Способ получения метанола из диоксида углерода

Изобретение относится к способу получения метанола из богатого диоксидом углерода потока в качестве первого сырьевого потока и богатого углеводородами потока в качестве второго сырьевого потока, а также к установке для его осуществления. Способ включает следующие стадии: подачу первого богатого диоксидом углерода сырьевого потока по меньшей мере к одной стадии метанизации и превращение первого сырьевого потока с водородом в условиях метанизации в богатый метаном поток, подачу богатого метаном потока по меньшей мере к одной стадии получения синтез-газа и превращение его вместе со вторым богатым углеводородами сырьевым потоком в поток синтез-газа, содержащий оксиды углерода и водород, в условиях получения синтез-газа, подачу потока синтез-газа к стадии синтеза метанола, встроенной в цикл синтеза, и превращение его в поток содержащего метанол продукта в условиях синтеза метанола, отделение метанола от потока содержащего метанол продукта и, факультативно, очистку метанола до потока конечного продукта метанола и выделение продувочного потока, содержащего оксиды углерода и водород, из установки синтеза метанола. Предлагаемое изобретение позволяет утилизировать парниковый газ диоксид углерода с получением метанола при использовании простой технологии. 2 н. и 13 з.п. ф-лы, 4 ил.

 

Область техники

Настоящее изобретение относится к многостадийному способу получения метанола конверсией первого богатого диоксидом углерода сырьевого потока вместе со вторым богатым углеводородами сырьевым потоком, например природным газом или нафтой (сырой нефтью). Изобретение, кроме того, относится к установке для осуществления способа согласно изобретению.

Уровень техники

В настоящее время усиливаются поиски технологий, которые обеспечивают материальную утилизацию парникового газа диоксида углерода (CO2) и превращения его в нейтральные для климата конечные продукты. В качестве одного из этих способов исследуется альтернативный синтез метанола, в котором - в отличие от классических способов - использованный синтез-газ не содержит или содержит только небольшие количества монооксида углерода (СО) и водорода (Н2), но содержит главным образом или исключительно диоксид углерода. Основные положения классического, основанного на СО синтезе метанола могут быть найдены, например, в Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 1998 Electronic Release, глава "Methanol", подглава 5.2 "Synthesis".

Синтез метанола из CO2 и Н2 или богатого CO2 синтез-газа в принципе возможен и уже был изучен в опубликованных ранее документах, например, в статье Н. Gohna and P. Konig, "Producing methanol from CO2", Chemtech 24 (1994), стр. 36-39, причем под «богатым CO2 синтез-газом» понимается синтез-газ с концентрацией CO2 более чем 8% по объему. По сравнению с классическим синтезом метанола с богатым СО синтез-газом этот способ, однако, имеет тот недостаток, что основанный на CO2 синтез метанола протекает с меньшей скоростью. Поэтому в 1990-х годах Lurgi разработал способ, который предусматривает дополнительный адиабатический реактор, расположенный вверх по потоку цикла синтеза (см. вышеупомянутую ссылку). Кроме того, в основанном на CO2 синтезе метанола образуется заметно больше пара, так что имеются большие возможности конденсации. Конденсация воды на катализаторе синтеза метанола может вызвать изменение и механическое разрушение катализатора. Следовательно, можно увидеть, что синтез метанола, основанный исключительно на диоксиде углерода, является технически более сложным и поэтому может быть лишь с трудом реализован на уже существующих заводах метанола.

Описание изобретения

Поэтому цель настоящего изобретения заключается в разработке способа получения метанола конверсией диоксида углерода, который преодолевает описанные выше затруднения и легко может быть интегрирован в существующий завод для синтеза метанола классическим способом.

Вышеупомянутая цель достигнута изобретением по п. 1 формулы изобретения посредством способа получения метанола из богатого диоксидом углерода потока как первого сырьевого потока и богатого углеводородами потока как второго сырьевого потока, который включает в себя следующие шаги способа:

а) подачу первого богатого диоксидом углерода сырьевого потока по меньшей мере к одной стадии метанизации и превращение первого сырьевого потока с водородом в условиях метанизации в богатый метаном поток,

б) подачу богатого метаном потока по меньшей мере к одной стадии получения синтез-газа и конвертирование его вместе со вторым богатым углеводородами сырьевым потоком в поток синтез-газа, содержащий оксиды углерода и водород, в условиях получения синтез-газа,

в) подачу потока синтез-газа к стадии синтеза метанола, встроенной в цикл синтеза, и превращение его в поток содержащего метанол продукта в условиях синтеза метанола,

г) отделение метанола от потока содержащего метанол продукта и, факультативно, очистку метанола до потока конечного продукта метанола,

д) выделение продувочного потока, содержащего оксиды углерода и водород, из стадии синтеза метанола.

Изобретение также относится к установке для осуществления способа согласно изобретению, которая содержит по меньшей мере один реактор метанизации, по меньшей мере один реактор риформинга, оснащенный нагревательным устройством, по меньшей мере один реактор синтеза метанола, по меньшей мере один обратный трубопровод для рециркуляции неконвертированного синтез-газа к реактору синтеза метанола, и сепаратор метанола.

Другие предпочтительные варианты способа согласно изобретению могут быть найдены в зависимых пп. 2-9 формулы изобретения, дополнительные предпочтительные варианты установки согласно изобретению - в пп. 11-14 формулы изобретения.

Изобретение основано на обнаружении того, что сырьевой поток, который является новым по сравнению с классическим синтезом метанола, то есть богатый диоксидом углерода поток, не загружается в процесс синтеза метанола, как рекомендуется согласно уровню техники, а вводится в процесс уже на стадии получения синтез-газа. Также принимается в расчет дополнительная возможность использования водорода. Посредством дополнительного, конструктивно простого адиабатического шахтного реактора введенный в процесс CO2 сначала превращается в метан путем использования водорода (метанизация). После возможной обработки водород, требуемый для этой цели, может происходить из шагов способа согласно пункту 1 (д) формулы изобретения или может быть получен из внешнего источника. Альтернативно, дополнительная подача водорода может быть также исключена, когда технологическая цепочка включает в себя шаг предварительного риформинга. Поскольку водород получается во время предварительного риформинга (предриформинга), то богатый диоксидом углерода поток может загружаться в предриформер и может быть там превращен в метан. В данном случае является благоприятным, что используемые для предриформинга катализаторы часто имеют достаточную активность для метанизации диоксида углерода. Метан, образовавшийся из двух сырьевых потоков, затем превращается в синтез-газ известным образом, причем могут быть использованы способы риформинга, известные из уровня техники, такие как паровой риформинг или автотермический риформинг (ATR), но также другие способы получения синтез-газа, такие как, например, газификация нефтяных фракций, угля или биомассы. На первый взгляд, представляется абсурдным сначала получать метан в стадии метанизации и затем снова превращать его в синтез-газ. Однако удивительным образом было установлено, что способ согласно изобретению имеет преимущества по сравнению с описанными в уровне техники способами, поскольку реакция может быть реализована намного легче с точки зрения технологического процесса. Полученное тепло может быть непосредственно использовано при получении газа и не должно отводиться с большими затратами через теплообменники. Вода, полученная по время метанизации согласно уравнению реакции

CO2+2Н2=СН4+2H2O,

проявляет полезный эффект при получении синтез-газа, так как подавляет образование сажи или коксование используемого там катализатора и, в дополнении, может быть отделена в уже существующем сепараторе, расположенном вниз по потоку от стадии риформинга. В дополнение, она не является балластом для синтеза метанола, так что используемые там аппараты и трубопроводы могут быть уменьшены по размеру при одинаковой производительности.

Богатый диоксидом углерода поток в смысле способа согласно изобретению может быть любым потоком газа с повышенной концентрацией диоксида углерода, но также и потоком чистого CO2. Следовательно, могут использоваться потоки отработанных газов, богатых CO2 или обогащенных CO2, которые возможно могут подвергаться предварительной обработке для удаления каталитических ядов, например, серосодержащих компонентов.

Предпочтительно, содержание CO2 в таких богатых диоксидом углерода потоках составляет более чем 50% по объему, особо предпочтительно более чем 90% по объему. Наиболее предпочтительно, обрабатываются богатые диоксидом углерода потоки с содержанием CO2 выше 95% по объему, получаемые, например, с отработанными газами регенерации процесса отделения CO2 физической адсорбцией.

В качестве богатого углеводородами потока могут использоваться те исходные материалы или сырьевые смеси, которые используются также в обычных способах получения синтез-газа, то есть, прежде всего, природный газ или испаренная нафта как типичные исходные материалы для риформинга. Точно также могут быть использованы богатые углеводородами потоки, а также нефтяные фракции, уголь или биомасса, которые в специфических условиях для каждого материала, но известных специалистам, могут подаваться к стадиям получения синтез-газа.

Условия реакции и катализаторы, пригодные для проведения метанизации CO2 согласно вышеприведенной реакции, специалисту известны. Они обсуждаются, например, в международной заявке на патент WO 2010/006 386 А2 и в приведенных в ней ссылках.

В качестве стадии получения синтез-газа могут быть использованы способы получения синтез-газа, известные из уровня техники, такие как, например, паровой риформинг или автотермический риформинг (ATR), а также специфические способы газификации неиспаряющихся богатых углеводородами потоков, например тяжелых нефтяных фракций, угля или биомассы. И здесь подходящие условия способов известны специалисту из имеющего широкое распространение уровня техники. Соответствующий уровень техники обобщен, например в Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 1998 Electronic Release, глава "Gas Production", подглава 2, "Catalytic Reforming of Natural Gas and Other Hydrocarbons".

Современный двухстадийный способ получения метанола, который, предпочтительно, может быть также использован при осуществлении способа согласно изобретению, известен, например, из ЕР 0790226 В1. Метанол производится в циклическом процессе, в котором смесь свежего и частично прореагировавшего синтез-газа сначала подается в водоохлаждаемый реактор или затем в газоохлаждаемый реактор, в каждом из которых синтез-газ превращается в метанол на медном катализаторе. Произведенный в этом процессе метанол отделяется от синтез-газа, подлежащего рециркуляции после охлаждения ниже точки росы в охладителе. Оставшийся синтез-газ затем противоточно проходит через газоохлаждаемый реактор как охлаждающее средство и предварительно нагревается до температуры от 220 до 280°C, прежде чем он вводится в первый реактор синтеза. Часть подлежащего рециркуляции синтез-газа удаляется из процесса как продувочный поток для предотвращения того, что в цикле синтеза накапливаются инертные компоненты. Из европейского описания изобретения ЕР 0790226 В1 специалист может также узнать дополнительные условия проведения синтеза метанола.

Предпочтительные варианты изобретения

Предпочтительный вариант способа согласно изобретению обеспечивает, что продувочный поток подается к стадии разделения газов и разделяется в ней на богатый водородом рециркуляционный поток и бедный водородом рециркуляционный поток. Таким образом, ценные компоненты синтез-газа, выделенные из цикла синтеза метанола, прежде всего водород, могут быть дополнительно использованы.

Кроме того, является предпочтительным, когда бедный водородом рециркуляционный поток рециркулируется по меньшей мере в одну стадию получения синтез-газа и используется там в качестве топлива. Поскольку он все еще обладает значительной теплотворной способностью, он может, предпочтительно, использоваться для обогрева под колосниковой решеткой реактора риформинга, например установки для парового риформинга.

Один предпочтительный вариант осуществления способа согласно изобретению, кроме того, предусматривает, что по меньшей мере одна стадия получения синтез-газа включает в себя стадию предварительного риформинга (предриформер) и основную стадию риформинга, причем первый богатый диоксидом углерода сырьевой поток подается к стадии предриформинга и одновременно, по меньшей мере, частично превращается в метан. Предриформер обычно используется всегда, когда богатый углеводородами сырьевой поток, который подлежит конвертации в синтез-газ, является природным газом со значительным содержанием этана или даже высших углеводородов. В предриформере высшие углеводороды частично или даже полностью конвертируются в метан. Удивительным образом, можно без нарушения предриформинга богатого углеводородами сырьевого потока загружать в предриформер богатый диоксидом углерода и, возможно, водородом сырьевой поток, причем параллельно реакции предриформинга происходит реакция метанизации диоксида углерода, так что он также конвертируется в метан. Добавление водорода часто может быть исключено, поскольку водород уже образуется во время предриформинга богатого углеводородами сырьевого потока. Кроме того, достигаются энергетические преимущества, поскольку тепловые требования предриформера значительно снижаются за счет сопряжения с экзотермической метанизацией CO2.

Если, однако, требуется водород, то следующей предпочтительной особостью изобретения предусматривается, что дополнительно загружаемый в стадию предриформинга водород, по меньшей мере, частично происходит из стадии разделения газов. Таким образом снижается стоимость операционного материала, поскольку в процесс должно вводиться меньше, или не вводиться, дорогостоящего водорода.

Кроме того, является предпочтительным, когда стадия предриформинга содержит катализатор, который является активным как для предриформинга, так и для метанизации. Это обеспечивает логистические преимущества при приобретении катализатора и работе с ним. Является особо благоприятным, что некоторые из содержащих никель катализаторов, активных для предриформинга высших углеводородов, также проявляют достаточную активность для метанизации диоксида углерода.

Особый вариант установки согласно изобретению предусматривает, что присутствует установка для выделения водорода в форме установки абсорбции при переменном давлении или установки мембранного разделения для выделения водорода из продувочного потока. Оба процесса сами по себе известны. В особенности абсорбция при переменном давлении часто используется в обработке продукта вниз по потоку от парового риформинга.

Обычно является предпочтительным, когда установка согласно изобретению включает в себя возвратный трубопровод для богатого водородом рециркуляционного потока от установки для выделения водорода к ректору метанизации и/или по меньшей мере к одному реактору синтеза метанола. Таким образом ценный водород может быть использован для метанизации введенного диоксида углерода или для синтеза метанола.

Еще один предпочтительный вариант установки согласно изобретению отличается возвратным трубопроводом для бедного водородом рециркуляционного потока от установки отделения водорода к нагревательному устройству реактора риформинга. Поскольку бедный водородом рециркуляционный поток все еще обладает значительной теплотворной способностью, он может, предпочтительно, использоваться для обогрева под колосниковой решеткой реактора риформинга установки для парового риформинга.

Особые преимущества получаются, когда установка согласно изобретению содержит реактор предриформинга (предриформер) и основной реактор риформинга, причем реактор предриформинга также используется в качестве реактора метанизации. Предриформер обычно используется, когда богатый углеводородами сырьевой поток, который должен конвертироваться в синтез-газ, является природным газом со значительным содержанием этана или даже высших углеводородов. В предриформере высшие углеводороды частично или даже полностью конвертируются в метан. Удивительным образом, можно без нарушения предриформинга богатого углеводородами сырьевого потока загружать богатый диоксидом углерода и, возможно, водородом сырьевой поток в предриформер, причем параллельно реакции предриформинга происходит реакция метанизации диоксида углерода, так что он также конвертируется в метан. Добавление водорода часто может быть исключено, поскольку водород уже образуется во время предриформинга богатого углеводородами сырьевого потока. Кроме того, достигаются энергетические преимущества, поскольку тепловые требования предриформера значительно снижаются за счет сопряжения с экзотермической метанизацией CO2.

Примеры вариантов осуществления

Дальнейшие усовершенствования, преимущества и возможные применения изобретения могут быть взяты из нижеследующего описания примеров осуществления и рисунков. Все признаки, описанные и/или проиллюстрированные, образуют изобретение сами по себе или в любых сочетаниях, независимо от их включения в пункты формулы изобретения или их обратные ссылки.

На чертежах:

Фиг. 1 показывает способ синтеза метанола согласно уровню техники как первый пример сравнения,

Фиг. 2 показывает способ синтеза метанола согласно уровню техники как второй пример сравнения,

Фиг. 3 показывает способ по настоящему изобретению согласно первому варианту осуществления,

Фиг. 4 показывает способ по настоящему изобретению согласно второму варианту осуществления.

В блок-схеме способа синтеза метанола согласно уровню техники, которая показана на фиг. 1, сырье или сырьевая смесь, например природный газ или нафта, входит в процесс через трубопровод 10 и проходит к стадии 11 получения синтез-газа. Обычно, она проектируется в виде парового риформера или также в виде автотермического риформера, возможны также комбинации вышеупомянутых типов риформеров или также совершенно разных способов получения синтез-газа, как, например, некаталитическое частичное окисление, газификация тяжелых нефтяных фракций или отходов нефтеперерабатывающих предприятий, газификация угля, газификация биомассы, индивидуально или в сочетании с вышеупомянутыми типами риформеров и/или способами получения синтез-газа. Подходящие условия работы для этих технологических стадий специалисту известны.

Конвертированная в сырой синтез-газ сырьевая смесь покидает стадию получения синтез-газа через трубопровод 12 и - возможно после дальнейшего кондиционирования, не показанного на фиг. 1 - подается к стадии 13 синтеза метанола. В принципе, здесь могут быть использованы все известные способы синтеза метанола, причем могут быть использованы и одностадийные, и многостадийные способы. Поэтому, тип способа более подробно на фиг. 1 разъяснен не будет. Подходящие условия для операции синтеза метанола специалисту также известны. Конечный продукт метанол выгружается из процесса через трубопровод 14. Кроме того, через трубопровод 15 из стадии синтеза метанола выгружается продувочный поток газа, который содержит как инертные с точки зрения синтеза метанола компоненты, такие как метан, азот или благородные газы, а также и еще неконвертированные компоненты синтез-газа, такие как оксиды углерода или водород. Поток продувочного газа подается к стадии 16 разделения газов, который может быть выполнен в соответствии с известными самими по себе способами, например, в соответствии со способом абсорбции при переменном давлении (PSA) или в соответствии со способом мембранного разделения. В стадии синтеза метанола получается обогащенный водородом поток, который рециркулируется в стадию синтеза метанола через трубопроводы 17 и 12. Через трубопровод 18 газ, освобожденный от водорода, рециркулируется к стадии 11 получения синтез-газа как топливный газ.

На фиг. 2 схематически в виде блок-схемы показан измененный способ синтеза метанола, который оптимизирован для обработки богатого CO2 синтез-газа. Как описано выше, подобные способы уже были известны из уровня техники. Здесь ссылка делается, прежде всего, на статью Gohna и Konig, из которой специалист может взять подходящие условия для управления таким измененным способом синтеза метанола. Через трубопровод 12 сырьевой поток, содержащий диоксид углерода и водород, поступает в стадию 13А, которая по сравнению с известным из уровня техники способом синтеза метанола оптимизирована в отношении переработки богатого CO2 синтез газа. Через трубопровод 14 конечный продукт метанол выгружается из процесса. Дополнительные детали способа, такие как, например, получение синтез-газа или переработка продувочного газа, выгруженного из синтеза метанола, на фиг. 2 не показаны.

Фиг. 3 показывает способ синтеза метанола согласно первому варианту осуществления изобретения в виде блок-схемы. Снова природный газ или нафта входят в процесс как сырьевая смесь через трубопровод 10 и поступают к стадии 11 получения синтез-газа, которая выполнена как стадия риформинга. В стадии риформинга могут быть использованы паровой риформинг, или автотермический риформинг, или комбинация обоих способов. Снова возможны комбинации вышеупомянутых типов риформеров или также совершенно разных способов получения синтез-газа, такие как, например, некаталитическое частичное окисление, газификация тяжелых нефтяных фракций или отходов нефтеперерабатывающих предприятий, газификация угля, газификация биомассы, индивидуально или в сочетании с вышеупомянутыми типами риформеров и/или способами получения синтез-газа. Подходящие условия работы для этих технологических стадий специалисту известны.

Через трубопровод 19 богатый CO2 газовый поток подается к стадии 20 метанизации, к которой, факультативно, может быть добавлен водород. Добавление водорода является факультативным, поскольку водород присущ процессу, получается посредством стадии 16 разделения газов из потока продувочного газ, выгружаемого из синтеза 13 метанола через трубопровод 15, и также рециркулируется к стадии 20 метанизации через трубопровод 17А. Поэтому добавление водорода к богатому CO2 газовому потоку требуется только тогда, когда рециркулируемый через трубопровод 17А водород не может удовлетворять стехиометрическим требованиям во время метанизации или рециркуляция невозможна, поскольку еще не имеется присущего процессу водорода, например, во время запуска способа. В отношении выбора подходящих условий способа во время метанизации специалист может обратиться к публикациям и внести требуемые улучшения на основе своих навыков. Подходящие условия способа обсуждаются, например, в международной заявке на патент WO 2010/006 386 А2 и в документах, на которые здесь даны ссылки.

В стадии 20 метанизации богатый CO2 газовый поток конвертируется в богатый метаном поток продукта, который через трубопровод 21 подается к стадии получения синтез-газа или стадии риформинга и в них конвертируется в сырой синтез-газ вместе с природным газом или нафтой, поставляемыми через трубопровод 10.

Конвертированная в синтез-газ сырьевая смесь покидает стадию получения синтез-газа или стадию риформинга через трубопровод 12 и - возможно после дальнейшего кондиционирования, не показанного на фиг. 3 - подается к стадии 13 синтеза метанола. В данном примере осуществления особо предпочтительным является двухстадийный процесс синтеза метанола с водо- или газоохлаждаемым реактором синтеза, как описано в документе ЕР 0790226 В1. Однако, в принципе, в способе согласно изобретению также является применимым синтез метанола согласно одностадийному процессу. Подробности этого процесса на фиг. 3 не показаны. Однако, поскольку это процесс переработки не богатого CO2 синтез-газа, то, в свою очередь, для синтеза метанола применимы все одностадийные или многостадийные процессы, известные из уровня техники.

Конечный продукт метанол выгружается из способа через трубопровод 14. Кроме того, через трубопровод 15 из стадии синтеза метанола выгружается поток продувочного газа, который содержит инертные с точки зрения синтеза метанола компоненты, такие как метан, азот или благородные газы, а также и еще неконвертированные компоненты синтез-газа, такие как оксиды углерода или водород. Поток продувочного газа подается к стадии 16 разделения газов, которая выполнена как способ абсорбции при переменном давлении (PSA). Однако, что также возможно, это использование других способов разделения, например, способы мембранного разделения. В стадии разделения газов получается обогащенный водородом газовый поток, который рециркулируется к стадии синтеза метанола через трубопроводы 17 и 12. Кроме того, частичный поток обогащенного водородом газового потока рециркулируется к стадии 20 метанизации через трубопровод 17А.

В показанном на фиг. 1 способе освобожденный от водорода газовый поток рециркулируется к стадии 11 получения синтез-газа как топливный газ через трубопровод 18.

Фиг. 4 показывает еще один способ синтеза метанола согласно второму варианту осуществления изобретения в виде блок-схемы. Он в значительной степени аналогичен способу, показанному на фиг. 3. Следовательно, признаки, раскрытые в связи с описанием фиг. 3, также применимы к способу согласно изобретению, показанному на фиг. 4. Однако в варианте осуществления, показанном на фиг. 4, сырьевая смесь, содержащая природный газ или нафту, сначала подается к модифицированной стадии 20А метанизации, которая одновременно работает как предриформер и, таким образом, приводит к распаду высших углеводородов до метана. В данном случае является благоприятным, что катализаторы, используемые для предриформинга, например катализаторы на основе никеля, часто имеют достаточную активность для метанизации диоксида углерода. Следовательно, достигаются особые преимущества, поскольку два шага способа могут осуществляться в одном, конструктивно простом реакторе. Возможно, объем катализатора должен быть соответствующим образом адаптирован в отношении целевых конверсий высших углеводородов и диоксида углерода в метан.

Промышленная применимость

Изобретением предлагается способ получения метанола из богатого диоксидом углерода сырьевого потока, в котором поток вместе с классическим сырьем для синтеза метанола конвертируют в конечный продукт метанол. Поскольку способ согласно изобретению вносит вклад в материальную утилизацию парникового газа диоксида углерода, одновременно частично экономится сырье, полученное из ископаемых сырьевых материалов, таких как природный газ или нафта.

ПЕРЕЧЕНЬ ССЫЛОЧНЫХ ОБОЗНАЧЕНИЙ

[10] трубопровод

[11] стадия получения синтез-газа

[12] трубопровод

[13] стадия синтеза метанола

[13А] модифицированная стадия синтеза метанола

[14] трубопровод

[15] трубопровод

[16] стадия разделения газов

[17] трубопровод

[17А] трубопровод

[18] трубопровод

[19] трубопровод

[20] стадия метанизации

[20А] измененная стадия метанизации, предриформер

1. Способ получения метанола из богатого диоксидом углерода потока в качестве первого сырьевого потока и богатого углеводородами потока в качестве второго сырьевого потока, включающий в себя следующие шаги способа:

а) подачу первого богатого диоксидом углерода сырьевого потока по меньшей мере к одной стадии метанизации и превращение первого сырьевого потока с водородом в условиях метанизации в богатый метаном поток,

б) подачу богатого метаном потока по меньшей мере к одной стадии получения синтез-газа и превращение его вместе со вторым богатым углеводородами сырьевым потоком в поток синтез-газа, содержащий оксиды углерода и водород, в условиях получения синтез-газа,

в) подачу потока синтез-газа к стадии синтеза метанола, встроенной в цикл синтеза, и превращение его в поток содержащего метанол продукта в условиях синтеза метанола,

г) отделение метанола от потока содержащего метанол продукта и, факультативно, очистку метанола до потока конечного продукта метанола,

д) выделение продувочного потока, содержащего оксиды углерода и водород, из установки синтеза метанола.

2. Способ по п. 1, отличающийся тем, что продувочный поток подают к стадии разделения газов и в нем разделяют на богатый водородом рециркуляционный поток и бедный водородом рециркуляционный поток.

3. Способ по п. 2, отличающийся тем, что богатый водородом рециркуляционный поток рециркулируют по меньшей мере к одной стадии метанизации и/или к стадии синтеза метанола.

4. Способ по п. 2, отличающийся тем, что бедный водородом рециркуляционный поток рециркулируют по меньшей мере к одной стадии получения синтез-газа и используют там в качестве топлива.

5. Способ по пп. 2-4, отличающийся тем, что по меньшей мере одна стадия получения синтез-газа содержит стадию предриформинга (предриформер) и основную стадию риформинга, причем первый богатый диоксидом углерода сырьевой поток подают к стадии предриформинга и одновременно по меньшей мере частично конвертируют в метан.

6. Способ по п. 5, отличающийся тем, что в стадию предриформинга загружают дополнительный водород.

7. Способ по п. 6, отличающийся тем, что дополнительно загружаемый в стадию предриформинга водород, по меньшей мере, частично происходит из стадии разделения газов.

8. Способ по п. 5, отличающийся тем, что стадия предриформинга содержит катализатор, который является активным как для предриформинга, как для метанизации.

9. Способ по п. 6 или 7, отличающийся тем, что стадия предриформинга содержит катализатор, который является активным как для предриформинга, так и для метанизации.

10. Способ по п. 8, отличающийся тем, что катализатор стадии предриформинга содержит никель.

11. Установка для осуществления способа согласно любому и пп. 1-10, содержащая по меньшей мере один реактор метанизации, по меньшей мере один реактор риформинга, оснащенный нагревательным устройством, по меньшей мере один реактор синтеза метанола, по меньшей мере один обратный трубопровод для рециркуляции неконвертированного синтез-газа к реактору синтеза метанола и сепаратор метанола.

12. Установка по п. 11, отличающаяся установкой выделения водорода в форме установки абсорбции при переменном давлении или установки мембранного разделения для выделения водорода из продувочного потока.

13. Установка по п. 12, отличающаяся обратным трубопроводом для богатого водородом рециркуляционного потока из установки выделения водорода к реактору метанизации и/или по меньшей мере к одному реактору синтеза метанола.

14. Установка по п. 12, отличающаяся обратным трубопроводом для бедного водородом рециркуляционного потока из установки выделения водорода к нагревательному устройству для реактора риформинга.

15. Установка по пп. 11-13, отличающаяся реактором предриформинга и основным реактором риформинга, причем реактор предриформинга также используется в качестве реактора метанизации.



 

Похожие патенты:

Изобретение относится к способу переработки природного углеводородного газа с варьируемым содержанием азота, включающему стадию подготовки газа к криогенному разделению, стадию криогенного разделения газов с использованием метана в качестве хладагента в криогенном блоке, стадию компримирования внутренних и внешних технологических продуктов, стадию фракционирования тяжелой углеводородной части природного газа (С2 и выше).

Изобретение относится к способу выделения метана из метановоздушной смеси, заключающемуся в сжатии метановоздушной смеси, разделении ее на метан и воздух и отборе метана.

Изобретение относится к способу синтеза Фишера-Тропша. Способ синтеза Фишера-Тропша и рециркулирования отработанных газов из этого синтеза содержит:1) транспортировку произведенного газификацией биомассы сырого синтез-газа на установку синтеза Фишера-Тропша для синтеза Фишера-Тропша в присутствии катализатора на основе Fe или на основе Со, регулирование температуры реакции синтеза Фишера-Тропша на уровне между 150 и 300°С и давления реакции между 2 и 4 МПа (А) с целью производства жидкого углеводородного продукта и воды, которую отводят с установки синтеза Фишера-Тропша, 2) подачу отработанных газов с установки синтеза Фишера-Тропша на первый короткоцикловой адсорбер для извлечения водорода и регулирование чистоты водорода на уровне 80-99% об., 3) подачу отработанных газов со стадии 2) на второй короткоцикловой адсорбер для извлечения метана и регулирование чистоты метана на уровне 80-95% об., 4) возвращение части водорода, полученного на стадии 2), на стадию 1) для смешивания с сырым синтез-газом и преобразование конечного смешанного газа с целью регулирования соотношения водород/углерод сырого синтез-газа для синтеза Фишера-Тропша, и 5) подачу метана на стадии 3) на установку риформинга метана для риформинга с целью производства синтез-газа, имеющего высокое соотношение водород/углерод, транспортировку синтез-газа на стадию 1) для смешивания с сырым синтез-газом и преобразование конечного смешанного газа для регулирования соотношения водород/углерод сырого синтез-газа.

Изобретение относится к способу преобразования диоксида углерода в отходящем газе в природный газ с использованием избыточной энергии. Причем способ включает стадии, в которых: 1) выполняют трансформацию напряжения и выпрямление избыточной энергии, которая выработана из возобновляемого источника энергии, и которую затруднительно хранить или подключить к энергетическим сетям, направляют избыточную энергию в раствор электролита для электролиза воды в нем на Н2 и O2, и удаляют воду из Н2; 2) проводят очистку промышленного отходящего газа для отделения из него CO2, и очищают выделенный из него CO2; 3) подают Н2, генерированный на стадии 1), и CO2, отделенный на стадии 2), в оборудование для синтеза, включающее по меньшей мере два реактора со стационарным слоем, чтобы высокотемпературную газовую смесь с основными компонентами СН4 и водяным паром получить в результате высокоэкзотермической реакции метанирования между Н2 и CO2, причем первичный реактор со стационарным слоем сохраняют при температуре на входе 250-300°С, давлении реакции 3-4 МПа, и температуре на выходе 600-700°С; вторичный реактор со стационарным слоем сохраняют при температуре на входе 250-300°С, давлении реакции 3-4 МПа, и температуре на выходе 350-500°С; причем часть высокотемпературной газовой смеси из первичного реактора со стационарным слоем перепускают для охлаждения, удаления воды, сжатия и нагревания, и затем смешивают со свежими Н2 и CO2, чтобы транспортировать газовую смесь обратно в первичный реактор со стационарным слоем после того, как объемное содержания CO2 в ней составляет 6-8%; 4) используют высокотемпературную газовую смесь, генерированную на стадии 3), для проведения косвенного теплообмена с технологической водой для получения перегретого водяного пара; 5) подают перегретый водяной пар, полученный на стадии 4), в турбину для выработки электрической энергии, и возвращают электрическую энергию на стадию 1) для трансформации напряжения и выпрямления тока, и для электролиза воды; и 6) конденсируют и высушивают газовую смесь на стадии 4), охлажденную в результате теплообмена, до тех пор пока не будет получен природный газ с содержанием СН4 вплоть до стандартного.

Изобретение относится к системе, включающей: систему получения заменителя природного газа (ЗПГ), включающую: газификатор для производства синтез-газа, радиационный охладитель синтез-газа (РОС) для охлаждения синтез-газа посредством передачи тепла от синтез-газа текучей среде в пути потока, где РОС имеет длину от приблизительно 21,3 м (70 футов) до приблизительно 30,5 м (100 футов), и устройство метанирования для производства ЗПГ из синтез-газа.

Изобретение относится к способу получения газообразного метана из гидроксида метана, заключающемуся в переводе гидроксида метана в газообразное состояние. Способ характеризуется тем, что при переводе его в газообразное состояние, он проходит через электростатический сепаратор причем между осадительными и разрядными электродами электрофильтра установлены поверхности из изолирующего материала, на который под действием электрического поля собирается и конденсируется вода, выделяемая из газа при переходе его из гидроксида, а очищенный от воды газ поступает по трубопроводам на промежуточное хранилище или переработку, а вода стекает по поверхности, на которой конденсировалась в зону испарения гидроксида метана.

Изобретение относится к способу получения метана из атмосферного диоксида углерода. Способ характеризуется тем, что используют механическую смесь термически регенерируемого сорбента - поглотителя диоксида углерода, который представляет собой карбонат калия, закрепленный в порах диоксида титана, и имеет состав: мас%: K2CO3 - 1-40, TiO2 - остальное до 100, и фотокатализатора для процесса метанирования или восстановления выделяемого в процессе регенерации диоксида углерода состава: мас.%: Pt≈0,1-5 мас.%, CdS≈5-20 мас.%, TiO2 - остальное до 100, содержание фотокатализатора в смеси составляет 10-50 мас.%.
Изобретение может быть использовано в химической промышленности для тонкой очистки водородсодержащих газовых смесей от оксидов углерода путем их гидрирования до метана.

Изобретение относится к комплексу для доставки природного газа потребителю, включающему средство его трансформирования в газогидрат. Средство содержит реактор, сообщенный с источником газа и воды, средство охлаждения смеси воды и газа и средство поддержания давления в реакторе не ниже равновесного, необходимого для гидратообразования, средство отгрузки газогидрата в транспортное средство снабженное грузовыми помещениями, выполненными с возможностью поддержания термодинамического равновесия, исключающего диссоциацию газогидрата, и средство разложения газогидрата с получением газа.

Изобретение относится к способу подготовки природного газа для транспортирования, включающий получение газовых гидратов путем смешения газа с водой в реакторе непрерывного охлаждения и поддержания требуемых температур полученной смеси с одновременным поддержанием давления не ниже равновесного, необходимого для гидратообразования.

Изобретение относится к объединенному способу получения уксусной кислоты, включающему следующие стадии: (I) подача синтез-газа и диметилового эфира в реакционную зону карбонилирования и взаимодействие в ней синтез-газа и диметилового эфира в присутствии катализатора карбонилирования, с получением газообразного продукта реакции карбонилирования, включающего метилацетат и синтез-газ, обогащенный водородом, (II) отведение продукта реакции карбонилирования из реакционной зоны карбонилирования и извлечение из него жидкого потока, обогащенного метилацетатом, и потока синтез-газа, (III) подача по крайней мере части синтез-газа, извлеченного из реакционной зоны карбонилирования, в зону синтеза метанола и ее контактирование в ней с катализатором синтеза метанола, с получением продукта синтеза метанола, содержащего метанол и непревращенный синтез-газ, (IV) отведение продукта синтеза метанола из зоны синтеза метанола и извлечение из него жидкого потока, обогащенного метанолом, и потока синтез-газа, (V) подача по крайней мере части обогащенного метилацетатом жидкого потока и по крайней мере части обогащенного метанолом жидкого потока в реакционную зону дегидратации-гидролиза и контактирование в ней метанола и метилацетата по крайней мере с одним катализатором, проявляющим активность в дегидратации метанола и в гидролизе метилацетата, с получением продукта реакции дегидратации-гидролиза, содержащего уксусную кислоту и диметиловый эфир, (VI) извлечение из продукта реакции дегидратации-гидролиза обогащенного уксусной кислотой потока и обогащенного диметиловым эфиром потока.

Настоящее изобретение относится к вариантам способа преобразования исходного топлива во вторичное топливо посредством установки реформинга. Один из вариантов способа включает следующие этапы: подачу исходного топлива в печь установки реформинга, причем исходное топливо содержит отходы в виде сточных вод и/или твердых отходов, содержащих углерод; подачу в печь метана в качестве дополнительного исходного топлива; подачу воды в печь; обеспечение одного или более плазменно-дуговых источников тепла в установке реформинга для расщепления указанных исходных топлив и указанной воды на один или более составляющих компонентов и/или их комбинации; преобразование по меньшей мере части указанного одного или более составляющих компонентов воды и исходных топлив и/или их комбинации в указанное вторичное топливо с использованием одного или более катализаторов; вывод указанного вторичного топлива из установки реформинга.

Изобретение относится к способу получения метанола, включающему комбинированную конверсию газообразных реагентов в синтез-газ, синтез метанола и отбор готового продукта.

Изобретение относится к установке низкотемпературного получения метанола, включающей блок конверсии углеводородного сырья, состоящий из конвертора и узла водоподготовки, и блок синтеза метанола, состоящий по меньшей мере из одного узла синтеза метанола, который содержит устройство для охлаждения, сепарации, рекуперационного нагрева синтез-газа и охлаждаемый конвертор синтез-газа, также включающий устройство для выделения метанола, оснащенное линиями подачи отходящего газа на сжигание и вывода метанола с установки.

Изобретение относится к области переработки природного газа, а именно к способу получения синтез-газа для производства метанола, а также может быть использовано на предприятиях химической и нефтехимической промышленности, производящих метанол.

Изобретение относится к установке синтеза метанола, которая может быть использована в химической или газовой промышленности. Установка включает блок получения синтез-газа и по меньшей мере два узла синтеза метанола, каждый из которых содержит устройство для охлаждения, сепарации, рекуперационного нагрева синтез-газа и охлаждаемый каталитический реактор, а также устройство для охлаждения и сепарации отходящего газа, оснащенное линией подачи отходящего газа на сжигание.

Изобретение относится к установке синтеза метанола, которая включает расположенные на линии подачи синтез-газа узлы синтеза метанола, состоящие каждый из устройства для охлаждения, сепарации, рекуперационного нагрева синтез-газа и охлаждаемого каталитического реактора, а также устройство для охлаждения и сепарации отходящего газа, оснащенное линией подачи отходящего газа.

Изобретение может быть использовано в газовой отрасли для создания установок комплексной подготовки газа. Предложенная установка включает блоки сепарации (1), комплексной подготовки газа сепарации (2) и стабилизации газового конденсата (3), блок каталитической переработки легкой углеводородной фракции, включающий узлы паровой конверсии (4), синтеза метанола (5), подготовки воды (6), охлаждения и осушки синтез-газа (7), выделения метанола (8) и абсорбции (9).

Изобретение относится к способу получения метанола и углеводородов бензинового ряда (УБР) из синтез-газа. Способ проводят в каскаде из трех и более проточных каталитических реакторов (ПКР), при этом синтез-газ (СГ) с первоначальным соотношением водород-оксид углерода 1,5≤Н2:СО≤2, последовательно пропускают через первые по ходу ПКР с катализатором синтеза метанола с выделением метанола в качестве целевого продукта, затем остаточный после синтеза метанола поток СГ с соотношением водород-оксид углерода Н2:СО≥1 направляют в ПКР с бифункциональным катализатором синтеза диметилового эфира (ДМЭ), а полученный ДМЭ направляют в ПКР синтеза УБР с последующим выделением УБР и отходов, направляемых на утилизацию.
Настоящее изобретение относится к способу получения терпинеола, который находит применение при изготовлении парфюмерных композиций, в качестве компонента ароматизаторов при изготовлении моющих и чистящих средств.
Наверх