Способ эксплуатации гидроэлектрической турбинной системы



Способ эксплуатации гидроэлектрической турбинной системы
Способ эксплуатации гидроэлектрической турбинной системы
Способ эксплуатации гидроэлектрической турбинной системы
Способ эксплуатации гидроэлектрической турбинной системы
Способ эксплуатации гидроэлектрической турбинной системы

Владельцы патента RU 2641804:

ОУПЕНХАЙДРОУ АйПи ЛИМИТЕД (IE)

Изобретение относится к способу эксплуатации гидроэлектрической турбинной системы. Способ содержит следующие этапы: размещают турбину 12 на морском дне в зоне водоема, подверженной действию приливов и отливов; прокладывают электрический кабель для передачи электрической энергии от турбины 12 к удаленному пункту; обеспечивают возможность вращения турбины 12 и выработки электрической энергии за счет энергии приливно-отливного потока воды, проходящего через турбину 12; и перед электрическим соединением кабеля с турбиной 12 поглощают электрическую энергию посредством блока нагрузки 16. Блок 16 электрически соединен с турбиной 12. Блок 16 установлен в гидроэлектрической турбинной системе 10. Изобретение направлено на упрощение установки гидроэлектрической турбинной системы в подверженном приливам и отливам водоеме. 8 з.п. ф-лы, 6 ил.

 

Область техники

Настоящее изобретение относится к гидроэлектрическим турбинным системам, в частности к гидроэлектрической турбинной системе, обеспечивающей более гибкий подход к размещению, подъему и/или техническому обслуживанию гидроэлектрической турбинной системы.

Уровень техники

Известно, что гидроэлектрические турбины устанавливают на морском дне для получения электрической энергии за счет энергии приливно-отливного потока воды, проходящего через турбину, что позволяет эффективным образом обеспечить непрерывный и прогнозируемый процесс выработки электрической энергии. Однако при установке и техническом обслуживании, а в некоторых случаях и во время функционирования подобных гидроэлектрических турбин возникает ряд проблем.

Основная причина возникновения упомянутых проблем обусловлена тем неизбежным обстоятельством, что для обеспечения надежности и высокой производительности упомянутые турбины следует размещать на участках с мощным приливно-отливным течением для их непрерывной работы, однако, упомянутые участки создают значительные трудности при установке, техническом обслуживании и подъеме турбин. Рассмотрим, например, процесс размещения турбины. Последовательность операций по установке гидроэлектрической турбины на морском дне требует больших временных затрат и зависит от погодных условий. При этом упомянутая последовательность включает в себя следующие операции: турбину доставляют к месту ее размещения и опускают на морское дно, прокладывают к упомянутому месту размещения турбины подходящий кабель, предназначенный для использования на морском дне с тем, чтобы в процессе использования турбины обеспечить передачу электрической энергии к береговой зоне или любому другому подходящему месту, а также соединяют турбину и кабель друг с другом. Следует учесть, что упомянутые операции можно выполнять в любом порядке в зависимости от конкретного варианта установки. Кроме того, следует понимать, что, как правило, такой способ установки предусматривает наличие периода времени, в течение которого турбина остается электрически не соединенной с системой подводных кабелей, причем упомянутый период имеет место после расположения турбины на морском дне на соответствующем участке. Однако в течение упомянутого периода времени приливно-отливный поток воздействует на турбину, проходя через нее и прикладывая движущую силу на ротор турбины.

Кроме периода установки также предусмотрены такие периоды времени в течение срока эксплуатации турбины, во время которых нарушается соединение с энергосетью вследствие неисправностей в энергосети или вследствие выполнения работ по техническому обслуживанию на принимающей подстанции на берегу.

Турбина может вращаться свободно, что является целесообразным с точки зрения электрического оборудования, поскольку генератор турбины работает в режиме холостого хода. Однако подобный подход может оказаться неблагоприятным для работы турбины с точки зрения механики, поскольку турбина вращается на высокой скорости, что приводит к износу подшипников и, возможно, других компонентов турбины. Кроме того, это приводит к тому, что генератор (при возбуждении посредством постоянного магнита, как это происходит при обычной компоновке) начинает генерировать ненормально высокое напряжение. С другой стороны, имеется возможность механической блокировки ротора, что не оказывает влияния на электрические компоненты генератора турбины, однако, требует дополнительного механического оборудования, использование которого может отрицательно сказаться на надежности и стоимости турбины. Кроме того, возможна электрическая блокировка ротора в заданном положении, хотя такая процедура имеет негативные последствия с точки зрения электрического оборудования, поскольку в данном случае генератор окажется короткозамкнутым. Подобный подход является приемлемым с точки зрения механики, так как подшипники не работают/изнашиваются, когда турбина электрически заблокирована.

Таким образом, задача настоящего изобретения состоит в том, чтобы устранить упомянутые выше недостатки.

Раскрытие изобретения

Согласно первому аспекту в настоящем изобретении предложен способ эксплуатации гидроэлектрической турбинной системы, содержащий следующие этапы: размещают гидроэлектрическую турбину на морском дне в зоне водоема, подверженной действию приливов и отливов; обеспечивают возможность вращения турбины и выработки электрической энергии за счет энергии потока воды, проходящего через турбину; и поглощают по меньшей мере часть электрической энергии посредством блока нагрузки, электрически соединенного с упомянутой турбиной, причем упомянутый блок нагрузки установлен в упомянутой гидроэлектрической турбинной системе.

Упомянутый способ предпочтительно содержит этап, на котором выполняют упомянутый блок нагрузки в виде резистивного блока нагрузки и/или индуктивного блока нагрузки.

Упомянутый способ предпочтительно содержит этапы, на которых выполняют упомянутый блок нагрузки в виде одного или нескольких нагревательных элементов; пропускают электрическую энергию через упомянутые нагревательные элементы для получения тепла; и рассеивают упомянутое тепло в воде, протекающей через упомянутую турбинную систему.

Упомянутый способ предпочтительно содержит этапы, на которых соединяют электрический выход турбины с энергосетью; и электрически отсоединяют блок нагрузки от турбины.

Упомянутый способ предпочтительно содержит этап, на котором контролируют один или несколько рабочих параметров турбинной системы, когда блок нагрузки электрически соединен с турбиной.

Упомянутый способ предпочтительно содержит этапы, на которых прокладывают электрический кабель для передачи электрической энергии от турбины к удаленному пункту; и перед электрическим соединением кабеля с турбиной поглощают электрическую энергию, выработанную турбиной, посредством блока нагрузки.

Упомянутый способ предпочтительно содержит этапы, на которых электрически соединяют кабель с турбиной и обеспечивают функционирование турбины; электрически отсоединяют кабель от турбины для обеспечения возможности выполнения работ по техническому обслуживанию/извлечению турбины; и перед выполнением работ по техническому обслуживанию/извлечению турбины поглощают электрическую энергию, выработанную турбиной, посредством блока нагрузки.

Упомянутый способ предпочтительно предусматривает, что на этапе размещения турбины подвешивают турбину под судном; используют судно для буксировки турбины в воде для обеспечения вращения турбины и выработки электрической энергии; и поглощают электрическую энергию посредством блока нагрузки.

Упомянутый способ предпочтительно содержит этап, на котором поглощают избыточную электрическую энергию, выработанную во время нормального режима работы турбины, посредством блока нагрузки.

Упомянутый способ предпочтительно содержит этап, на котором переключают подачу электрической энергии, выработанной турбиной, с блока нагрузки на электрический кабель после установления электрического соединения между электрическим кабелем и турбиной.

Согласно второму аспекту в настоящем изобретении предложена гидроэлектрическая турбинная система, содержащая основание, гидроэлектрическую турбину, установленную на упомянутое основание, и блок нагрузки, установленный на упомянутое основание и/или на упомянутую турбину, причем упомянутый блок нагрузки электрически соединен с электрическим выходом турбины.

Блок нагрузки предпочтительно представляет собой резистивный блок нагрузки и/или индуктивный блок нагрузки.

Блок нагрузки предпочтительно содержит один или несколько нагревательных элементов, выполненных с возможностью рассеивания тепла в окружающую воду во время использования системы.

Блок нагрузки предпочтительно установлен на основание и/или турбину с возможностью съема.

В настоящем документе термин «поглощение» используют для обозначения непосредственной подачи электрической энергии от генератора к резистивной нагрузке для нагревания упомянутой резистивной нагрузки и/или передачи реактивной мощности на индуктивную нагрузку для уменьшения напряжения, приложенного к генератору.

Краткое описание чертежей

На фиг. 1 схематично показана гидроэлектрическая турбинная система, входящая в состав турбинной системы в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг. 2 схематично показана пара нагревательных элементов, образующая блок нагрузки, входящий в состав упомянутой турбинной системы.

На фиг. 3 показана электрическая схема упомянутой турбинной системы, иллюстрирующая возможность переключения нагрузки упомянутой гидроэлектрической турбинной системы.

На фиг. 4 показана гидроэлектрическая турбинная система во время буксировочного испытания перед ее окончательным размещением.

На фиг. 5 и 6 показано несколько альтернативных мест расположения блока нагрузки в упомянутой системе.

Осуществление изобретения

На прилагаемых чертежах показана гидроэлектрическая турбинная система, обозначенная в целом номером позиции 10, причем она предназначена для размещения на морском дне В на участке с высокой скоростью приливно-оливного течения для выработки электрической энергии за счет энергии приливно-отливного течения.

Турбинная система 10 содержит гидроэлектрическую турбину 12, установленную на основании 14, которое удерживает турбину 12 в заданном положении над морским дном, что позволяет получать электрическую энергию посредством турбины 12 известным способом. В частности, на фиг. 1 видно, что турбинная система 10 дополнительно содержит блок 16 нагрузки, установленный в системе 10 и прикрепленный в проиллюстрированном варианте осуществления настоящего изобретения к кольцевому ободу статора 18, входящего в состав турбины 12, причем внутри упомянутого статора 18 с возможностью вращения установлен ротор 20. Упомянутый статор 18 установлен на основании 14, причем во время использования системы он остается неподвижным, а ротор 20 приводится в движение приливно-отливным потоком Т воды для выработки электрической энергии посредством турбины 12.

На фиг. 2 показано, что блок 16 нагрузки содержит одну или несколько обмоток 22, которые, как более подробно описано ниже, могут представлять собой резистивные или индуктивные обмотки, причем упомянутые обмотки 22 электрически соединены с выходом генератора (не показан) турбины 12. В результате обеспечена возможность получения электрической энергии посредством турбины 12 без подключения ее к энергосети или другой подобной системе, а также возможность прохождения выработанного электрического тока в блок 16 нагрузки для рассеивания тепла, как будет подробно описано далее. Таким образом, повышается степень гибкости системы, например, с точки зрения установки или подъема турбинной системы 10, поскольку такая компоновка позволяет турбине 12 работать в нормальном режиме без необходимости подключения к энергосети. В результате турбинную систему 10 можно размещать на подходящем участке без подключения к энергосети, что значительно упрощает процесс ее установки. При этом турбина 12 может функционировать в нормальном режиме, вырабатывая электрическую энергию, подводимую к обмотке 22 блока 16 нагрузки, что приводит к нагреванию обмоток 22. Затем тепло рассеивается в воде, протекающей рядом и через блок 16 нагрузки. Целесообразно, чтобы в течение периода времени между позиционированием турбинной системы 10 на морском дне и подключением к энергосети турбина 12 работала под нагрузкой, а не свободно вращалась или была механически или электрически заблокирована.

Аналогично, если турбину необходимо вывести из эксплуатации или извлечь для выполнения работ по техническому обслуживанию или других подобных операций, то наличие блока 16 нагрузки также обеспечивает повышение степени эксплуатационной гибкости системы. То есть упомянутую систему 12 можно отключить от энергосети, при этом она будет продолжать функционировать, а выработанная электрическая энергия, подведенная к блоку 16 нагрузки, будет рассеиваться в окружающую воду в виде тепла. Соответственно, временные ограничения в промежутке между отключением от энергосети и подъемом турбинной системы 10 незначительны или отсутствуют вообще.

На фиг. 3 схематично показаны электрические соединения между турбиной 12 и блоком 16 нагрузки, а также между турбиной 12 и энергосетью G. Между турбиной 12 и блоком 16 нагрузки предусмотрен переключатель 24 нагрузки, а между турбиной 12 и энергосетью G - переключатель 26 энергосети, причем каждый из указанных переключателей можно использовать для обеспечения электрического соединения или отключения турбины 12 от соответствующей нагрузки. Таким образом, например, во время процедуры установки турбинную систему 10 изначально располагают на морском дне без подключения к энергосети, при этом переключатель 24 нагрузки замкнут для обеспечения электрического соединения между турбиной 12 и блоком 16 нагрузки, что позволяет рассеивать электрическую энергию, выработанную турбиной 12, через блок 16 нагрузки. После установления соединения между энергосетью и турбиной 12 переключатель 26 энергосети можно замкнуть, а переключатель 24 нагрузки разомкнуть. При этом блок 16 нагрузки окажется электрически отсоединенным от турбины 12, в результате чего электрическая энергия, выработанная турбиной 12, будет поступать в энергосеть G. Указанный процесс можно выполнить в обратном порядке, если необходимо отключить турбинную систему 10 от энергосети G, например перед извлечением для выполнения работ по техническому обслуживанию или других подобных операций.

Кроме того, в экстремальных условиях, например во время шторма и при мощных приливно-отливных течениях, на турбину 12 воздействуют более мощные приливно-отливные потоки, чем обычно, в результате, турбина вырабатывает большее количество электрической энергии. Если подобные условия возникают редко, то может оказаться экономически нецелесообразным устанавливать максимально допустимые значения параметров кабельного соединения с энергосетью и оборудования преобразования электрической энергии (не показано) на таком высоком уровне, вследствие чего в редких случаях возникновения упомянутых условий избыточную энергию можно рассеивать посредством блока 16 нагрузки. В данном случае необходимо, чтобы оба переключателя, а именно переключатель 24 нагрузки и переключатель 26 энергосети были замкнуты. Управление работой переключателей 24, 26 можно осуществлять в дистанционном режиме, при этом замыкание переключателя 24 нагрузки может происходить автоматически, если энергия, выработанная турбиной 12, превышает предварительно заданный верхний предел.

Как показано на фиг. 4, блок 16 нагрузки также обеспечивает преимущество, заключающееся в том, он позволяет выполнять тестирование турбины 12 перед окончательной установкой. Например, турбина 12 может быть закреплена под судном V таким образом, что обеспечено полное погружение турбины 12 в воду. Далее, судно V осуществляет буксировку турбины 12 в воде для моделирования нормального режима работы турбины 12. При этом турбина 12 электрически соединена с блоком 16 нагрузки, что позволяет получать электрическую энергию посредством турбины 12 и рассеивать упомянутую электрическую энергию в виде тепла через блок 16 нагрузки. В результате турбина 12 способна эффективно функционировать в нормальном режиме при выполнении процедуры тестирования, обеспечивая возможность получения важной информации во время тестирования. При таком тестировании блок 16 нагрузки и, в частности, обмотки 22 могут быть выполнены в виде резистивных обмоток для демонстрации возможностей турбины 12 по выработке электрической энергии. Однако для других целей, например для демонстрации возможности передачи тока обмотками генератора (не показаны) турбины 12 без нагревания или для проверки конкретных электрических параметров, может оказаться достаточным, чтобы турбина 12 просто вырабатывала реактивную мощность в индуктивном блоке 16 нагрузки. В данном случае преимущество заключается в том, что отсутствует необходимость в обеспечении непосредственного контакта индуктора с водой. Таким образом, блок 16 нагрузки может представлять собой резистивный и/или индуктивный блок нагрузки.

Из фиг. 5 и 6 ясно, что блок 16 нагрузки может быть расположен в любом подходящем месте в турбинной системе 10. Например, упомянутый блок 16 нагрузки может быть установлен на каркас основания 14 в одном или нескольких положениях. Также следует понимать, что в одной турбинной системе 10 можно использовать несколько блоков 16 нагрузки.

1. Способ эксплуатации гидроэлектрической турбинной системы, содержащий этапы, на которых:

размещают гидроэлектрическую турбину на морском дне в зоне водоема, подверженной действию приливов и отливов;

прокладывают электрический кабель для передачи электрической энергии от турбины к удаленному пункту;

обеспечивают возможность вращения турбины и выработки электрической энергии за счет энергии приливно-отливного потока воды, проходящего через турбину; и

перед электрическим соединением кабеля с турбиной, поглощают электрическую энергию посредством блока нагрузки, электрически соединенного с упомянутой турбиной, причем упомянутый блок нагрузки установлен в упомянутой гидроэлектрической турбинной системе.

2. Способ эксплуатации по п. 1, содержащий этап, на котором выполняют упомянутый блок нагрузки в виде резистивного блока нагрузки и/или индуктивного блока нагрузки.

3. Способ эксплуатации по п. 1, содержащий этапы, на которых:

выполняют упомянутый блок нагрузки в виде одного или нескольких нагревательных элементов;

пропускают электрическую энергию через упомянутые нагревательные элементы для получения тепла; и

рассеивают упомянутое тепло в воде, протекающей через упомянутую турбинную систему.

4. Способ эксплуатации по п. 1, содержащий этапы, на которых:

соединяют электрический выход турбины с энергосетью; и

электрически отсоединяют блок нагрузки от турбины.

5. Способ эксплуатации по п. 1, содержащий этап, на котором контролируют один или несколько рабочих параметров турбинной системы, когда блок нагрузки электрически соединен с турбиной.

6. Способ эксплуатации по п. 1, содержащий этапы, на которых:

электрически соединяют кабель с турбиной и обеспечивают функционирование турбины;

электрически отсоединяют кабель от турбины для обеспечения возможности выполнения работ по техническому обслуживанию/извлечению турбины; и

перед выполнением работ по техническому обслуживанию/извлечению турбины поглощают электрическую энергию, выработанную турбиной, посредством блока нагрузки.

7. Способ эксплуатации по п. 1, в котором на этапе размещения турбины

подвешивают турбину под судном;

используют судно для буксировки турбины в воде для обеспечения вращения турбины и выработки электрической энергии; и

поглощают электрическую энергию посредством блока нагрузки.

8. Способ эксплуатации по п. 1, содержащий этап, на котором поглощают избыточную электрическую энергию, выработанную во время нормального режима работы турбины, посредством блока нагрузки.

9. Способ эксплуатации по п. 1, содержащий этап, на котором переключают подачу электрической энергии, выработанной турбиной, с блока нагрузки на электрический кабель после установления электрического соединения между электрическим кабелем и турбиной.



 

Похожие патенты:

Мини-электростанция относится к машиностроению, в части массовой электрификации сельского хозяйства и быта сельского населения, проживающего у берегов горных рек с большими уклонами и небольшими расходами воды.

Изобретение относится к машиностроению и, в частности, к роторным машинам, работающим в режиме гидродвигателя. Роторная машина включает в себя статор 1, цилиндрический ротор 2, установленный в нем и заполняемый жидкостью с возможностью вращения ее с одинаковой с ротором 2 угловой скоростью.

Изобретение относится к области энергомашиностроения, в частности к гидротурбинным установкам. Реактивная гидротурбина состоит из нижнего корпуса, который соединен с верхним корпусом, трубовала, закрепленного на нижнем корпусе, гидравлического коллектора, выполненного в виде герметичной камеры с лопатками первой турбины.

Изобретение относится к прикладной механике, а именно к технике получения механической энергии и преобразования ее в электрическую. Целью изобретения является расширение диапазона использования водной энергии.

Предложена энергоустановка (10), которая содержит компоненты (20, 30) для получения энергии от текучих сред, находящихся под высоким и средним давлениями, тракт (41), который ограничен между указанными компонентами (20, 30) и вдоль которого к одному из компонентов (30), предназначенному для получения энергии от текучих сред под средними давлениями, проходит нагретая текучая среда, и контур (50), проточно соединенный с указанным трактом (41) для обеспечения охлаждения части (411) нагретой текучей среды, прежде чем указанная часть (411) нагретой текучей среды достигнет указанного одного компонента (30), предназначенного для получения энергии от текучих сред под средними давлениями.

Суть изобретения аналогична с функцией ГАЭС и предназначена для аккумулирования энергии альтернативных источников, а также энергии от недогруженных генерирующих мощностей, для покрытия пиковых нагрузок в электросетях и поддержки сетей от ВЭУ при недостатке или отсутствии их мощностей.

Изобретение относится к области гидроэнергетики, в частности генерации электроэнергии от массы естественного потока воды, или принудительно разогнанного потока. .

Изобретение относится к средствам управления автоматическим переключением передач велосипеда при изменении давления текучей среды, срабатывающим при изменении угловой скорости с последующим подключением вспомогательного усилия от втулки вращающегося колеса для срабатывания заднего переключателя передач.

Изобретение относится к области гидроэнергетики, а именно к способам определения расходов жидкости в трубопроводах больших диаметров гидроэлектростанций при числах Рейнольдса Re>>lxl0 6.

Изобретение относится к устройствам для преобразования возобновляемой энергии. Устройство для преобразования возобновляемой энергии содержит раму, установленный на раме кривошипно-шатунный механизм, вал которого шарнирно связан шатуном и соединительным звеном с рамой; лопасть, жестко закрепленную на шатуне; при этом соединительное звено выполнено в виде ползуна, установленного с возможностью возвратно-поступательного перемещения вдоль направляющей, расположенной в плоскости, перпендикулярной оси вращения вала, шатун расположен под углом к плоскости лопасти, определяемым соотношением sin |α|<d/(L-R), где R - длина кривошипа, L - длина шатуна, d - смещение направляющей ползуна относительно оси вала, с противоположной стороны от шатуна на вале установлен противовес, а направляющая ползуна смещена относительно оси вращения вала.

Изобретение относится к области гидроэнергетики, в частности для преобразования энергии водного потока в электрическую энергию. Бесплотинная инерционная гидроэлектростанция содержит каркас.

Изобретение относится к водному транспорту и может быть использовано для обеспечения движения наводных и подводных транспортных средств. Водяной реактивный двигатель находится под микропроцессорным управлением и содержит соосно горизонтально расположенные входное устройство, сопло, на одном валу установленные насос высокого давления, насос низкого давления и турбину.

Группа изобретений относится к водяной мельнице. Мельница содержит водонаправляющее средство с по меньшей мере одним проточным каналом 54а, в котором установлено по меньшей мере два лопастных колеса 67а1 и 67а2, имеющих вал вращения 68а1 и 68а2 соответственно, ориентированный в рабочем состоянии перпендикулярно направлению потока, и по меньшей мере три лопасти, и средства передачи вращательного движения вала 68а1 и 68а2 на генератор.

Изобретение относится к гидроэнергетике и может быть использовано для преобразования энергии потока воды в электрическую энергию. Гидросиловая установка содержит корпус 1 в виде двух камер 17, 18 с впускными и выпускными отверстиями 19-22 с затворами 23-26, поплавки 30, 31, установленные в камерах 17, 18, накопительный резервуар 8, рабочую магистраль 4, коленчатый вал 37 с шатунами, связанными с поплавками 30, 31.

Изобретение относится к гидроэнергетике и предназначено для обеспечения электрической энергией небольших потребителей в местах, где нет линий электропередач. Всесезонная русловая микро-ГЭС содержит раздельно расположенные гидротурбину 2 в русле 1 реки и машинное отделение с мультипликатором 4, генератором 5 и инвертором 6 с аккумуляторной батареей 7 на помосте 8, расположенном на дереве или свае выше уровня паводковых вод.

Изобретение относится к гидроэнергетике и предназначено для обеспечения электрической энергией небольших населенных пунктов, лагерей геологов, охотников, рыбаков, леспромхозов преобразованием энергии русловых потоков реки в электрическую.

Изобретение относится к гидроэнергетике и может быть использовано для преобразования кинетической энергии потоков воды в электроэнергию. Гидроэнергетическая установка содержит установленные на водоизмещающем основании две гидротурбины 1, размещенные симметрично относительно продольной оси 4, вдоль которой ориентированы оси 3 их вращения, выполненные с возможностью вращения в противоположные стороны, кинематически связанные с электрогенератором 5, якорное устройство 6, балластные емкости 7.

Изобретение относится к гидроэнергетике и может быть использовано для выработки электроэнергии без строительства плотин. Гидроэлектростанция содержит идентичные блоки.

Изобретение относится к гидроэнергетике, а именно к использованию энергии прибойного потока у берегов морей, океанов и крупных водоемов путем ее преобразования в электроэнергию.

Изобретение относится к устройствам защиты гидротурбины от механических поломок. Устройство защиты гидротурбины от выхода из строя опорного подшипника содержит датчики тока 1, выполненные на базе установленных в цепь статора синхронного генератора измерительных трансформаторов тока по одному на каждую фазу, датчик давления 2, блок 3 сравнения с нормальными значениями тока статора генератора, блок 4 сравнения с нормальным значениям давления в напорном водоводе, блок 5 задания нормального значения тока статора генератора, блок 6 задания нормального значения давления, блок 7 сравнения с уставкой и определения знака отклонения по току статора генератора, блок 8 сравнения с уставкой и определения знака отклонения давления в напорном водоводе, блок 9 задания уставки по отклонению тока статора генератора, блок 10 задания уставки по отклонению давления в напорном водоводе, блок 11 выработки аварийного сигнала, блок 12 управления системами гидротурбины и генератора.
Наверх