Способ предупреждения отложения хлорида натрия в призабойной зоне пласта и стволах скважин подземных хранилищ газа

Изобретение относится к нефтегазодобывающей промышленности и предназначено для борьбы с солеотложением в призабойной зоне пласта и стволах скважин с целью сохранения дебита скважин в условиях высокой минерализации попутно добываемых вод. Способ предупреждения отложения исключает их образование путем поддержания концентрации хлорида натрия, растворенного в пластовой воде, на уровне, исключающем его кристаллизацию. Поддержание заданной величины концентрации обеспечивают закачкой в подземное хранилище увлажненного газа, исключающего процесс абсорбции газом влаги из пластовой воды. Требуемое количество пресной воды для увлажнения закачиваемого газа определятся как разность абсолютного максимального влагосодержания газа в пластовых условиях и абсолютного влагосодержания газа, поступающего с магистрального газопровода для закачки в подземное хранилище. Увеличивается продолжительность работы скважин и хранилищ и суммарный объем отбираемого газа, увеличивается межремонтный период, исключаются работы по ликвидации соляных пробок. 4 ил., 1 табл.

 

Изобретение относится к нефтегазодобывающей промышленности и предназначено для борьбы с солеотложением в призабойной зоне пласта и стволах скважин с целью сохранения дебита скважин в условиях высокой минерализации попутно добываемых вод.

Анализ существующего уровня технологий показал следующее: известно магнитно-гидродинамическое устройство против солеотложения (патент RU №2386790, МПК Е21В 37/00, опубл. 20.04.2010), содержащее осесимметричную цепь аксиально намагниченных цилиндрических постоянных магнитов с цилиндрическими магнитными наконечниками, собранную на неферромагнитной штанге, проходящей через их осевые отверстия, с ориентацией магнитов одноименными полюсами навстречу друг к другу и установленную на звездчатых стойках соосно внутри секции ферромагнитной трубы с зазором для протекания жидкости и создания в ней поперечного ее потоку неоднородного магнитного поля, при этом устройство имеет между каждым полюсом магнита и магнитным наконечником турбину из ферромагнита с лопастями с заостренными кромками, обращенными к стенке трубы, а концы штанги установлены в подшипниках, укрепленных соосно на звездчатых стойках, допускающих вращение всей магнитной сборки относительно трубы под действием потока протекающей жидкости.

Недостатками данного устройства являются:

- во-первых, высокие финансовые и материальные затраты, связанные с привлечением бригады капитального или подземного ремонта скважин для извлечения насосного оборудования из скважины, спуска данного устройства с последующим его подъемом после отработки и спуском насосного оборудования для последующей эксплуатации добывающей скважины;

- во-вторых, низкая эффективность работы устройства, обусловленная слабой неоднородностью магнитного поля в направлении, поперечном к потоку жидкости, и ослабление со временем магнитного поля в потоке жидкости, обусловленное замыканием полюсов постоянных магнитов ферромагнитным шламом, заносимым потоком жидкости, требующее периодической очистки магнитного устройства.

Наиболее близким по достигаемому результату является устройство для очистки колонны лифтовых труб от отложений (патент RU №2452850, МПК Е21В 37/06, опубл. 10.06.2012), содержащее спущенную в скважину колонну лифтовых труб с глубинным насосом. Ниже глубинного насоса установлен трубчатый контейнер с открытым низом и армированная трубка для подачи химического реагента в контейнер с устья скважины, оснащенной выкидной линией с трубной задвижкой, установленной на верхнем конце лифтовой колонны труб. Контейнер, предварительно, покрывают изнутри теплоизоляционным составом, стойким к различным химическим реагентам, и на всю длину по осевой линии снабжают электронагревательным элементом, в частности греющим кабелем с переменной по длине мощностью. На внутренней стороне контейнера, равномерно по его длине, располагают датчики измерения температуры. Электронагревательный элемент и датчики измерения температуры соединяют электрической связью со станцией управления на устье скважины для организации контроля процесса разогрева химического реагента в контейнере.

Недостатками устройства являются:

- во-первых, низкая надежность работы, связанная с повреждением греющего кабеля или армированной трубки в процессе проведения спускоподъемных операций или в процессе работы устройства, что приводит к выходу устройства из строя;

- во-вторых, сложность конструкции, обусловленная большим количеством узлов и деталей (электронагревательный элемент, датчики измерения температуры, греющий кабель и т.д.);

- в-третьих, высокие финансовые затраты на подготовку устройства к работе (монтаж устройства в скважине), связанные с привлечением бригады капитального или подземного ремонта скважин для спуска трубчатого контейнера и армированной трубки для подачи химического реагента в контейнер с устья скважины. Кроме того, высокие материальные затраты на скважинное оборудование устройства: электронагревательный элемент, датчики измерения температуры, греющий кабель, армированная трубка;

- в-четвертых, сложный технологический процесс обслуживания устройства.

Технической задачей изобретения является упрощение достижения поставленной задачи, а также снижение материальных затрат на подготовку и эксплуатацию заявляемого изобретения.

Технический результат, получаемый при осуществлении предлагаемого изобретения:

- повышается технико-экономическая эффективность эксплуатации скважин, увеличивается продолжительность работы на проектных режимах и суммарный объем отбираемого газа за счет отсутствия образования отложений солей хлорида натрия;

- сокращаются материально-технические затраты за счет увеличения межремонтного периода работы скважин и отсутствия необходимости выполнения ремонтных работ по ликвидации соляных пробок и интенсификации дебита скважин.

Поставленная техническая задача решается способом предварительного увлажнения пресной водой закачиваемого в подземное хранилище газа.

Новым является то, что технический результат достигается путем поддержания концентрации хлорида натрия, растворенного в пластовой воде, на уровне, исключающем его кристаллизацию. Поддержание заданной величины концентрации обеспечивается закачкой в подземное хранилище увлажненного пресной водой газа, исключающего процесс абсорбции газом влаги из пластовой воды. Требуемое количество пресной воды для увлажнения определяется как разность абсолютного максимального влагосодержания газа в пластовых условиях и абсолютного влагосодержания газа, поступающего с магистрального газопровода для закачки в подземное хранилище, и определяется по формуле:

Wув=Wmax-Wмг

где:

Wув - требуемое количество пресной воды для увлажнения закачиваемого газа, кг/1000 м3;

Wmax - абсолютное максимальное влагосодержание газа в пластовых условиях, кг/1000 м3;

Wмг - абсолютное влагосодержание газа, поступающего с магистрального газопровода, для закачки в подземное хранилище, кг/1000 м3.

Абсолютное влагосодержание газа зависит от давления, температуры, состава газа и минерализации пластовой воды. Абсолютное влагосодержание газа с относительной плотностью выше 0,6 кг/м3 определяется по формуле

W=W0,6*CS*CG*CT

где:

W0,6 - влажность газа, определяется по номограмме фиг. 1, представленной в графических приложениях, кг/1000 м3;

CS - поправочный коэффициент, учитывающий влияние солености воды, определяется по номограмме фиг. 2, представленной в графических приложениях;

СG - поправочный коэффициент, учитывающий влияние плотности газа, определяется по номограмме фиг. 3, представленной в графических приложениях;

СT - поправочный коэффициент, учитывающий влияние температуры, определяется по номограмме фиг. 4, представленной в графических приложениях.

Увлажнение газа осуществляется пресной водой. Ввод воды осуществляется равномерно так, чтобы газ успевал абсорбировать всю воду, не оставляя капельной жидкости.

Заявляемый способ соответствует условию «новизны».

Предлагаемое в заявленном способе увлажнение пресной водой закачиваемого в подземное хранилище газа, исключает образование отложений хлорида натрия, способствует сокращению материально-технические затрат за счет отсутствия необходимости выполнения ремонтных работ по ликвидации соляных пробок и интенсификации дебита скважин.

Образование соленых пробок в призабойной зоне пласта и стволах скважин в процессе их эксплуатации является распространенной проблемой при добыче жидких и газообразных углеводородов. Причиной образования соляных пробок, состоящих из хлорида натрия, является достижение предела растворимости соли в пластовой воде, т.е. условий, при которых происходит процесс кристаллизации. Достижение хлоридом натрия предела растворимости в процессе эксплуатации подземных хранилищ газа является следствием осушки пласта-коллектора закачиваемым газом. Газ, закачиваемый в подземные хранилища, поступает из магистрального газопровода, который в свою очередь, на месторождениях, подвергается осушке. Влагосодержание осушенного газа, в магистральных газопроводах колеблется в интервалах от 0,00435 до 0,0132 кг/1000 м3.

Процесс осушки пласта-коллектора заключается в следующем: осушенный газ с влагосодержанием от 0,00435 до 0,0132 кг/1000 м3 поступает в подземное хранилище, где начинает абсорбировать влагу из пластовой воды, т.е. повышает свое влагосодержание до показателей, соответствующих текущим значениям температуры и давления, уменьшая тем самым объем воды и повышая концентрацию растворенной соли. Для примера, при пластовом давлении 14 МПа и пластовой температуре 25°С влагосодержание газа соответствует 0,350 кг/1000 м3. По достижении предела растворимости соли в пластовой воде наступает процесс ее кристаллизации и образование твердых отложений.

Использование пресной воды для увлажнения закачиваемого газа обусловлено тем, что газ абсорбирует именно воду являющуюся растворителем соли, и соответственно, увлажнение газа водой перед его закачкой в подземное хранилище исключает процесс абсорбирования.

Процесс предупреждения отложения хлорида натрия заключается в определении необходимого объема воды, требуемого для доведения влагосодержания газа до величины, исключающей абсорбирование газом влаги из пластовой воды и увлажнение этим количеством закачиваемого газа.

Необходимый объем пресной воды для увлажнения газа рассчитывается по формуле:

W=Wmax-Wмг

где:

Wув - требуемое количество пресной воды для увлажнения закачиваемого газа, кг/1000 м3;

Wmax - абсолютное максимальное влагосодержание газа в пластовых условиях, кг/1000 м3;

Wмг - абсолютное влагосодержание газа, поступающего с магистрального газопровода, для закачки в подземное хранилище, кг/1000 м3.

Ввиду того что величина влагосодержания газа на прямую зависит от давления и температуры, абсолютное максимальное влагосодержание газа в пластовых условиях Wmax определяется для наихудших условий, при которых искомое значение имеет максимальное значение, тем самым исключается процесс абсорбирования.

Абсолютное влагосодержание газа, поступающего с магистрального газопровода, определяется приборами, установленными на магистральном газопроводе.

Увлажненный газ, закачанный в подземное хранилище, не может абсорбировать влагу из пластовой воды, ввиду его полного насыщения ею перед закачкой, что позволяет сохранить концентрацию растворенной в пластовой воде соли на уровне, исключающем процесс ее кристаллизации, и соответственно, образования соляных отложений, состоящих из хлорида натрия.

Таким образом, согласно вышеописанному обеспечивается достижение заявленного результата.

Не выявлены по имеющимся источникам технические решения, имеющие признаки, совпадающие с отличительными признаками предлагаемого изобретения по заявленному техническому результату.

Заявляемый способ соответствует условию «изобретательского уровня».

Более подробно сущность заявляемого изобретения описывается следующим примером.

Необходимо произвести предупреждение отложения солей хлорида натрия в процессе эксплуатации подземного хранилища газа.

Исходные данные

Для определения необходимого количества воды для увлажнения газа предварительно рассчитываются следующие значения:

Абсолютное влагосодержание газа с относительной плотностью выше 0,6 кг/м3 в пласте-коллекторе для различных условий определяют по формуле:

W=W0,6*CS*CG*CT

где:

W0,6 - влажность газа, определенная по номограмме фиг. 1, кг/1000 м3;

CS - поправочный коэффициент, учитывающий влияние солености воды фиг. 2;

CG - поправочный коэффициент, учитывающий влияние плотности газа, фиг. 3;

СT - поправочный коэффициент, учитывающий влияние температуры, фиг. 4.

Абсолютное максимальное влагосодержание газа определяем для пластовых условий Рпл min=92 кгс/см2, Тпл=24°С и Рпл max=135 кгс/см2, Тпл=24°:

W0,6пл min=92 кгс/см2, Тпл=24°С)=0,5 кг/1000 м3;

W0,6пл max=135 кгс/см2, Тпл=24°)=0,4 кг/1000 м3.

Из полученных значений для дальнейших расчетов выбирают максимальное, W0,6=0,5 кг/1000 м3.

Определяют поправочный коэффициент, учитывающий влияние солености воды для условий минерализации 278 г/л, CS=0,361.

Поправочный коэффициент, учитывающий влияние плотности газа, CG=1.

Поправочный коэффициент, учитывающий влияние температуры СT=1.

Подставляем полученные значения в формулу, находим абсолютное максимальное влагосодержание газа в пластовых условиях

Wmax=W0,6*CS*CG*CT=0,5*0,361*1*1=0,1805 кг/1000 м3.

Далее определяем требуемое количество пресной воды для увлажнения закачиваемого газа по формуле:

W=Wmax-Wмг

где:

Wув - требуемое количество пресной воды для увлажнения закачиваемого газа, кг/1000 м3;

Wmax - абсолютное максимальное влагосодержание газа в пластовых условиях, кг/1000 м3;

Wмг - абсолютное влагосодержание газа, поступающего с магистрального газопровода, для закачки в подземное хранилище, кг/1000 м3. Определяется приборами, установленными на магистральном газопроводе (берем из таблицы с исходными данными).

Следовательно,

Wув=Wmax-Wмг=0,1805-0,008=0,1005 кг/1000 м3.

Далее, зная величину требуемого количества пресной воды для увлажнения газа, находим среднесуточный объем расхода воды и объем воды, требующийся для увлажнения всего газа, закачиваемого за сезон закачки.

Среднесуточный объем расхода воды определяем по формуле:

qв=Qсут*Wув

где:

qв - среднесуточный объем расхода воды, кг/1000 м3;

Qсут - среднесуточный объем закачиваемого в подземное хранилище газа, млн м3/сут;

Wув - требуемое количество пресной воды для увлажнения закачиваемого газа, кг/1000 м3.

Следовательно,

qв=Qсут*Wув=4,5*1000*0,1005=452,25 кг/1000 м3.

Объем воды требующийся для увлажнения всего газа, закачиваемого за сезон закачки, определяем по формуле:

Qв=Vакт*Wув

где:

Qв - объем воды, требующийся для увлажнения всего газа, закачиваемого за сезон закачки, кг;

Vакт - активный объем газа подземного хранилища - проектный объем газа, закачиваемый и отбираемый за один сезон закачки и отбора (берем из таблицы с исходными данными), млн м3;

Wув - требуемое количество пресной воды для увлажнения закачиваемого газа, кг/1000 м3.

Следовательно,

Qв=Vакт*Wув*=450*1000*0,1005=45225 кг=45,3 т.

По найденным значениям осуществляют увлажнение закачиваемого газа, предупреждающее образование отложений солей хлорида натрия в призабойной зоне пласта и стволах скважин.

Таким образом, способ предупреждения отложения хлорида натрия в призабойной зоне пласта и стволах скважин подземных хранилищ газа соответствует условию «новизны, изобретательского уровня и промышленной применимости», следовательно, соответствует условию «патентоспособности».

Способ предупреждения отложения солей хлорида натрия в призабойной зоне пласта и стволах скважин подземных хранилищ газа, исключающий их образование в процессе эксплуатации скважин, путем поддержания величины концентрации хлорида натрия, растворенного в пластовой воде, на уровне, исключающем его кристаллизацию, за счет исключения процесса абсорбции газом влаги из пластовой воды посредством его увлажнения пресной водой и доведением его влагосодержания перед закачкой в подземное хранилище газа до величины, исключающей данный процесс.



 

Похожие патенты:

Группа изобретений относится к области бурения и эксплуатации скважин и может быть использована при строительстве и ремонте скважин различного назначения, в том числе скважин, предназначенных для добычи нефти и газа.

Изобретение относится к области бурения и эксплуатации скважин и может быть использовано при строительстве и ремонте скважин различного назначения, в том числе скважин, предназначенных для добычи нефти и газа.

Группа изобретений относится к нефтегазодобывающей области, в частности к ингибированию коррозии и образования отложений на скважинном оборудовании при добыче углеводородного сырья.

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны в горизонтальных стволах скважин, пробуренных в залежи битумов.

Изобретение относится к нефтегазодобывающей отрасли, в частности к устройствам для очистки наклонно-направленных и горизонтальных стволов скважин от шлама в процессе бурения на суше и море.

Группа изобретений относится к области нефтегазодобывающей промышленности, в частности к оборудованию для очистки насосно-компрессорных труб (НКТ) нефтяных и газовых скважин от отложений асфальтенов, смол, парафинов, гидратов, солей кальция (АСПО) и т.д.

Изобретение относится к нефтегазобывающей промышленности, в частности к технологиям промывки проппантовых пробок в скважинах. Способ включает спуск в скважину в интервал пласта колонны труб с пакером, установку пакера над пластом, закачку жидкости гидроразрыва в продуктивный пласт, проведение дренирования пласта с удалением из него жидкости гидроразрыва и незакрепленного в пласте проппанта в скважину, затем спуск колонны гибких труб - ГТ через колонну труб и промывку проппанта из скважины.

Изобретение относится к устройствам для магнитной обработки скважинной жидкости в призабойной зоне пласта. Технический результат заключается в предотвращении асфальтеносмолопарафиновых отложений и снижении коррозионной активности флюида в скважинах.

Изобретение относится к нефтедобывающей промышленности и, в частности, к эксплуатации скважин, оборудованных установками электроцентробежных насосов. Технический результат - повышение эффективности расклинивания и очистки установки электроцентробежного насоса от отложений механических примесей и солей, образовавшихся в процессе отбора пластового флюида и, как следствие, увеличение межремонтного периода эксплуатации насосных установок данного типа.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для очистки забоя от песчаных и гипсовых пробок при текущем ремонте вертикальной скважины.

Изобретение относится к области газовой промышленности и предназначено для создания и эксплуатации подземных хранилищ природного газа, обогащенного гелием (ПХПГОГ).

Изобретение относится к горнодобывающей промышленности и может быть использовано для длительного хранения отходов переработки руд, содержащих в своем составе сульфидные минералы, которые при хранении в окислительных условиях разлагаются с образованием токсичных веществ.

Способ захоронения шламовых отходов с плотностью, превышающей плотность образуемого рассола, в эксплуатируемой соляной камере включает оборудование скважины концентрически расположенными водоподающей, рассолоподъемной и шламоподающей колоннами труб, подачу в камеру растворителя и отходов, извлечение рассола.

Изобретение относится к газовой отрасли промышленности, а именно к созданию подземного газохранилища - ПХГ в водоносном пласте. Технический результат - совершенствование способа создания ПХГ в водоносном пласте с использованием вододобывающих и водонагнетательных скважин за счет повышения эффективности активного воздействия на фильтрационные процессы в пласте.

Изобретение относится к нефтегазодобывающей промышленности, а именно к утилизации отходов бурения в ликвидируемой скважине, в частности в условиях наличия многолетнемерзлых пород (ММП).

Изобретение относится к области газовой промышленности и предназначено для эксплуатации подземных хранилищ газа (ПХГ). В ПХГ, на которых в купольной части пласта-коллектора сооружены эксплуатационные скважины, нагнетательные скважины на периферии пласта-коллектора и контрольные скважины в промежуточной зоне между эксплуатационными и нагнетательными скважинами, производят циклическую закачку природного газа в хранилище с созданием буферного и активного его объемов и отбор активного объема газа.

Подземный водосборный резервуар угольного разреза содержит непроницаемый слой и расположенные снизу от этого слоя пространство для хранения воды и очистной слой. Пространство для хранения воды содержит первое пространство для хранения воды и второе пространство для хранения воды.

Подземное хранилище сжиженного природного газа (ПХ СПГ) относится к подземной системе хранения и резервирования СПГ и может быть использовано для его накопления и выдачи потребителю.
Изобретение относится к области подземного хранения газа и может быть использовано в газодобывающей и нефтяной промышленности. Способ обеспечения экологической безопасности подземного хранилища газа включает его закачку через скважину, хранение и отбор газа из хранилища, при этом в зонах подземного размещения природного газа осуществляют дистанционный экологический мониторинг содержания метана в приземной атмосфере, а также непрерывный контроль концентрации метана в зонах технологических узлов.

Изобретение относится к емкостям-хранилищам техногенного назначения и может быть использовано для сбора жидких углеводородов при их аварийных разливах. Устройство содержит трубные секции в виде жесткого цилиндрического корпуса с крышкой.

Изобретение относится к области хранения и транспортировки нефти, нефтепродуктов (НП) и сжиженного природного газа (СПГ) и может быть использовано при производстве резервуаров для хранения и транспортировки СПГ. Cпособ изготовления резервуара для хранения и транспортировки нефти, НП и СПГ заключается в нанесении на внешнюю поверхность резервуара отражающей пленки, включающей три слоя: эпоксидный слой (грунтовка), термоплавкий (клеевой) полимерный подслой и светоотражающий слой. Изобретение позволяет существенно снизить негативное влияние солнечной энергии на охраняемые объекты, в том числе, резервуары для хранения СПГ. 1 з.п. ф-лы, 3 ил.
Наверх