Способ получения гидроксиапатита

Изобретение относится к получению гидроксиапатита Са10(РO4)6(ОН)2, используемого при изготовлении биоактивных покрытий в стоматологии, травматологии и ортопедии. Для получения гидроксиапатита к водному раствору нитрата кальция добавляют при комнатной температуре 0,2 М раствор этилендиаминдиянтарной кислоты. К этой смеси по каплям вводят водный раствор моноаммонийфосфата при постоянном перемешивании. Осадок старят 1 сутки, фильтруют и сушат. Изобретение позволяет получить экологически безопасный продукт с минимальными энергоемкостью и затратами на сырье. 1 табл., 2 пр.

 

Изобретение относится к технологии получения неорганических материалов, в частности к способу получения гидроксиапатита Са10(PO4)6(ОН)2, используемого в медицине в качестве биоактивных покрытий в стоматологии, травматологии и ортопедии.

Известен способ получения гидроксиапатита из водных растворов [Руководство по неорганическому синтезу / Под ред. Г. Брауэра. Пер. с нем. - М.: Мир. - 1985. - Т. 2. - С. 572], использующий Ca(NO3)2 качестве источника кальция и основанный на реакции:

10Ca(NO3)2+6(NH4)2HPO4+8NH4OH=Ca10(PO4)6(OH)2+20NH4NO3+6H2O.

Недостатком данного способа является длительность процесса (стадия фильтрации) и необходимость очистки получаемого продукта от NH4NO3.

Известен способ синтеза порошков гидроксиапатита осаждением из водных растворов солей нитрата кальция и гидроортофосфата аммония в желатине путем капельного приливания (NH4)2HPO4 в раствор Ca(NO3)2, содержащий аммиак и желатин [Фомин А.С., Комлев B.C., Баринов С.М., Фадеева И.В., Ренгини К. Синтез нанопорошков гидроксиапатита для медицинских применений // Перспективные материалы. 2006. №2. С. 51-54].

Недостатками данного способа являются трудоемкость процесса, сложность работы с гелеобразными реагентами и недостаточная стехиометричность конечного продукта.

Наиболее близким способом получения гидроксиапатита является способ, по которому получение гидроксиапатита осуществляется добавлением к раствору нитрата кальция раствора динатриевой соли этилендиаминтетрауксусной кислоты (ЭДТА) при температуре 40-70°С с последующим приливанием туда гидроортофосфата аммония (RU №2391117, опубл. 10.06.2010 г.).

Недостатками прототипа являются:

- использование ЭДТА, загрязняющего окружающую среду. Установлено, что этилендиаминтетрауксусная кислота и ее соединения накапливаются в мировом океане, т.к. практически не поддаются разложению и поэтому считаются одним из наиболее опасных антропогенных загрязнителей [Н. Hyvonen, М. Orama, Н. Saarinen, R. Aksela, Green Chemistry, 2003, 5, 410; Э.Г. Дедюхина, Н.Н. Салмов, Т.И. Чистякова, И.Г. Минкевич, М.Б. Вайнштейн, Вода: химия и экология, 2008, 2, 31; В. Nowak, Environ. Sci. Technol, 2002, 36, 4009; T.P. Knepper, Trends Anal. Chem., 2003, 22, 708];

- повышенная энергоемкость в процессе нагревания раствора, содержащего нитрат кальция и ЭДТА. Нагревание смеси необходимо для повышения растворимости ЭДТА, т.к. ее растворимость при 20°С не превышает 0,065 г/л или 0,65% [Табл. 2, или стр. 4 патента РФ №2213064, опубл. 27.09.2003];

- затраты на приобретение гидроортофосфата аммония как сырья при синтезе гидроксиапатита.

Задачей изобретения является разработка способа получения гидроксиапатита позволяющего получать экологически безопасный продукт с минимальными энергоемкостью и затратами на сырье.

Задача решается за счет того, что в способе получения гидроксиапатита, путем осаждения из водных растворов солей кальция и моноаммонийфосфата, к водному раствору соли кальция добавляют при комнатной температуре 0,2 М раствор этилендиаминдиянтарной кислоты, затем к этой смеси по каплям вводят раствор моноаммонийфосфата при постоянном перемешивании, осадок старят 1 сутки, фильтруют, с последующей сушкой.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является обеспечение экологической безопасности за счет замены вредного ЭДТА на безвредный ЭДДЯК и исключение процесса нагревания при производстве гидроксиапатита ввиду высокой растворимости ЭДДЯК.

Технический результат достигается путем применения:

- экологически безопасного комплексона - этилендиаминдиянтарной кислоты (ЭДДЯК), которая по своим комплексообразоющим характеристикам аналогична ЭДТА, легко подвергается биодеградации [Раздел «Комплексообразователь», стр. 4 патента РФ №2207841, опубл. 10.07.2003 и раздел «Хелатирующие агенты», стр. 6 патента РФ №2499817, опубл. 27.11.2013, Sirpa Metsarinne, Tuula Tuhkanen, Reijo Aksela. Photodegradation of hylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range. Chemosphere, 45. 2001. P. 949-955];

- растворения ЭДДЯК при комнатной температуре благодаря ее хорошей растворимости в воде, как и всех комплексонов, производных янтарной кислоты [А.с. СССР №414252, опубл. 05.02.1974; А.с. СССР №482438, опубл. 30.08.1975; А.с. СССР №522177, опубл. 25.07.1976; А.с. СССР №558905, опубл. 25.05.1977; А.с. СССР №592818, опубл. 15.02.1978; А.с. СССР №598880, опубл. 25.03.1978; А.с. СССР №629208, опубл. 25.10.1978]. Например, ЭДДЯК в композиции может содержаться до 30% [Пункт 4 формулы патента РФ №2207841, опубл. 10.07.2003] или по крайней мере 5%, как это показано в моющей композиции по патенту РФ №2499817, опубл. 27.11.2013 (стр. 6);

- моноаммонийфосфата, получаемого из бесплатной отработанной фосфорной кислоты по патенту РФ №2577888, опубл. 20.03.2016, вместо покупного сырья гидроортофосфата аммония для синтеза гидроксиапатита по прототипу.

Поставленная задача решается тем, что к водному раствору соли кальция добавляют при комнатной температуре 0,2 М раствор ЭДДЯК и к полученной смеси по каплям при перемешивание приливают раствор моноаммонийфосфата.

10Ca(NO3)2+6(NH4)H2PO4+14NH4OH=Ca10(PO4)6(OH)2+20NH4NO3+12H2O.

После этого смесь оставляют на одни сутки для полноты осаждения и формирования осадка гидроксиапатита (старение этого осадка). Затем осадок отделяется от маточного раствора декантацией и фильтрованием с последующей сушкой выделенного осадка.

Возможность осуществления заявляемого изобретения поясняется следующими примерами.

Пример 1. К раствору Са(NO3)2, приготовленному из 8,20 г соли нитрата кальция в 40 мл воды, приливают раствор ЭДДЯК (навеску ЭДДЯК 1,46 г помещают в коническую колбу на 200 мл, смешивают при комнатной температуре с 20 мл дистиллированной воды). При интенсивном перемешивании по каплям к данной смеси добавляют раствор, содержащий (NH4)H2PO4 (3,45 г (NH4)H2PO4 в 80 мл воды) до полного осаждения и оставляют осадок стариться при комнатной температуре. Затем осадок отделяют от маточного раствора декантацией и фильтрованием с последующей сушкой выделенного осадка.

Пример 2. К раствору Ca(NO3)2, приготовленному из 8,20 г соли нитрата кальция в 40 мл воды, приливают раствор ЭДДЯК (навеску ЭДДЯК 1,46 г помещают в коническую колбу на 200 мл, смешивают при комнатной температуре с 20 мл дистиллированной воды). При интенсивном перемешивании по каплям к данной смеси добавляют раствор, содержащий (NH4)H2PO4 (3,45 г (NH4)H2PO4 в 80 мл воды) до полного осаждения и оставляют осадок стариться при комнатной температуре. Затем осадок отделяют от маточного раствора декантацией и фильтрованием с последующей сушкой выделенного осадка.

Заявляемый способ позволяет получать синтетический гидроксиапатит с соотношением Са/Р, очень близким к биологическому гидроксиапатиту, что дает возможность применять его в виде биоактивного покрытия на имплантаты.

Способ получения гидроксиапатита, включающий осаждение из водных растворов соли кальция и моноаммонийфосфата, отличающийся тем, что к водному раствору нитрата кальция добавляют при комнатной температуре 0,2 М раствор этилендиаминдиянтарной кислоты, затем к этой смеси по каплям вводят раствор моноаммонийфосфата при постоянном перемешивании, осадок старят 1 сутки, фильтруют с последующей сушкой.



 

Похожие патенты:

Изобретение относится к получению керамических перовскитоподобных манганитов и может быть использовано в электротехнике, магнитной и спиновой электронике. Поликристаллический материал на основе лантан-стронциевого манганита имеет состав La0,810Sr0,190Mn1-x(Zn0,5Ge0,5)xO3, где x принимает значения от 0,148 до 0,152.

Изобретение может быть использовано в химической промышленности. Способ получения гипохлорита кальция из пересыщенного природного поликомпонентного рассола хлоридного кальциево-магниевого типа включает выделение из рассола кристаллогидрата хлорида кальция и отделение маточного рассола, обогащенного литием и бромом.

Изобретение относится к способам получения порошков фосфатов кальция, которые могут быть использованы для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, для производства косметических средств, сорбентов и других функциональных материалов.

Изобретение относится к твердой фосфатной соли, а также к способу ее получения, при этом данная соль может быть использована в качестве сырья для приготовления сложных минеральных удобрений.

Изобретение относится к методам определения состава и количества компонентов, входящих как в природные минералы, так и соединения, полученные в различных химических реакциях, при действии температуры и давления.

Изобретение относится к технологии получения неорганических веществ, а именно к способу получения магний-замещенного гидроксиапатита (Mg-ГА), используемого для получения биосовместимых покрытий, применяемых в челюстно-лицевой хирургии и травматологии.

Изобретение может быть использовано при получении фосфатных солей, таких как дикальцийфосфат и/или трикальцийфосфат, и сульфата калия. Установка для комбинированного получения фосфатных солей и сульфата калия включает блок получения сульфата калия и соляной кислоты из хлорида калия и серной кислоты.

Изобретение относится к неорганической химии и касается способа получения наногидроксиапатита, который может быть использован в медицине для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, в том числе в стоматологии.
Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины.
Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины.

Изобретение относится к способам получения порошков фосфатов кальция, которые могут быть использованы для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, для производства косметических средств, сорбентов и других функциональных материалов.

Изобретение относится к твердой фосфатной соли, а также к способу ее получения, при этом данная соль может быть использована в качестве сырья для приготовления сложных минеральных удобрений.

Изобретение относится к области медицины. Описан способ получения биомиметического кремний-содержащего кальций-фосфатного покрытия на сплавах титана из модельного раствора межклеточной жидкости человека, в котором предварительно готовят раствор состава: CaCl2 - 3.7424 г, MgCl2 - 0.6092 г, К2НРO4 - 2.8716 г, NaHCO3 - 4.5360 г, Na2SO4 - 0,0144 г, NaCl - 8.8784 г, Na2SiO3 - 0,0488÷0,2444 г, полученный раствор осаждают при: температуре T1=20÷25°С, значении рН 7.40±0.05 в течение 48 часов, затем осадок промывают, фильтруют, высушивают при температуре Т2=80÷85°С в течение 5 часов, из полученного кремний-содержащего кальций-фосфатного порошка готовят водную суспензию при концентрации С=1÷5 масс.

Изобретение относится к технологии получения неорганических веществ, а именно к способу получения магний-замещенного гидроксиапатита (Mg-ГА), используемого для получения биосовместимых покрытий, применяемых в челюстно-лицевой хирургии и травматологии.

Изобретение может быть использовано при получении фосфатных солей, таких как дикальцийфосфат и/или трикальцийфосфат, и сульфата калия. Установка для комбинированного получения фосфатных солей и сульфата калия включает блок получения сульфата калия и соляной кислоты из хлорида калия и серной кислоты.

Изобретение относится к неорганической химии и касается способа получения наногидроксиапатита, который может быть использован в медицине для производства медицинских материалов, стимулирующих восстановление дефектов костной ткани, в том числе в стоматологии.

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания покрытий на металлических имплантатах в хирургии и стоматологии и в других областях медицины.

Изобретение относится к фармацевтической промышленности, а именно к способу получения гранулированного нанокристаллического гидроксилапатита (ГАП). Способ получения гранулированного нанокристаллического гидроксилапатита включает синтез гидроксилапатита в насыщенном растворе гидроксида кальция, декантированном после суточного отстаивания от осевших агрегатов Са(ОН)2, путем приливания щелочного раствора ортофосфорной кислоты при постоянном перемешивании до достижения значения рН реакционной смеси не ниже 10, затем отстаивают, декантируют жидкую фазу и замораживают полученный коллоидный раствор высокочистого наногидроксилапатита в камере лиофильной сушки, предварительно охлажденной, после чего осуществляют лиофильную сушку в вакууме при температуре -5°С и готовые гранулы разделяют на фракции.

Изобретение относится к медицине. Описан способ получения биоактивного гидроксиапатита, включающий очистку костей кипячением в растворе хлорида кальция концентрацией 5-50% масс.

Изобретение относится к способу получения биорезорбируемого материала на основе фосфатов кальция (ФК) с использованием микроволнового (СВЧ) излучения. Способ включает в себя следующие стадии: приготовление и перемешивание смеси гидроксида кальция и концентрированного 60-80%-ного раствора фосфорной кислоты, с последующим воздействием СВЧ-излучения в течение 20 мин при периодическом перемешивании реакционной смеси и прокаливанием при 600°С в течение 3 ч.

Изобретение относится к области медицины, в частности, к стоматологии, и раскрывает способ нанесения керамических биосовместимых покрытий. Способ характеризуется тем, что включает предварительную подготовку поверхности имплантата воздушно-абразивной обработкой и ультразвуковым обезжириванием, далее проводят электроплазменное напыление подслоя из титана и биосовместимого слоя, ультразвуковое обезжиривание проводят в водном растворе ПАВ при температуре до 40°C в течение 5-7 мин, электроплазменное напыление подслоя титана производят с дистанции напыления 120-150 мм в течение 12-15 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 150 мкм и токе дуги 350 А, электроплазменное напыление порошка магнийсодержащего трикальцийфосфата производят с дистанции напыления 50-60 мм в течение 10-12 с, расход плазмообразующего газа составляет 20 л/мин, дисперсность составляет не более 90 мкм и ток дуги 350 А.
Наверх