбитах ИСЗ. Система включает в себя орбитальную станцию, целевые (ЦМ) и обеспечивающие модули на компланарных орбитах. ЦМ имеют в своем составе многоразовые возвращаемые аппараты (МВА) крылатой схемы. В МВА размещены отсеки с целевой аппаратурой, используемые многократно бортовые системы модуля и ракеты-носителя и др. необходимые системы. Предусмотрен пилотируемый транспортно-целевой модуль с пилотируемым МВА. Модули системы выводятся на рабочие орбиты и управляются на них системами управления МВА с корректировкой программы наземными средствами. По завершении жизненного цикла элементов системы они переводятся на траекторию спуска в зону захоронения в Мировом океане. МВА совершают самолетную посадку на выбранный аэродром и, после прохождения регламента, используются повторно. Техническим результатом группы изобретений является создание с минимальными затратами и экологическим ущербом многоцелевой перестраиваемой орбитальной системы на компланарных орбитах. 2 н.п. ф-лы, 3 ил.

Изобретение относится к вероятностным (т.е. без стабилизации структуры) спутниковым системам наблюдения Земли, c охватом её обширных регионов. Спутники системы, находящиеся на круговых орбитах, оснащены сканирующей широкоугольной оптико-электронной системой ИК-диапазона с линейным фотоприемным устройством для обнаружения очага лесного пожара. На спутниках также имеется следящая оптико-электронная ИК-система, перенацеливаемая по целеуказаниям от сканирующей системы. Данная следящая система выполнена широкоугольной (с ИК-объективом типа «рыбий глаз») и с несколькими матричными фотоприемными устройствами для обнаружения и определения параметров очага лесного пожара, а также формирования сигнала предупреждения о нём. Технический результат изобретения направлен на расширение функциональных возможностей системы, снижение массо-габаритных характеристик спутников системы и уменьшения затрат на её создание и эксплуатацию. 3 ил.

Изобретение относится к приводам для разворота оборудования относительно корпуса космического аппарата (КА). Привод для разворота оборудования на космическом носителе, не создающий реактивного момента, включает в свой состав двигатель привода, статор которого укреплен на корпусе космического носителя, а ротор связан с разворачиваемым оборудованием, систему управления двигателем и маховик-компенсатор реактивного момента. Крепление статора двигателя привода к корпусу носителя осуществляется посредством подшипников таким образом, чтобы статор под действием реактивного момента мог свободно вращаться вокруг оси вращения ротора. Управляющий электрический ток подается на обмотки двигателя через скользящие токоподводы. Статор двигателя может быть либо непосредственно, либо через редуктор связан с маховиком-компенсатором реактивного момента. Техническим результатом изобретения является обеспечение отсутствия приводного реактивного момента, возмущающего космический носитель. 2 з.п. ф-лы, 3 ил.

Изобретение относится к управлению ориентацией космических аппаратов (КА), осуществляемой в солнечно-земной системе координат. Способ включает ориентацию первой оси КА на Землю путем разворотов вокруг второй и третьей осей КА с помощью электромеханических исполнительных органов. При отсутствии тени Земли управляющие воздействия вокруг второй оси КА формируют по информации с прибора ориентации на Землю, а относительно третьей оси КА - по информации с прибора ориентации на Солнце. Техническим результатом изобретения является уменьшение погрешности ориентации КА на Землю. 3 ил.
Изобретение относится к космической технике и может быть использовано при изготовлении космических аппаратов, предназначенных для фиксации на поверхности космических объектов. Космический аппарат снабжен системой фиксации на космическом объекте и посадочной ступенью. Система фиксации снабжена постоянным магнитом, притягивающимся к поверхности космического объекта, обладающей магнитными свойствами. При этом посадочная ступень снабжена электромагнитом, отталкивающимся от постоянного магнита системы фиксации, и магнитным веществом, притягивающимся к постоянному магниту системы фиксации. Техническим результатом изобретения является повышение эффективности системы фиксации космического аппарата.
Изобретение относится к способу территориального размещения мобильных командно-измерительных приёмо-передающих станций (мобильных станций). Для реализации способа определяют текущее положение мобильных станций и космических аппаратов, проводящих дистанционное зондирование заданного района Земли с помощью измерительных средств, прогнозируют траектории и рассчитывают трассы полета космических аппаратов с помощью вычислительных средств, определяют геометрический центр зондируемого района и антиподную точку на поверхности Земли с учетом ее угловой скорости вращения, периодов обращения космических аппаратов и ограничений по размещению мобильных станций, определяют место размещения мобильных станций и в соответствии с ними осуществляют их перемещение. Обеспечивается повышение эффективности сбора информации мобильными станциями одновременно от нескольких космических аппаратов и ее обработка.

Изобретение относится к космической технике и может быть использовано при создании космических аппаратов (КА) различного назначения. В способе сборки КА на оснастку в форме трубы устанавливают опорные панели в плоскостях XOY, на опорные панели устанавливают с закреплением приборные панели, монтируют опорные панели жесткости в плоскости XOZ к приборным панелям, монтируют панель астроплаты в плоскости ZOY к оснастке, приборным панелям и опорным панелям жесткости. Производят монтаж панелей доступа с закреплением их к панели астроплаты и приборным панелям. В ходе монтажных операций закрепление между собой панелей и технологической оснастки производят с применением уголков и кронштейнов. Задачей является создание новой сборочной единицы, обладающей меньшим весом, высокой точностью, наряду с повышенной надежностью и максимальным упрощением процесса сборки.Техническим результатом изобретения является упрощение монтажа и сборки конструкции, сокращение времени сборки КА. 7 ил.

Изобретение относится к наземным электрическим проверкам космических аппаратов (КА) при их изготовлении. В процессе проверок КА (1) используют: имитаторы ИБС (2) солнечных и имитаторы ИАБ (3) аккумуляторных батарей. В ИБС (2) и ИАБ (3) встроены ЭВМ, соответственно: (2-1) и (3-1). Количество каналов ИБС (2) равно числу фаз шунтового преобразователя (ШП), равного числу секций солнечных батарей. Встроенные ЭВМ связаны с ЭВМ (5) автоматизированного испытательного комплекса (4). Проверяют работу каждой фазы ШП в трех функциональных точках транзисторного ключа: в открытом, закрытом и регулирующем состояниях. Каждую фазу ШП настраивают на индивидуальную величину выходного напряжения питания модулей служебных систем и полезной нагрузки КА от стабилизированного преобразователя напряжения (при изготовлении этого преобразователя). Техническим результатом изобретения является повышение надежности электрических проверок КА. 4 з.п. ф-лы, 2 ил.

Изобретение относится к способу электрических проверок космического аппарата (КА). Для электрической проверки производят включение и выключение КА, подключение и отключение наземных имитаторов бортовых источников электропитания, автоматизированную выдачу команд управления, допусковое телеизмерение и контроль параметров бортовой вычислительной системы, контроль сопротивления изоляции бортовых шин относительно корпуса, формирование директив автоматической программы и директив оператора в ручном режиме, формирование протокола испытаний, отображение текущего состояния процесса испытаний. В случае недостатка мощности солнечных батарей для питания нагрузки отключают функцию распределения токов разряда, контролируют разницу токов разряда для проверки исправности разрядных преобразователей. Обеспечивается надежность проведения электрических проверок КА. 1 з.п. ф-лы, 2 ил.
Наверх