Способ получения диметилдисульфона



Способ получения диметилдисульфона
Способ получения диметилдисульфона
Способ получения диметилдисульфона
Способ получения диметилдисульфона
Способ получения диметилдисульфона
Способ получения диметилдисульфона
Способ получения диметилдисульфона
C25B3/00 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2641302:

Федеральное государственное бюджетное образовательное учреждение высшего образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (RU)

Изобретение относится к способу получения диметилдисульфона путем электролиза водного раствора диметилсульфона в кислой среде. Способ характеризуется тем, что электролиз проводят в водных растворах диметилсульфона в щелочной среде в анодном отделении диафрагменного электролизера в пределах плотностей анодного тока 0,1-0,3 А/см2, затем раствор анолита охлаждают до Т=5-8°С до образования кристаллов. Технический результат заключается в отсутствие водорастворимых побочных продуктов в проведении процесса электроокисления водных растворов диметилсульфона в щелочной среде для получения диметилдисульфона. 2 ил., 1 табл., 5 пр.

 

Изобретение относится к технологии получения серосодержащих органических соединений, в частности, к синтезу диметилдисульфона. Диметилдисульфон (1,2-диметилдисульфон-1,1,2,2-тетраоксид) - бесцветное кристаллическое вещество, находит применение в фармацевтике для изготовления лекарственных препаратов, органическом синтезе в качестве ингибитора окисления и защиты функциональных групп, бытовой химии для синтеза ПАВ.

Известен способ получения дисульфонов [Чичибабин А.Е. Основные начала органической химии. Изд-е 6. М.: Госхимиздат. Т. 1 С. 234] окислением тиоцеталей.

Недостатками данного способа является то, что данным способом получают дисульфоны ациклического строения, многостадийность процесса, использование токсичных реагентов и низкий выход конечного продукта.

Известен также способ [Евразийский патент №019538 В1 от 30.04.2014 г. Кл. A01N 25/06, A01N 41/10, A01N 59/10, A01N 59/16, А01Р 1/00. Композиция для стерилизации поверхностей // Андерсен Бьерг Марит, Берг Эрик Эдвин]. По данному способу из смеси пероксида водорода и диметилсульфона получают смесь дисульфонов различного состава.

Недостатками данного способа являются взрывоопасный состав смеси, сложность разделения образуемых различных дисульфонов.

Наиболее близким по сущности методом является способ [патент РФ №2554880 С1. Кл. С07С, от 02.06.2015 г. Способ получения метансульфокислоты. // Хидиров Ш.Ш., Ахмедов М.А., Рабаданов М.Х.] путем электролиза в анодном отделении диафрагменного электролизера из концентрированных водных растворов 0,2-1,6 М диметилсульфона при высоких плотностях анодного тока 0,12-0,2 А/см2.

Недостатками данного способа являются небольшой выход диметилдисульфона и трудность его разделения от метансульфокислоты.

Задачей данного изобретения является повышение производительности синтеза диметилдисульфона и экономичность способа.

Технический результат заключается в отсутствие водорастворимых побочных продуктов в проведении процесса электроокисления водных растворов диметилсульфона в щелочной среде для получения диметилдисульфона.

Сущность предлагаемого способа состоит в том, что электролиз проводят в водных растворах диметилсульфона в щелочной среде в анодном отделении диафрагменного электролизера в пределах плотностей анодного тока 0,1-0,3 А/см2, затем раствор анолита охлаждают до Т=5-8°С до образования кристаллов.

Сущность изобретения поясняется примерами.

Пример 1

Электролиз проводили в диафрагменном электролизере с катионитовой мембраной марки - МКФ. Анод - платина, S=2 см2, катод - графит. В анодное отделение электролизера заливают 50 мл 0.1 М NaOH и растворяют в нем 1,88 г диметилсульфона, а в катодное отделение - 0,1М раствор NaOH.

Основным продуктом электросинтеза при плотности анодного тока (ia) 0,1 А/см2 является диметилдисульфон (CH3S(O)2-S(O)2CH3).

По окончании электролиза раствор анолита охлаждали до Т=5-8°С для выделения кристаллов CH3S(O)2-S(O)2CH3. Выделенные кристаллы многократно промывали холодной дистиллированной водой до pH 7, затем высушивали в эксикаторе над концентрированной серной кислотой и взвешивали на лабораторных весах.

Выход диметилдисульфона составил 80% масс.

Пример 2. Проводят аналогично примеру 1. Электролизу подвергали водный раствор, содержащий 3,76 г диметилсульфона на фоне 0,1 М NaOH при плотности анодного тока 0,1 А/см2.

Выход диметилдисульфона составил 78% масс.

Пример 3. Проводят аналогично примеру 1. Электролизу подвергали водный раствор, содержащий 5,64 г диметилсульфона при плотности анодного тока 0,2 А/см2.

Выход диметилдисульфона составил 82% масс.

Пример 4. Проводят аналогично примеру 1. Электролизу подвергали водный раствор, содержащий 7,52 г диметилсульфона при плотности анодного тока 0,3 А/см2.

Выход диметилдисульфона составил 68% масс.

Пример 5. Проводят аналогично примеру 1. Электролизу подвергали водный раствор, содержащий 9,54 г диметилсульфона при плотности анодного тока 0,3 А/см2.

Выход диметилдисульфона составил 65% масс.

Результаты аналогичных примеров при различных плотностях анодного тока даны в таблице.

Из данных таблицы видно, что наиболее высокий выход диметилсульфона по веществу осуществляется при плотности анодного тока ia=0.2 A/cm2. По-видимому, при ia>0,2 А/см2 преобладает реакция анодного образования кислорода.

На фиг. 1 представлены стационарные поляризационные кривые гладкого платинового электрода в 0,1М растворе NaOH (1) и в присутствии диметилсульфона в количестве 1,88 г (2); 3,76 г (3); 5,64 г (4); 9,4 г (5). Скорости развертки потенциала 2 мВ/с. По данным стационарных поляризационных кривых в сравнении с фоновой кривой 1 видно, что в пределах плотностей анодного тока 0,1-0,3 А/см2 идет подавление реакции выделения кислорода, за счет адсорбции молекул диметилсульфона на платиновом электроде.

Суть процесса образования диметилдисульфона в водном растворе щелочи заключается в следующем. Известна адсорбция на платине и платиновых металлах органических веществ, содержащих более одного атома углерода, сопровождающаяся разрывом С-С-связей и димеризацией образующихся при деструкции радикалов.

В случае диметилсульфона происходит аналогичный разрыв С-S-связей с образованием радикалов метилсульфогруппы и метила. Следует отметить, что средняя энергия разрыва C-S-связи (255 кДж/моль) почти в 1,5 раза меньше энергии связи С-С (347 кДж/моль). Следовательно, при достижении определенных плотностей анодного тока происходит разрыв С-S-связи с образованием метильных и метилсульфоновых радикалов.

.

Метилсульфоновые радикалы легко димеризуются с образованием устойчивых молекул диметилдисульфона и десорбируются в объем раствора.

Метильные радикалы также связываются с ОН-радикалами, образующимися при разряде гидроксид ионов.

Молекулы метанола на поверхности платинового анода хемосорбируются с образованием частиц состава СОН.

Частицы COHads окисляются с образованием CO2, как и при полном окислении СН3ОН по уравнению [Электродные процессы в растворах органических соединений. / Под ред. Дамаскина Б.Б. М.: Изд. Моск. ун-та. 1985. С. 11]:

Образование углекислого газа CO2 в анодном отделении доказано методом газовой хроматографии.

На фиг. 2 представлены изображения кристаллов диметилдисульфона, снятые в поле зрения отраженного света микроскопа Микмед-6 при увеличении 10 (a) и 40 (б) крат.

Предложенный способ обладает рядом преимуществ:

- упрощение процессов выделения основного продукта - диметилдисульфона;

- повышение производительности;

- чистота образующегося конечного продукта обусловлена отсутствием процессов образования побочных продуктов, связанных с дегидрированием и гидрированием молекул диметилсульфона в области потенциалов выделения кислорода;

- способ является экологически безопасным за счет отсутствия выделения токсичных и вредных веществ;

- простота технологии и оборудования, низкий уровень капитальных и эксплуатационных затрат.

Способ получения диметилдисульфона путем электролиза водного раствора диметилсульфона в кислой среде, отличающийся тем, что электролиз проводят в водных растворах диметилсульфона в щелочной среде в анодном отделении диафрагменного электролизера в пределах плотностей анодного тока 0,1-0,3 А/см2, затем раствор анолита охлаждают до Т=5-8°С до образования кристаллов.



 

Похожие патенты:

Изобретение относится к способу и системе управления электрическим током (ЕСМ) в по меньшей мере одном электролизере, имеющем по меньшей мере два электрода, находящихся в контакте с электролитической средой, множество сенсорных средств для измерения тока, проходящего через один или более электродов, при этом указанные сенсорные средства расположены внутри по меньшей мере одной панели ЕСМ, установленной в одном или более работающих электролизерах.

Изобретение относится к способу формирования барьерного покрытия на паяных алюминиевых электродах генератора озона, включающий подготовку поверхности деталей электрода к пайке, сборку конструкции в сборочно-паяльном приспособлении, выравнивание плоских поверхностей электрода за счет направленного термического удлинения ребер теплообменной насадки при температуре ниже температуры плавления припоя, пайку, в процессе которой при соответствующих температурах производят гомогенизацию металла и вакуумное травление рабочих поверхностей электрода для последующего создания на них диэлектрического барьера.

Изобретение относится к получению пузырьков и пен, содержащих пузырьки. Устройство содержит: первый блок, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках; второй блок, выполненный с возможностью вырабатывать пузырьки, содержащий: электролизер, выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки; контроллер выполнен с возможностью регулировать второй блок, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа.

Изобретение относится к энергетике, а именно к способу получения водорода при разложении воды. Способ включает подачу нагретой воды из водяного котла в устройство разложения воды на кислород и водород, содержащее катод и анод.

Изобретение относится к получению порошкообразного оксида алюминия высокой чистоты. Устройство содержит электролизер для электролиза водных растворов с окислением металлического алюминия, соединенный трубопроводом с обратноосмотической установкой для подготовки исходной технической воды и приемной емкостью для продуктов окисления, причем в нижнем отверстии приемной емкости выполнено выходное отверстие, соединенное с верхним ситом промывного сепаратора, при этом нижнее сито промывного сепаратора соединено линией подачи продукта с блоком термической обработки продуктов окисления алюминия.

Изобретение может быть использовано в химической промышленности. Способ получения гипохлорита кальция из пересыщенного природного поликомпонентного рассола хлоридного кальциево-магниевого типа включает выделение из рассола кристаллогидрата хлорида кальция и отделение маточного рассола, обогащенного литием и бромом.

Изобретение относится к установке для электрохимического разложения водных растворов хлоридов, включающей проточные электрохимические реакторы, состоящие из внутреннего трубчатого титанового катода, внешнего трубчатого титанового анода и размещенной между ними трубчатой керамической ионопроницаемой диафрагмы, нижнего и верхнего анодных коллекторов, сепаратора, нижнего и верхнего катодных коллекторов и насосов.
Изобретение относится к способу получения концентрата адипиновой кислоты и натриевой щелочи из щелочных стоков производства капролактама, включающему электролиз стоков в мембранном электролизере с получением в катодном пространстве натриевой щелочи.

Изобретение относится к способу электросинтеза циклогексантиола, включающему взаимодействие циклогексена с сероводородом в апротонных органических растворителях в присутствии фонового электролита при температуре 20-25°C и атмосферном давлении.

Изобретение относится к электролитической ячейке для выработки неразделенных анодных и катодных продуктов, состоящая из литографически структурируемой подложки, имеющей поверхность, множество анодных и катодных микроэлектродов, сформированных на упомянутой поверхности, причем упомянутые анодные и катодные микроэлектроды взаимно вставлены один в другой с межэлектродным промежутком менее 100 микрометров и имеют среднюю шероховатость Ra поверхности менее 0,05 мкм.

Изобретение относится к группе новых экстрагентов для извлечения азотной кислоты из водных растворов, в том числе из сточных вод, которые могут быть использованы для жидкостной экстракции азотной кислоты и разделения соляной и азотной кислот.

Изобретение относится к производным серасодержащих дикарбоновых кислот формулы (1) в которой при: X=NH2, m=1, n=2, 3, 4, 5, 6, 7, 8, 10; X=NH2, m=2, n=1, 2, 3, 4, 5, 6, 7, 8, 10; X=NHNH2, m=1, n=1, 2, 3, 5, 6, 7, 8, 10; X=NHNH2, m=2, n=1, 2, 3, 4, 5, 6, 7, 8, 10. Также изобретение относится к производным серасодержащих дикарбоновых кислот формулы (2) в которой при: m=1, n=2, 3, 4, 5, 6, 7, 8, 10; m=2, n=3, 4, 5, 6, 7, 8, 10; используемым для получения соединений формулы (1).

Изобретение относится к маскировке запаха органических сульфидов и более конкретно сульфидов алкила или диалкила, в частности диметилсульфида, а также их оксидов и, в частности, диметилсульфоксида, путем добавления к указанным органическим сульфидам по меньшей мере одного агента, маскирующего запах, содержащего по меньшей мере один сложный моноэфир, по меньшей мере один сложный ди- или гриэфир, по меньшей мере один спирт, по меньшей мере один кетон и возможно по меньшей мере один терпен.
Изобретение относится к области получения диметилсульфоксида (ДМСО), который широко применяется в органическом синтезе. .
Изобретение относится к имитатору токсичного химиката, являющегося фосфорорганическим веществом, в водных средах, а именно к применению N,N-диэтиланилина в качестве имитатора зомана при изучении динамики его распространения в водной среде проточных и непроточных водоемов в лабораторных условиях.

Изобретение относится к имитаторам отравляющих веществ (ОВ), в частности фосфорорганических отравляющих веществ (ФОВ), а именно к использованию диметилсульфоксида (ДМСО) СН3S(O)СН 3 (I) в качестве имитатора ФОВ при обучении работе на оптических инфракрасных дистанционных средствах химической разведки и проверке их работоспособности.
Изобретение относится к способам получения сульфоксидов, которые могут быть использованы в качестве экстрагентов металлов, флотореагентов и биологически активных веществ.

Изобретение относится к химии сероорганических соединений, а именно к усовершенствованному способу получения бис(2-хлорэтил)сульфоксида формулы ClCH2CHCH2CH2Cl Сульфоксиды в настоящее время используются и широко исследуются как реагенты для гидрометаллургии [Никитин Ю.Е.

Изобретение относится к способам получения промежуточных аминосульфоновых соединений для синтеза 2-[1-(3-этокси-4-метоксифенил)-2-метилсульфонилэтил]-4-ацетиламиноизоиндолин-1,3-диона, который применим для предупреждения или лечения заболеваний или состояний, связанных с аномально высоким уровнем или активностью ФНО-α.
Наверх