Многопереходный солнечный элемент



Многопереходный солнечный элемент
Многопереходный солнечный элемент
Многопереходный солнечный элемент
Многопереходный солнечный элемент
Многопереходный солнечный элемент
H01L31/0687 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2642524:

АЦУР СПЭЙС Золяр Пауер ГмбХ (DE)

Многопереходной солнечный элемент включает первый субэлемент, состоящий из соединения из InGaAs, причем первый субэлемент имеет первую постоянную решетки, и второй субэлемент со второй постоянной решетки, причем первая постоянная решетки по меньшей мере на 0,008 больше, чем вторая постоянная решетки, и, кроме того, предусмотрен метаморфный буфер, который выполнен между первым субэлементом и вторым субэлементом. Буфер содержит последовательность по меньшей мере из трех слоев, постоянная решетки у этой последовательности увеличивается по направлению к первому субэлементу. Постоянные решетки слоев буфера больше, чем вторая постоянная решетки, один слой буфера имеет третью постоянную решетки, которая больше, чем первая постоянная решетки. Между метаморфным буфером и первым субэлементом выполнено N компенсирующих слоев для компенсации остаточного напряжения метаморфного буфера. Постоянные решетки соответствующих компенсирующих слоев меньше, чем первая постоянная решетки на величину ΔАN>0,0008, и компенсирующие слои имеют содержание индия более 1%, а толщины количества N компенсирующих слоев выбраны из определенного соотношения. Изобретение обеспечивает возможность повышения коэффициента полезного действия многопереходного солнечного элемента. 16 з.п. ф-лы, 6 ил.

 

Изобретение относится к многопереходному солнечному элементу в соответствии с ограничительной частью п. 1 формулы изобретения.

Из публикации «Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight». Гутер и др. [Applied Physics Letters 94, 223504 (2009)], известен многопереходный солнечный элемент (англ. multi-junction solar cell). В раскрытой структуре речь идет о метаморфном Ga0.35In0.65P/Ga0.83In0.17As/Ge трехпереходном солнечном элементе с высоким коэффициентом полезного действия. Между Ge подложкой или, соответственно, Ge субэлементом и Ga0.83In0.17As субэлементом используется метаморфный буфер из GaYIn1-YAs. В данном случае метаморфный буфер состоит из семи GaInAs слоев толщиной 200 нм с постепенно увеличивающимся содержанием индия, причем в то же время увеличивается и постоянная решетки. В последнем слое буфера, так называемом избыточном слое (англ. overshoot), использовано здесь повешенное содержание индия в 20% или, соответственно, большая постоянная решетки, чем в расположенном над ним Ga0.83In0.17As субэлементе. Это является необходимым, чтобы создать напряжение, которое приводит к ослаблению лежащих ниже слоев метаморфного буфера до желаемой постоянное решетки.

Кроме того, из публикации ((Evolution of а 2.05 eV AlGaInP top sub-cell for 5 and 6J-IMM applications» Корнфилд и др., Страницы, Seite, 2788-2791, in: Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, ISBN:978-1-4673-0064-3, известна компоновка метаморфных буферов в инвертированном многопереходном солнечном элементе (англ. inverted metamorphic, IMM) с количеством субэлементов вплоть до шести. Кроме того, из ЕР 2251912 А1 известна структура туннельного диода со слоями с различными напряжениями и несколькими солнечными элементами и одним метаморфным буфером.

Из EP 2650930 A1 известен четырехпереходный солнечный элемент, состоящий из одного верхнего GaInP/GaAs двухпереходного солнечного элемента, присоединенного (англ. bonded) на нижний метаморфный GaInAs/Ge двухпереходный солнечный элемент.

Для полноты картины следует отметить, что в данном случае под термином метаморфный многопереходный солнечный элемент понимают многокаскадный солнечный элемент, который имеет по меньшей мере один метаморфный буферный слой между двумя субэлементами (англ. subcell) каскадных солнечных элементов. Следует также отметить, что при эпитаксии III-V многопереходного солнечного элемента используют так называемый метаморфный буфер, чтобы иметь возможность более качественного осаждения на эти буферы полупроводниковых слоев из материалов с более высокой постоянной решетки, чем у подложки. За счет метаморфного буфера в процессе эпитаксии также формируется так называемая виртуальная подложка с более высокой постоянной решетки, чем у первоначальной подложки. Полупроводниковые слои с такой же постоянной решетки, как у виртуальной подложки, в дальнейшем могут быть более качественно осаждены. Применение метаморфного буфера предоставляет возможность более широкого спектра при выборе материалов для различных субэлементов у многопереходных солнечных элементов. В частности, за счет этого осуществляются комбинации материалов, которые обещают больший коэффициент полезного действия для многопереходного солнечного элемента.

Проблема, связанная с использованием метаморфного буфера, состоит во внутреннем остаточном напряжении. В зависимости от гибкости применяемой подложки остаточное напряжение приводит к нежелательному искривлению полупроводниковой пластины (англ. плата). В частности, при производстве на обычных Ge-подложках с толщиной менее 190 мкм выявляются, например, значительные эффекты искривления.

Искривление полупроводниковой пластины, кроме прочего, уже в процессе эпитаксии по причине температурных эффектов приводит к неоднородным свойствам слоя. Дальнейшая обработка такой полупроводниковой пластины будет затруднена, и снижается выход продукции и, таким образом, значительно увеличивается стоимость.

Кроме того, у космических солнечных элементов с типичной площадью более 20 см2 к нежелательным техническим характеристикам продукта.

В связи с вышеизложенным задача изобретения состоит в том, чтобы предоставить устройство, которое обеспечивает дальнейшее развитие уровня техники.

Задачу изобретения решают при помощи многопереходного солнечного элемента с признаками п. 1 формулы изобретения. Предпочтительные варианты осуществления изобретения представлены в зависимых пунктах.

В соответствии с предметом настоящего изобретения представлена многопереходная солнечная батарея, содержащая многопереходный солнечный элемент, включающий первый субэлемент из соединения InGaAs, причем первый субэлемент имеет первую постоянную решетки и второй субэлемент предусмотрен со второй постоянной решетки, причем первая постоянная решетки по меньшей мере на 0,008 больше, чем вторая постоянная решетки, и дополнительно предусмотрен метаморфный буфер, причем буфер выполнен между первым субэлементом и вторым субэлементом, и метаморфный буфер включает последовательность по меньшей мере из трех слоев, и постоянная решетки у этой последовательности увеличивается от слоя к слою по направлению к первому субэлементу, и причем постоянные решетки слоев буфера больше, чем вторая постоянная решетки, и причем один слой метаморфного буфера имеет третью постоянную решетки и третья постоянная решетки больше, чем первая постоянная решетки, и между метаморфным буфером и первым субэлементом выполнено количество N компенсирующих слоев для выравнивания остаточного напряжения метаморфного слоя, и постоянные решетки соответствующих компенсирующих слоев меньше, чем первая постоянная решетки на величину ΔAN>0,0008 , и компенсирующие слои имеют содержание индия более 1%, и толщины количества N компенсирующих слоев выбраны таким образом, что справедливо:

Следует отметить, что растягивающее напряжение приводит к выпуклому изгибу, а, соответственно, сжимающее напряжение приводит к вогнутому изгибу полупроводниковой подложки или, соответственно, полупроводниковой пластины и многопереходный солнечный элемент состоит предпочтительно из III-V полупроводникового материала. При этом под термином «растягивающее напряжение» понимают напряжение при растяжении, а под термином «сжимающее напряжение» - напряжение при сжатии. Далее следует отметить, что количество N включает множество натуральных чисел за исключение нуля или, говоря другими словами, что формируется по меньшей мере один компенсирующий слой.

Преимущество формирования компенсирующего слоя или нескольких компенсирующих слоев состоит в том, что таким образом значительно снижается искривление полупроводниковой пластины, вызванное, в частности, метаморфным буфером. Исследования показали, что за счет введения компенсирующего слоя повышается выход при производстве многопереходного солнечного элемента и снижаются производственные расходы. Далее предпочтительно, чтобы компенсирующий слой был выполнен за последним слоем метаморфного буфера, и предпочтительно перед осаждением следующего субэлемента. Другими словами, предпочтительно, чтобы компенсирующий слой был выполнен после так называемого избыточного („overshoot”) слоя буфера. При этом, из соображений пониженного расхода материалов, предпочтительное конструктивное исполнение заключается в том, чтобы соединить компенсирующий слой с последним слоем метаморфного буфера с материальным замыканием. Далее было отмечено, что согласно приведенной выше формуле величина выравнивания, как величина возврата напряжения, зависит непосредственно от разницы в постоянной решетки компенсирующего слоя в сравнении с первой постоянной решетки, умноженной на толщину компенсирующего слоя. Исследования, проведенные заявителем, показали, что в некоторой степени компенсирующее (выравнивающее) напряжение важно для достижения снижения искривления платы. Желательным является снижение напряжения на 20%.

Для полноты картины следует отметить, что постоянная решетки субэлемента установлена равной постоянной решетки самого толстого слоя субэлемента. Как правило, в случае самого толстого слоя субячейки речь идет об одном из абсорбирующих слоев субячейки. В промышленных многопереходных солнечных элементах, которые обычно обладают n-р-полярностью, самым толстым слоем обычно является положительно легированный (акцепторной примесью) слой базы pn-перехода соответствующего субэлемента.

Кроме того, введение компенсирующих напряжение слоев имеет то преимущество, что постоянная решетки выполненных при помощи метаморфного буфера так называемых виртуальных подложек после осаждения компенсирующих напряжение слоев, в значительной степени «замораживается». Без компенсирующих напряжение слоев самопроизвольные отклонения или, соответственно, производственные колебания в составе осаждаемых впоследствии слоев, в частности относительно толстых абсорбирующих слоев субэлементов, могут привести к дальнейшему сжимающему напряжению и таким образом ослаблению слоев метаморфного буфера. Это означало бы нежелательное увеличение постоянной решетки виртуальной подложки. За счет введения слоев, компенсирующих напряжение, однако, остаточное напряжение метаморфного буфера сильно снижается, вследствие чего вероятность дальнейшего самопроизвольного ослабления метаморфного буфера значительно снижается. Таким образом введение компенсирующих напряжение слоев также обеспечивает широкий диапазон параметров процесс, или, соответственно, большое допустимое отклонение процесса осаждения по отношению к производственным колебаниям в составе слоев, осаждаемых на метаморфный буфер.

В другом варианте осуществления изобретения толщины количества N компенсирующих слоев вместе, т.е. в сумме больше чем 150 нм. Исследования показали, что заметная компенсация напряжения метаморфного слоя происходит при общей толщине более чем 150 нм. Предпочтительно, чтобы постоянные решеток количества N компенсирующих слоев были по меньшей мере на величину ΔAN>0,002 меньше, чем первая постоянная решетки. Исследования показали, что при ΔAN<0,002 для реализации наиболее возможной высокой компенсации понадобится такая высокая общая толщина компенсирующих слоев, что это в значительной степени негативно повлияет на экономическую эффективность производства.

В альтернативном варианте осуществления значение ΔAN<0,002 , причем компенсирующие напряжение слои выполнены как слои полупроводникового или брэгговского зеркала. Говоря другими словами, в представленном случае компенсирующие напряжение слои имеют двойную функцию.

В другом варианте осуществления показано, что толщины количества N компенсирующих слоев выбраны таким образом, что справедливо:

В частности, с увеличением разницы постоянных решетки, при толщинах слоев ниже 1 мкм, таким образом добиваются по меньшей мере 20% компенсации растягивающего напряжения, источником которого служит, в основном, буфер.

В другом варианте осуществления показано, что толщины количества N компенсирующих слоев выбраны таким образом, что справедливо:

Исследования показали, что выше этих значений вероятность образования трещин в компенсирующих слоях значительно возрастает.

В другом варианте осуществления задано, что компенсирующие слои имеют растягивающее напряжение и горизонтальная постоянная решетки (англ. in-plane lattice constant) компенсирующего слоя больше вертикальной постоянной решетки (engl. out-of-plane lattice constant). Под горизонтальной постоянной решетки подразумевают постоянную решетки в основной плоскости, в которой простирается компенсирующий слой. Другими словами, каждый отдельный компенсирующий слой имеет соответственно анизотропную постоянную решетки. В альтернативном варианте осуществления компенсирующие слои, соответственно, имеют соединение из GaAs, и/или GaInAs, и/или AlGaInAs, и/или GaInP, и/или AlGaInP, и/или GaAsP, и/или GaInAsP.

В другом варианте осуществления содержание индия в компенсирующем слое на 0,2% или на 0,5% меньше содержания индия в первом субэлементе. Понятно, что высокое содержание индия оказывает значительное влияние на постоянные решетки. Далее предпочтительно, чтобы часть компенсирующих слоев или все компенсирующие слои были легированы Zn. Особенно предпочтительно, если легирование цинком составляет более 1014 см-3

В другом варианте осуществления часть компенсирующих слоев или все компенсирующие слои выполнены как часть полупроводникового зеркала. Предпочтительно, что при наличии двойной функциональности слоев общая толщина многопереходного солнечного элемента может быть снижена. В предпочтительном варианте осуществления второй субэлемент содержит германий. Кроме того, предусмотрен третий субэлемент, причем третий субэлемент включает соединение из GaInP. Кроме того, предпочтительно, между третьим субэлементом и первым субэлементом выполнен четвертый субэлемент, причем четвертый субэлемент включает соединение GaAs, или InGaAs, или AlGaInAs.

Исследования показали, что субэлементы могут быть выполнены как в прямой, так и в обратной компоновке. При этом, под прямой компоновкой понимают, что в течение эпитаксиального производственного процесса субэлемент, осажденный в последнюю очередь, является самым верхним субэлементом многопереходного солнечного элемента. В данном случае под самым верхним субэлементом понимается тот субэлемент, который расположен ближе всего к солнцу и имеет среди всех субэлементов самую большую ширину запрещенной зоны. Под обратной компоновкой понимают, что субэлемент, осажденный в течение эпитаксиального процесса осаждения, в первую очередь является самым верхним субэлементом многопереходного солнечного элемента. Другими словами, в случае прямой компоновки первый субэлемент с большей постоянной решетки имеет большую ширину запрещенной зоны, чем ширина запрещенной зоны второго субэлемента с меньшей постоянной решетки. В случае обратной компоновки первый субэлемент с большей постоянной решетки имеет меньшую ширину запрещенной зоны, чем ширина запрещенной зоны второго субэлемента с меньшей постоянной решетки.

В другом варианте осуществления при компоновке из четырех субэлементов выполнены соответственно две пары субэлементов, причем между двумя парами субэлементов существует соединение с материальным замыканием за счет полупроводниковой связи. При этом особенно предпочтительно, чтобы осуществлялась компенсация напряжения решетки, так как процесс связывания имеет лишь небольшое допустимое отклонение по отношению к искривлению сопрягаемых плат или, соответственно, полупроводниковых пластин. В одной из форм исполнения особенно предпочтительно, чтобы многопереходный солнечный элемент представлял собой GaInP/GaAs/GaInAs/Ge четырехпереходный солнечный элемент, состоящий из двух соединенных прямой полупроводниковой связью двухпереходных солнечных элементов, одна из которых представляет собой метаморфный GaInAs/Ge двухпереходный солнечный элемент с прямой [компоновкой].

В другом варианте осуществления выполнен второй или третий метаморфный буфер, причем у одиночного буфера выполнен другой(дополнительный), т.е. второй или третий компенсирующий слой, и каждый из компенсирующих слоев расположен между метаморфным буфером и соседним субэлементом с наибольшей постоянной решетки. Следует отметить, что компенсирующий слой не является частью р-n-перехода туннельного диода.

Далее изобретение описывается более подробно со ссылкой на прилагаемые чертежи. При этом, схожие части обозначены идентичными позициями. Изображенные варианты осуществления представлены весьма схематично, т.е расстояния и горизонтальные и вертикальное протяженности изображены не в масштабе, и имеют, и, если не указано иное, не имеют установленных геометрических отношений друг по отношению к другу.

Показано:

Фиг. 1а - поперечное сечение многопереходного солнечного элемента согласно первому варианту осуществления изобретения,

Фиг. 1b - показана зависимость постоянной решетки от последовательности слоев структуры солнечного элемента, представленных на Фиг. 1а,

Фиг. 1c - показана зависимость горизонтальной постоянной решетки от последовательности слоев структуры солнечного элемента, представленных на Фиг. 1а,

Фиг. 1d - показана зависимость вертикальной постоянной решетки от последовательности слоев структуры солнечного элемента, представленных на Фиг. 1а,

Фиг. 2 - поперечное сечение трехпереходного солнечного элемента согласно второму варианту осуществления изобретения,

Фиг. 3 - поперечное сечение четырехпереходного солнечного элемента согласно второму варианту осуществления изобретения.

Изображение на фиг. 1а показывает поперечное сечение многопереходного солнечного элемента MS согласно первому варианту осуществления изобретения с первым субэлементом SC1. Первый субэлемент SC1 расположен на единственном компенсирующем слое КОМ1. Следует однако отметить, что в непоказанном альтернативном варианте осуществления, вместо одного единственного компенсирующего слоя образовано множество из N отдельных компенсирующих слоев. Кроме того, компенсирующий слой КОМ1 расположен сверху на метаморфном буфере МР1, причем буфер МР1 расположен сверху на втором субэлементе SC2. Буфер включает последовательность непоказанных слоев.

На фиг. 1b представлена зависимость постоянной решетки от последовательности слоев структуры солнечного элемента, показанного на фиг. 1а. Далее поясняются только отличия от изображения на фиг. 1а. Следует отметить, что в данном случае под постоянной решетки А всегда понимают так называемую натуральную постоянную. Второй субэлемент SC2 имеет вторую постоянную решетки ASC2. На втором субэлементе расположена последовательность из первого слоя с постоянной решетки МРА1, и второго слоя с постоянной решетки МРА2, и третьего слоя с постоянной решетки МРА3, и четвертого слоя с постоянной решетки МРА4. Показано, что постоянные решетки МРА1, МРА2, МРА3 и МРА4 у последовательности слоев возрастает от слоя к слою, причем все постоянные решетки МРА1, МРА2, МРА3 и МРА4 последовательности больше, чем вторая постоянная решетки ASC2. Кроме того, четвертая постоянная решетки МРА4 больше, чем первая постоянная решетки ASC1. При этом четвертый слой называют «избыточным» слоем. Компенсирующий слой КОМ1 имеет меньшую постоянную решетки А1, чем первая постоянная решетки SCA1. Само собой разумеется, что избыточный слой обладает сжимающим напряжением и передает напряжение на полупроводниковую пластину.

Только при введении компенсирующего слоя КОМ1 и образовании и образовании меньшей по сравнению с первой постоянной решетки ASC1 постоянной решетки А1 возможно добиться компенсации (выравнивания), т.е. снижения напряжения решетки. При этом величина снижения тем выше, чем больше толщина KOMD1 компенсирующего слоя КОМ1 и чем больше отличие постоянной решетки А1 компенсирующего слоя КОМ1 по сравнению с первой постоянной решетки ASC1. Характер кривой напряжения решетки далее показан на основе характера кривой горизонтальной (in-plane) постоянной решетки AL и характере кривой вертикальной (out-of-plane) постоянной решетки AV.

Изображение на фиг. 1с показывает характеристику кривой горизонтальной постоянной решетки AL для последовательности слоев структуры солнечного элемента, представленного на фиг. 1а. Кроме того, на фиг. 1d показана характеристика кривой вертикальной постоянной решетки AV для последовательности слоев структуры солнечного элемента, представленного на фиг. 1а. Видно, что из характеристики кривой горизонтальной постоянной решетки AL и из характеристики кривой вертикальной постоянной решетки AV может быть более точно воспроизведена характеристика кривой напряжения решетки для структуры солнечного элемента. Второй субэлемент SC2 имеет вторую горизонтальную постоянную решетки ASC2L. На втором субэлементе выполнена последовательность из первого слоя с горизонтальной постоянной решетки MPA1L, и второго слоя с горизонтальной постоянной решетки MPA2L, и третьего слоя с горизонтальной постоянной решетки MPA3L, и четвертого слоя с горизонтальной постоянной решетки MPA4L, причем горизонтальная постоянная решетки MPA3L третьего слоя имеет ту же величину, что и четвертая горизонтальная постоянная решетки MPA4L. Показано, что горизонтальные постоянные решеток MPA1L, MPA2L и MPA3L у последовательности слоев возрастают от слоя к слою, причем все горизонтальные постоянные решеток MPA1L, MPA2L и MPA3L или, соответственно, MPA4L последовательности больше, чем вторая горизонтальная постоянная решетки ASC2L. Далее, компенсирующий слой КОМ1 имеет четвертую горизонтальную постоянную решетки A1L и первый субэлемент SC1 имеет первую горизонтальную постоянную решетки SC1L, причем четвертая горизонтальная постоянная решетки A1L, и первая горизонтальная постоянная решетки SC1L, и горизонтальная постоянная решетки MPA3L, и горизонтальная постоянная решетки MPA4L третьего и четвертого слоев совпадают.

Второй субэлемент SC2 имеет вторую вертикальную постоянную решетки ASC2V. На втором субэлементе расположена последовательность из первого слоя с вертикальной постоянной решетки MPA1V, и второго слоя с вертикальной постоянной решетки MPA2V, и третьего слоя с вертикальной постоянной решетки MPA3V, и четвертого слоя с вертикальной постоянной решетки MPA4V. Показано, что вертикальные постоянные решеток MPA1V, MPA2V, MPA3V и MPA4V у последовательности слоев, возрастают от слоя к слою, причем все вертикальные постоянные решеток MPA1V, MPA2V, MPA3V и MPA4V последовательности больше, чем вторая вертикальная постоянная решетки ASC2V. Кроме того, первый субэлемент SC1 имеет первую вертикальную постоянную решетки SC1AV, причем первая вертикальная постоянная решетки SC1AV больше, чем вторая вертикальная постоянная решетки ASC2V. Далее, четвертая вертикальная постоянная решетки MPA4V больше, чем первая вертикальная постоянная решетки ASC1V. К тому же, компенсирующий слой КОМ1 имеет вертикальную постоянную решетки A1V, которая меньше, чем первая вертикальная постоянная решетки SCA1V. При сравнении характеристики кривой вертикальной постоянной решетки AV с характеристикой кривой постоянной решетки А это означает, что различие в вертикальных постоянных, при наличии, существенно больше, чем у характеристики кривой натуральной постоянной решетки А. Было отмечено, что остаточное напряжение метаморфного буфера, по меньшей мере частично, компенсируется, согласно изобретению, за счет одного или нескольких слоев, компенсирующих напряжение. Для этого компенсирующий напряжение слой имеет постоянную решетки, которая меньше, чем постоянная решетки первого субэлемента SC1. Далее, компенсирующий напряжение слой имеет растягивающее напряжение, или, соответственно, тянущее напряжение.

Изображение на фиг. 2 показывает поперечное сечение трехпереходного солнечного элемента согласно второму варианту осуществления изобретения, причем падение света L происходит через антирефлексный (просветляющий) слой AR. Далее описываются лишь отличия от изображений на предыдущих фигурах. Второй субэлемент SC2 своей нижней стороной связан, предпочтительно, с материальным замыканием с металлическим слоем М2. Между вторым субэлементом SC2 и нижним туннельным диодом UT выполнены дополнительно различные кристализационные слои и/или простые буферные слои. Верхний туннельный диод ОТ выполнен между третьим субэлементом SC3 и между первым субэлементом SC1. Антирефлексный слой AR и контактный слой K1 и металлический слой M1 выполнены размещенными на третьем субэлементе SC3. Так как нижний туннельный диод UT лежит под метаморфным буфером МР1, в данном контексте это значит, что формируется каскадный солнечный элемент, обладающий n-р-полярностью, так что метаморфный буфер МР1 и компенсирующий напряжение слой КОМ1 являются положительно легированными (акцепторной примесью). Предпочтительно, трехпереходный солнечный элемент выполнен как метаморфный GaInP/GaInAs/Ge трехпереходный солнечный элемент с прямой компоновкой. В непредставленном варианте осуществления трехпереходный солнечный элемент включает полупроводниковое зеркало. Предпочтительно, полупроводниковое зеркало свормировано между первым субэлементом SC1 и вторым субэлементом SC2.

Изображение на фиг. 3 показывает поперечное сечение четырехпереходного солнечного элемента согласно третьему варианту осуществления изобретения. Далее описываются лишь отличия от изображений на предыдущих фигурах. Предпочтительно, четырехпереходный солнечный элемент имеет последовательность соединений из AlGaInP/AlGaInAs/GaInAs/Ge, причем соединение из AlGaInP выполнено как самый верхний субэлемент, обращенный к падающему свету L. Между первым субэлементом SC1 и компенсирующим слоем КОМ1 выполнено полупроводниковое зеркало HSP. Кроме того, между первым субэлементом SC1 и четвертым субэлементом SC4 выполнен средний туннельный диод МТ. Кроме того, между первым субэлементом SC1 и третьим субэлементом SC3 выполнен четвертый субэлемент.

1. Многопереходный солнечный элемент (MS), включающий

первый субэлемент (SC1), состоящий из соединения из InGaAs, причем первый субэлемент (SC1) имеет первую постоянную решетки (ASC1), и

второй субэлемент (SC2) со второй постоянной решетки (ASC2), причем первая постоянная решетки (ASC1) по меньшей мере на больше, чем вторая постоянная решетки (ASC2), и

метаморфный буфер (МР1), причем буфер (МР1) выполнен между первым субэлементом (SC1) и вторым субэлементом (SC2), и буфер (МР1) включает последовательность по меньшей мере из трех слоев, и постоянная решетки при этой последовательности увеличивается от слоя к слою по направлению к первому субэлементу (SC1), и постоянные решетки слоев буфера больше, чем вторая постоянная решетки (ASC2), и причем один слой метаморфного буфера имеет четвертую постоянную решетки (МР1А4) и четвертая постоянная решетки (МР1А4) больше, чем первая постоянная решетки (ASC1),

отличающийся тем, что

между метаморфным буфером (МР1) и первым субэлементом (SC1) выполнено количество N компенсирующих слоев (KOM1, КОМ2, … KOMN) для компенсации остаточного напряжения метаморфного буфера (МР1), и постоянные решетки (A1, А2, … AN) соответствующих компенсирующих слоев (КОМ1, КОМ2, … KOMN) меньше, чем первая постоянная решетки (ASC1) на величину , и компенсирующие слои (KOM1, КОМ2, … KOMN) имеют содержание индия более 1%, и толщины (KOMD1, KOMD2, … KOMDN) количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) выбраны таким образом, что справедливо:

2. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что толщины (KOMD1, KOMD2, … KOMDN) количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) в сумме составляют больше чем 150 нм.

3. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что постоянные решетки (A1, А2, … AN) соответствующего количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) по меньшей мере на величину меньше, чем первая постоянная решетки (ASC1).

4. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что толщины (KOMD1, KOMD2, … KOMDN) количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) выбраны таким образом, что справедливо:

5. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что толщины (KOMD1, KOMD2, … KOMDN) количества N компенсирующих слоев (KOM1, КОМ2, … KOMN) выбраны таким образом, что справедливо:

6. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что компенсирующие слои (KOM1, КОМ2, … KOMN) в каждом случае обладают растягивающим напряжением.

7. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что компенсирующие слои (KOM1, КОМ2, … KOMN) в каждом случае содержат соединение из GaAs, и/или GaInAs, и/или AlGaInAs, и/или GaInP, и/или AlGaInP, и/или GaAsP, и/или GaInAsP.

8. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что содержание индия компенсирующих слоев (КОМ1, КОМ2, … KOMN) по меньшей мере на 0,2% или по меньшей мере на 0,5% меньше, чем содержание индия первого субэлемента (SC1).

9. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что часть или все компенсирующие слои (KOM1, КОМ2, … KOMN) легированы Zn.

10. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что часть компенсирующих слоев (KOM1, КОМ2, … KOMN) выполнена как часть полупроводникового зеркала.

11. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что второй субэлемент (SC2) содержит германий, и дополнительно предусмотрен третий субэлемент (SC3), и третий субэлемент (SC3) содержит соединение из GaInP.

12. Многопереходный солнечный элемент (MS) по п. 11, отличающийся тем, что между третьим субэлементом (SC3) и первым субэлементом (SC1) дополнительно выполнен четвертый субэлемент (SC4) и четвертый субэлемент (SC4) включает соединение GaAs или InGaAs или AlGaInAs.

13. Многопереходный солнечный элемент (MS) по п. 12, отличающийся тем, что субэлементы (SC1, SC2, SC3, SC4) выполнены в прямой компоновке или в обратной компоновке.

14. Многопереходный солнечный элемент (MS) по п. 12, отличающийся тем, что в случае каскадных солнечных элементов с четыремя субэлементами (SC1, SC2, SC3, SC4) в каждом случае выполнены две пары субэлементов (SC1, SC2, SC3, SC4), и указанные две пары субэлементов (SC1, SC2, SC3, SC4) соединены друг с другом посредством прямой полупроводниковой связи.

15. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что дополнительно выполнен второй метаморфный буфер и со вторым метаморфным буфером выполнено второе количество компенсирующих слоев.

16. Многопереходный солнечный элемент (MS) по п. 1, отличающийся тем, что компенсирующие слои не являются частью р-n-перехода туннельного диода.

17. Многопереходный солнечный элемент (MS) по одному из пп. 1-16, отличающийся тем, что количество N содержит множество натуральных чисел, исключая ноль.



 

Похожие патенты:

Солнечный фотоэлектрический концентраторный модуль содержит первичный оптический концентратор (3) в виде линзы Френеля, с линейным размером D, оптическая ось (4) которой проходит через центр (5) фотоактивной области фотоэлемента (1), выполненной в виде круга диаметром d, и соосный с ним вторичный концентратор (6), выполненный в виде четвертьволнового радиального градана диаметром d и высотой h1, установленный на расстоянии h2 от фронтальной поверхности линзы Френеля, при этом величины h1, h2, и D удовлетворяют определенным соотношениям.

Настоящее изобретение относится к многомодульным устройствам, сформированным на общей подложке, которые более предпочтительны, чем одиночные модульные устройства, особенно в фотоэлектрических областях применения.

Изобретение относится к сканирующим матричным фотоприемным устройствам (МФПУ) - устройствам, преобразующим входное оптическое изображение, формируемое объективом, в заданный спектральный диапазон, а затем в выходной электрический видеосигнал с помощью сканирования изображения.

Оптопара // 2633934
Изобретение относится к области к технике преобразования световой энергии в электрическую и предназначено для преобразования световой энергии в электрическую. Заявленная оптопара содержит источник света, фотопреобразователь и корпус.

Изобретение относится к области полупроводниковых приборов, а именно к структуре фотопреобразователей на основе монокристаллического или поликристаллического кремния и к линии по производству фотопреобразователей.

Изобретение относится к области полупроводниковых приборов, а именно к изготовлению активных слоев солнечных модулей на основе монокристаллического или поликристаллического кремния.

Изобретение относится к области преобразования солнечной энергии в электрическую в тонкопленочных полупроводниковых солнечных элементах. Способ контроля структурного качества тонких пленок для светопоглощающих слоев солнечных элементов заключается в том, что регистрируют излучение пленок при импульсном лазерном возбуждении, при этом уровень возбуждения устанавливают в диапазоне 10-200 кВт/см2 для возникновения стимулированного излучения с полушириной спектра Δλ~10 нм, и сравнивают интенсивности и полуширины спектров стимулированного излучения для определения относительного структурного качества пленок.

Изобретение относится к измерительной технике и может быть использовано для дистанционного беспроводного измерения различных физических величин, в частности температуры, давления, перемещения, магнитной индукции, ультрафиолетового излучения, концентрации газов и др., с помощью датчиков на поверхностных акустических волнах (ПАВ) при их облучении радиоимпульсами.

Многопереходный солнечный элемент для космической радиационной среды, причем многопереходный солнечный элемент имеет множество солнечных субэлементов, расположенных в порядке убывания запрещенной зоны, включающее в себя: первый солнечный субэлемент, состоящий из InGaP и имеющий первую запрещенную зону, причем первый солнечный субэлемент имеет первый ток короткого замыкания, связанный с ним; второй солнечный субэлемент, состоящий из GaAs и имеющий вторую запрещенную зону, которая имеет ширину, меньшую, чем первая запрещенная зона, причем второй солнечный субэлемент имеет второй ток короткого замыкания, связанный с ним; при этом в начале срока службы первый ток короткого замыкания меньше, чем второй ток короткого замыкания, так что эффективность AM0 преобразования является субоптимальной.

Согласно изобретению предложена эффективная солнечная батарея, выполненная многопереходной с защитным диодом, причем у многопереходной солнечной батареи и структуры защитного диода имеется общая тыльная поверхность и разделенные меза-канавкой фронтальные стороны, общая тыльная поверхность включает в себя электропроводящий слой, многопереходная солнечная батарея включает в себя стопу из нескольких солнечных батарей и имеет расположенную ближе всего к фронтальной стороне верхнюю солнечную батарею и расположенную ближе всего к тыльной стороне нижнюю солнечную батарею, каждая солнечная батарея включает в себя np-переход, между соседними солнечными батареями размещены туннельные диоды, количество слоев полупроводника у структуры защитного диода меньше, чем количество слоев полупроводника у многопереходной солнечной батареи, последовательность слоев полупроводника у структуры защитного диода идентична последовательности слоев полупроводника многопереходной солнечной батареи, причем в структуре защитного диода выполнен по меньшей мере один верхний защитный диод и один расположенный ближе всего к тыльной стороне нижний защитный диод, а между соседними защитными диодами размещен туннельный диод, количество np-переходов в структуре защитного диода по меньшей мере на один меньше, чем количество np-переходов многопереходной солнечной батареи, на передней стороне многопереходной солнечной батареи и структуры защитного диода выполнена структура соединительного контакта, содержащая один или несколько слоев металла, а под структурой соединительного контакта выполнен состоящий из нескольких слоев полупроводника электропроводящий контактный слой, и эти несколько слоев полупроводника включают в себя туннельный диод.

Изобретение относится к технологии изготовления фотопреобразователя с повышенным коэффициентом полезного действия (КПД). Предложен способ изготовления фотопреобразователя путем формирования в pin-структуре i-слоя на основе арсенида индия InGaAs между слоями GaAs и AlGaAs на подложках GaAs, при давлении 4⋅10-7-10-8 Па, температуре 600-800°С и скорости роста 2 Å/с. Изобретение обеспечивает повышение КПД преобразования, обеспечение технологичности, улучшение параметров, повышение качества и увеличение процента выхода годных. 1 табл.

Настоящее изобретение относится к способу формирования сильнолегированного серой микроструктурированного кристаллического слоя на поверхности кремния, который может быть использован в солнечной энергетике, оптоэлектронике, приборах ночного и тепловидения. Способ заключается в размещении поверхности кремния под химически активной жидкой средой серосодержащего соединения и облучении поверхности кремния импульсами сфокусированного лазерного излучения наносекундной длительности инфракрасного диапазона, при этом задают плотность энергии лазерного излучения достаточной для проникновения этим излучением через жидкую среду к поверхности кремния с разложением молекул серосодержащего соединения до выделения атомов серы и для нагрева поверхности кремния до температуры, при которой происходит диффузия в нее атомов серы вместе с ее абляционным микроструктурированием и отжигом. Технический результат изобретения состоит в многократном расширении области и величины высокой поглощательной способности (в том числе высокого коэффициента поглощения) поверхностного слоя кремния в процессе сверхлегирования атомами серы под действием лазерного облучения с сохранением его кристаллического характера. 6 з.п. ф-лы, 5 ил.

Изобретение относится к оптоэлектронной технике. Способ изготовления диодов средневолнового ИК диапазона спектра включает выращивание на подложке из арсенида индия твердого раствора InAs1-x-ySbxPy и разделенные р-n-переходом слои p- и n-типа проводимости, нанесение на поверхность гетероструктуры фоточувствительного материала, экспонирование через маску с системой темных и светлых полей, проявление, удаление по крайней мере части фоточувствительного материала, подложки и эпитаксиальной структуры при формировании мез(ы), подготовку поверхности для формирования омических контактов, напыление на поверхность слоев и/или подложки металлических композиций заданной геометрии, при этом согласно изобретению способ включает финальную стадию процесса удаления подложки или ее части при химическом травлении в водном растворе соляной кислоты. Изобретение обеспечивает увеличение эффективности работы диода средневолнового ИК диапазона спектра за счет улучшения условий для вывода/ввода излучения из полупроводникового кристалла. 9 ил., 4 пр.

Изобретение относится к структуре двухкаскадного тонкопленочного солнечного модуля (фотопреобразователя) на основе аморфного и микрокристаллического кремния. Тонкопленочный солнечный модуль состоит из последовательно расположенных: фронтальной стеклянной подложки, фронтального контактного слоя из прозрачного проводящего оксида, подслоя из нестехиометрического карбида кремния р-типа, аморфного и микрокристаллического каскадов, соединенных последовательно. Аморфный каскад состоит из р-слоя на основе слоя наночастиц кремния в матрице гидрогенизированного нестехиометрического оксида кремния, легированного бором (nc-Si/SiOx:H), являющегося широкозонным окном, собственного слоя на основе аморфного гидрогенизированного кремния (а-Si:H) и n-слоя на основе слоя наночастиц кремния в матрице гидрогенизированного нестехиометрического оксида кремния, легированного фосфором (nc-Si/SiOx:H), являющегося промежуточным отражателем. Микрокристаллический каскад состоит из pin структуры на основе микрокристаллического кремния (uc-Si:H), тыльного контактного слоя из прозрачного проводящего оксида, продольных и поперечных электрических контактных шин, тыльного отражателя, выполняющего герметизирующую функцию, установленного вместе с тыльным стеклом и коммутационной коробки. Способ изготовления тонкопленочного солнечного модуля включает нанесение на фронтальную стеклянную подложку слоя прозрачного проводящего оксида, нанесение подслоя из нестехиометрического карбида кремния методом плазмохимического осаждения из газовой фазы в силан-водородной плазме, на подслой методом плазмохимического осаждения из газовой фазы наносят аморфный каскад. На слой аморфного каскада наносят слой микрокристаллического каскада, затем наносят тыльный контактный слой из прозрачного проводящего оксида, после чего наносят продольные и поперечные электрические шины, поверх которых наносят тыльный отражатель, выполняющий герметизирующую функцию, на который устанавливают тыльное стекло и коммутационную коробку. Обеспечивается снижение фотодеградации при снижении толщины собственного слоя аморфного кремния, повышение стабилизированной эффективности, повышение квантовой эффективности за счет снижения потерь от поглощения. 2 н. и 5 з.п. ф-лы, 1 ил.
Наверх