Тампонажный раствор

Изобретение относится к горной и нефтегазодобывающей промышленности и может быть использовано при разработке месторождений полезных ископаемых подземным способом и ремонтно-изоляционных работах в тоннелях, нефтяных и газовых скважинах. Тампонажный раствор содержит 48-50 мас. % конверторного шлака, 33-35 мас. % электросталеплавильного шлака, 9-11 мас. % горелой породы шахтных отвалов и шлам отработанных электролитов кислотных аккумуляторов - остальное. При этом конверторный шлак имеет следующий состав, мас. %: SiO2 35,43; Al2O3 8,51; Fe2O3 1,94; FeO 2,83; MnO 1,15; CaO 29,97 (в т.ч. СаОсвоб. 0,39); MgO 20,69; SO3 0,04; P2O5 0,14, а электросталеплавильный шлак имеет следующий состав, мас. %: SiO2 26,63; Al2O3 5,33; FeO 0,95; MnO 0,37; CaO 55,55 (в т.ч. СаОсвоб. 0,71); MgO 9,68; S 1,41; P2O5 0,03; Cr2O3 0,05. Техническим результатом является расширение номенклатуры бесцементных тампонажных растворов с повышенной прочностью тампонажного камня. 3 табл.

 

Изобретение относится к горной и нефтегазодобывающей промышленности и может быть использовано при разработке месторождений полезных ископаемых подземным способом и ремонтно-изоляционных работах в тоннелях, нефтяных и газовых скважинах.

Известен бесцементный тампонажный раствор, содержащий в качестве многокомпонентного вяжущего гидравлическую известь по ГОСТ 9179, и микрокремнезем МК 85 по ТУ 5743-048-0295332, а в качестве заполнителя - песок с определенным гранулометрическим составом или тампонажную смесь ТИС [1].

Недостатком данного раствора является низкая прочность на сжатие тампонажного камня - 1,5 МПа в возрасте 28 суток. Гидравлическая известь и микрокремнезем при затворении водой обеспечивают слабые вяжущие свойства и небольшую структурную прочность тампонажного камня.

Наиболее близким техническим решением является бесцементный тампонажный раствор с использованием доменных отвальных шлаков Алчевского металлургического комбината следующего состава: шлак отвальный молотый - 840 кг/м3; глина бентонитовая - 10 кг/м3, вода - 625 кг/м3 [2].

Бесцементный тампонажный раствор данного состава также имеет недостаток. Использование глины в тампонажном растворе приводит к малой сопротивляемости тампонажного камня внешнему давлению, быстрому отверждению и ненадежности тампонирования тонкотрещиноватых горных пород. В связи с чем закачиваемые композиции имеют узкую область применения (карстовые породы или породы с весьма крупной трещиноватостью). Так как тампонажный раствор данного состава является хрупким, быстро теряет текучесть и эластичность и не имеет жесткого каркаса, прочность на сжатие в качестве характеристики не рассматривается ввиду ее низкого значения. За основную технологическую характеристику принята пластическая прочность: 310,7-588,89 кПа на 15 сутки.

Техническим результатом изобретения является расширение номенклатуры бесцементных тампонажных растворов с повышенной прочностью тампонажного камня.

Задачей предлагаемого изобретения является: решение экологических проблем - использование в составе тампонажного раствора общедоступного сырья (отходов предприятий металлургической и угольной промышленности); достижение экономического эффекта - низкая стоимость компонентов тампонажного раствора; получение бесцементного тампонажного раствора с прочностью на сжатие в возрасте 28 суток не менее 10 МПа.

Решение поставленной задачи достигается тем, что тампонажный раствор, включающий шлак, дополнительно содержит горелую породу шахтных отвалов и шлам, полученный нейтрализацией известью отработанного электролита кислотных аккумуляторов в качестве активаторов, а в качестве шлака введены конверторный шлак химического состава в массовых процентах: SiO2 35,43; Al2O3 8,51; Fe2O3 l,94; FeO 2,83; MnO 1,15; CaO 29,97 (в т.ч. СаОсвоб. 0,39); MgO 20,69; SO3 0,04; P2O5 0,14 и электросталеплавильный шлак химического состава в массовых процентах: SiO2 26,63; Al2O3 5,33; FeO 0,95; MnO 0,37; CaO 55,55 (в т.ч. СаОсвоб. 0,71); MgO 9,68; S 1,41; P2O5 0,03; Cr2O3 0,05, при этом компоненты взяты в следующем соотношении, мас. %:

конверторный шлак 48-50
электросталеплавильный шлак 33-35
горелая порода шахтных отвалов 9-11
шлам отработанных электролитов
кислотных аккумуляторов остальное

Для приготовления заявляемого тампонажного раствора применяются:

шлак сталеплавильного производства (конверторный, электросталеплавильный) ОАО «ЗСМК» (ОАО «Западно-Сибирский металлургический комбинат») после магнитной сепарации с отделением металлических включений (скрапа, зерен). Химический состав конверторного шлака в массовых процентах: SiO2 35,43; Al2O3 8,51; Fe2O3 1,94; FeO 2,83; MnO 1,15; CaO 29,27; (в т.ч. СаОсвоб. 0,39); MgO 20,69; SO3 0,04; P2O5 0,14. Химический состав электросталеплавильного шлака в массовых процентах: SiO2 26,63; Al2O3 5,33; FeO 0,95; MnO 0,37; CaO 55,55; (в т.ч. СаОсвоб. 0,71); MgO 9,68; S 1,41; P2O5 0,03; Cr2O3 0,05.

Горелая порода шахтных отвалов, химический состав которой в массовых процентах: SiO2 49,18; Al2O3 17,62; Fe2O3 1,66; MnO 0,24; CaO 3,79; (в т.ч. СаОсвоб. 0,65); MgO 7,61; TiO2 0,81; SO3 1,27; P2O5 0,07; K2O+Na2O 11,23; средняя плотность 1,8 г/см3; минералогический состав: глинистые сланцы - 48%, песчанистые сланцы - 27%, песчаники - 20%, углистые сланцы - 3%, карбонатные породы - 2%.

Шлам, полученный в результате нейтрализации известью отработанных электролитов кислотных аккумуляторов бульдозеров и автотранспорта. Представляет собой обводненный гель, обладающий высокой пластичностью. Химический состав твердой фазы шлама в массовых процентах: Feoб. 0,19; MnO 0,14; SiO2 5,24; Al2O3 1,73; Са 27,10; MgO 2,71; Na2O 0,06; P2O5 0,37; S 62,37 ZnO 1,40; водошламовое отношение 0,5. Основные характеристики электролита применяемого для приготовления шлама представлены в таблице 1.

Тампонажный раствор получали следующим способом: шлаки сталеплавильного производства (конверторный, электросталеплавильный) после магнитной сепарации с отделением металлических включений - скрапа, зерен; и горелые породы шахтного отвала размалывали в шаровой мельнице до удельной поверхности 340-350 м2/кг и тщательно перемешивали в сухом виде. Полученную смесь затворяли шламом, тщательно перемешивая. Смесь укладывали в форму для образцов-кубов со стороной 7,07 см. Образцы выдерживали в естественных условиях при температуре (20±3)°С и относительной влажности воздуха (65±10%.)%. Определение основных свойств тампонажного раствора и камня проводили при температуре (20±2)°С в соответствии с ГОСТ 26798.1-96 «Цементы тампонажные. Методы испытаний».

Оптимальное процентное соотношение компонентов, входящих в состав тампонажного раствора, установлено экспериментально. Результаты проведенных лабораторных исследований по определению прочности на сжатие и водостойкости тампонажных составов представлены в таблице 2.

При добавлении горелой породы в количестве < 9% уменьшается коэффициент размягчения (состав становится неводостойким), при добавлении > 11% уменьшается прочность тампонажного камня. При добавлении шлама > 8% прочность получается недостаточной, а < 6% не будет достигнута нужная консистенция (выводы получены на основе экспериментов).

Прочность на сжатие заявляемого тампонажного раствора в возрасте 28 суток 9,56-11,18 МПа (М 100).

Экспериментальными исследованиями (представлены в таблице 3) установлено, что разработанный тампонажный материал на неорганической основе (из вторичных минеральных ресурсов) в результате сложных физико-химических процессов превращается в тампонажный камень и удовлетворяет основным и общим требованиям ГОСТ 1581-96 «Портландцементы тампонажные. Технические условия» (тип I - тампонажный портландцемент бездобавочный, применение - для низких и нормальных температур (15-50°С). Усадка и трещины при твердении отсутствуют.

Плотность тампонажного раствора определяли ареометром типа АБР - 1 по методике, предусмотренной инструкцией по эксплуатации ареометра, водоотделение - на приборе ВМ-6. Реологические характеристики определялись на ротационном вискозиметре (реометр) модель 286 по методике, предусмотренной инструкцией прибора. Предел прочности камня на изгиб и сжатие замерялись на испытательной установке ПЦК-1.

Достигаемый при осуществлении изобретения технический результат состоит в том, что входящие в состав тампонажного раствора компоненты в указанных количествах обеспечивают прочность на сжатие в возрасте 28 суток - М 100.

Из патентной и научно-технической литературы нам не известны тампонажные растворы, содержащие совокупность указанных выше компонентов в предложенном соотношении, обеспечивающем указанные выше прочностные свойства, что позволяет сделать вывод о новизне заявляемого технического решения и соответствии предлагаемого технического решения критерию «изобретательский уровень».

На изготовление заявляемого состава бесцементного тампонажного раствора разработан технологический регламент.

В настоящее время широко применяются многокомпонентные модифицированные тампонажные растворы, включающие базовый тампонажный материал и добавку химического реагента, регулирующую свойства в соответствии с назначением и условиями применения.

Использование заявляемого тампонажного раствора в качестве самостоятельного или базового тампонажного материала в шахтном и подземном строительстве позволит возводить сооружения с минимальными затратами, повысив эффективность изоляционных работ.

Источники информации

1. Стандарт организации СТО НОСТРОИ 2.27.19 - 2011. Сооружение тоннелей тоннелепроходческими механизированными комплексами с использованием высокоточной обделки. Москва, 2012.

2. Должиков П.И. Исследование реологических свойств бесцементных тампонажно-закладочных смесей на базе отвальных доменных шлаков / П.Н. Должиков, П.Г. Фурдей // Сборник научных трудов ДонГТУ. - Вып. 45, 2016. - С. 10-14.

Тампонажный раствор для укрепления горных выработок при подземной разработке полезных ископаемых, включающий шлак, отличающийся тем, что он дополнительно содержит горелую породу шахтных отвалов и шлам, полученный нейтрализацией известью отработанного электролита кислотных аккумуляторов в качестве активаторов, а в качестве шлака введены конверторный шлак химического состава, мас. %: SiO2 35,43; Al2O3 8,51; Fe2O3 1,94; FeO 2,83; MnO 1,15; CaO 29,97 (в т.ч. СаОсвоб. 0,39); MgO 20,69; SO3 0,04; P2O5 0,14 и электросталеплавильный шлак химического состава, мас. %: SiO2 26,63; Al2O3 5,33; FeO 0,95; MnO 0,37; CaO 55,55 (в т.ч. СаОсвоб. 0,71); MgO 9,68; S 1,41; P2O5 0,03; Cr2O3 0,05, при этом компоненты взяты в следующем соотношении, мас. %:

конверторный шлак 48-50
электросталеплавильный шлак 33-35
горелая порода шахтных отвалов 9-11
шлам отработанных электролитов
кислотных аккумуляторов остальное



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения ремонтно-изоляционных работ (РИР) в скважинах. Способ ремонтно-изоляционных работ в скважинах включает приготовление и закачивание в скважину водоизоляционной композиции, содержащей, мас.

Группа изобретений относится к цементным композициям с отсроченным сроком схватывания. Способ вытеснения флюида в стволе скважины включает введение продавочной жидкости, содержащей цементную композицию с отсроченным схватыванием, в ствол скважины, так, что продавочная жидкость вытесняет один или более ранее внесенных флюидов из ствола скважины.
Изобретение относится к операциям цементирования. Вариант осуществления настоящего изобретения включает способную к схватыванию композицию, содержащую размолотый невспученный перлит, пумицит, цементную печную пыль и воду.

Изобретение относится к флюидам, применяемым при обработке нефтегазоносной формации. Флюид для обработки подземной формации, содержащий водную двухфазную систему, включающую первую водную фазу и вторую водную фазу, где первая фаза содержит нанокристаллическую целлюлозу - NCC, включающую стержнеобразные частицы NCC, имеющие кристаллическую структуру, концентрация частиц NCC в первой фазе выше, чем их концентрация во второй фазе, и флюид способен становиться более вязким, чем либо первая фаза, либо вторая фаза, при переходе водной двухфазной системы в однофазную систему.

В настоящем документе описаны цементные композиции и способы применения цементных композиций в подземных пластах. В одном из вариантов реализации изобретения предложен способ цементирования в подземном пласте, включающий: обеспечение цементной композиции, содержащей воду, пуццолан, гашеную известь и цеолитный активатор; и обеспечение возможности схватывания цементной композиции в подземном пласте, причем цеолитный активатор расположен на поверхности пуццолана.

Изобретение относится к нефтедобывающей промышленности и применяется для ограничения водопритока в скважины на месторождениях сверхвязкой нефти. Способ ограничения водопритока в скважины на месторождениях сверхвязкой нефти включает закачку в пласт водоизоляционного гелеобразующего состава, содержащего следующие компоненты, мас.

Настоящее изобретение относится к композициям полиуретановых тампонажных растворов, применяемых для быстрой остановки утечки фильтрационной воды и борьбы с фильтрационными потерями в процессе проведения разведки колонковым бурением, ведения горных работ и добычи сланцевого газа, рытья котлована под фундамент и соединения подземных тоннелей.

Изобретение относится к ремонтно-изоляционным тампонажным составам на основе магнезиальных вяжущих веществ и может быть использовано в нефтяной и газовой отраслях промышленности при бурении и ремонте нефтяных, газовых и водных скважин.

Изобретение относится к способу обработки скважин, способу цементирования (варианты), текучей среде для обработки скважин. Способ обработки скважины включает изготовление текучей среды для обработки, содержащей основную текучую среду и смешанный цементирующий компонент, причем смешанный цементирующий компонент включает печную пыль из двух или более различных источников, где печная пыль выбрана из группы, которую составляют известковая печная пыль, цементная печная пыль и их сочетание, где индекс реакционной способности печной пыли различается для двух или более различных источников; и введение текучей среды для обработки в ствол скважины.

Изобретение относится к нефтедобывающей промышленности, в частности к составам и способам для изоляции притока пластовых вод в скважине и крепления призабойной зоны пласта нефтеводонасыщенных пластов, а также к составам и способам для регулирования профиля приемистости нагнетательных скважин.

Изобретение относится к области добычи газа, а именно к химическим реагентам для удаления жидкости из скважин газовых месторождений, в продукции которых содержится конденсационная жидкость с примесью пластовой.

Способ повышения эффективности добычи углеводородов из подземной формации, которая включает в себя нефтегазоносные сланцы, содержащие кальцит с трещинами в нем, причем этот способ включает: введение флюида, содержащего положительно заряженные ионы, по меньшей мере, в некоторые трещины; обеспечение упомянутым ионам возможности преобразовывать сланцы вдоль трещин в кристаллы арагонита таким образом, что некоторые кристаллы арагонита становятся взвешенными во флюиде; удаление некоторого количества флюида со взвешенными кристаллами арагонита из этой формации.

Изобретение относится к горному делу и может быть использовано при изоляции горных выработок от притоков воды и газа и инъекционном химическом укреплении горных пород и грунтов.

Изобретение относится к защите от коррозии оборудования для добычи нефти, а также трубопроводов и резервуаров для нее. Ингибитор коррозии для защиты оборудования для добычи сырой нефти, нефтепроводов и резервуаров для сырой нефти, содержащий: компонент а), полученный в результате выполнения следующих процессов: А) - частичной нейтрализации смеси модифицированных производных имидазолина общих приведенных структурных формул путем обработки алифатической и/или ароматической монокарбоновой кислотой, содержащей от 1 до 7 атомов углерода в молекуле, и В) - дальнейшей частичной нейтрализации полученного промежуточного продукта жирными кислотами, содержащими от 12 до 22 атомов углерода в молекуле, и/или полимерами жирных кислот, содержащими от 18 до 54 атомов углерода в молекуле, компонент b), представляющий собой этоксилированные жирные амины, содержащие от 14 до 22 атомов углерода в молекуле, и от 2 до 22, предпочтительно от 5 до 15, этокси-групп в молекуле, компонент d), представляющий собой алифатические спирты, содержащие от 1 до 6 атомов углерода на молекулу, возможно, с добавлением воды.

Изобретение относится к области нефтедобывающей промышленности. Технический результат - низкая коррозионная активность состава для кислотной обработки, замедленная скорость реагирования состава для кислотной обработки с карбонатной породой, отсутствие образования асфальтосмолопарофиновых отложений за счет низкого межфазного поверхностного натяжения на границе с нефтью, предотвращение выпадения вторичных осадков, высокая способность связывания железа.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения ремонтно-изоляционных работ (РИР) в скважинах. Способ ремонтно-изоляционных работ в скважинах включает приготовление и закачивание в скважину водоизоляционной композиции, содержащей, мас.

Варианты реализации изобретения относятся к операциям цементирования и, более конкретно, некоторые варианты реализации относятся к затвердевающим композициям, которые содержат печную пыль и волластонит, а также к способам их применения в подземных пластах .

Изобретение относится к выполнению многостадийной обработки скважин, пронизывающих подземные формации. Способ разрыва с отведением с помощью способного разлагаться материала, содержащий этапы, на которых осуществляют: нагнетание скважинной обрабатывающей текучей среды в скважину, пронизывающую многослойную формацию, для распространения гидравлического разрыва в слое формации, нагнетание водной суспензии, содержащей волокна нерастворимого, способного разлагаться материала в твердой фазе для формирования пробки из уплотненных волокон и изолирования гидравлического разрыва от скважины, где способный разлагаться материал присутствует в суспензии в концентрации, по меньшей мере, 4,8 г/л (40 фунтов массы/1000 галлонов), и жидкая фаза суспензии содержит полимерный загуститель, вязкоупругое поверхностно-активное вещество, вспомогательное поверхностно-активное вещество, модификатор реологических свойств, полимерное вещество для снижения сопротивления, поверхностно-активное вещество для снижения сопротивления, полимерный усилитель снижения сопротивления, мономерный усилитель снижения сопротивления, водный рассол, или их комбинацию или смесь, с помощью пробки, отводящей от предшествующего гидроразрыва, нагнетание скважинной обрабатывающей текучей среды в скважину для распространения следующего гидравлического разрыва в другом слое формации и разложение способного разлагаться материала для удаления пробки.

Изобретение относится к производству проппанта и его суспензии в жидкости для гидроразрыва. Способ формирования газонаполненных пузырьков на поверхности частицы проппанта, содержащий этапы помещения частиц проппанта в воду при рабочем давлении 8000-12000 фунтов на квадратный дюйм, создание избыточного давления газа в воде, равного или большего, чем рабочее давление 8000-12000 фунтов на квадратный дюйм, для создания насыщения вокруг или в непосредственной близости от частицы проппанта, в результате чего образуются пузырьки на поверхности частиц проппанта, и сброса избыточного давления из воды до уровня рабочего давления.
Изобретение относится к составам для бурения скважин. Технический результат – расширение арсенала средств, получение бурового раствора со следующими свойствами: плотность 1,16-1,17 г/см3, вязкость 43 сР, условная вязкость 43 с/л.

Изобретение относится к нефтедобывающей промышленности. Технический результат - увеличение производительности нагнетательных скважин, уменьшение времени осуществления способа, его упрощение и удешевление. Способ многостадийной обработки призабойной зоны нагнетательной скважины в терригенных и карбонатных пластах включает стадии: солянокислотную обработку кислотной композицией объемом 0,5-1 м3/м с последующей продавкой водным раствором наночастиц коллоидной двуокиси кремния или водным раствором поверхностно-активного вещества ПАВ объемом 2-3 м3/м; глинокислотную обработку глинокислотной композицией на основе соляной и плавиковой кислот объемом 0,5-0,8 м3/м с последующей продавкой водным раствором наночастиц коллоидной двуокиси кремния или водным раствором ПАВ объемом 2-3 м3/м; обработку углеводородным растворителем объемом 0,5 м3/м и глинокислотной композицией на основе соляной и плавиковой кислот объемом 0,5 м3/м с последующей продавкой водным раствором наночастиц коллоидной двуокиси кремния или водным раствором ПАВ объемом 2-3 м3/м. В качестве кислотной композиции используют следующий состав, об.%: 30%-ная соляная кислота 50-63; диэтиленгликоль 6-16; уксусная кислота 1-3; гидрофобизатор на основе амидов 1-3; ингибитор коррозии 1,5-2; техническая вода – остальное. В качестве глинокислотной композиции используют следующий состав, об.%: 30%-ная соляная кислота 48-60; плавиковая кислота 1-4; диэтиленгликоль 6-16; уксусная кислота 1-3; гидрофобизатор на основе амидов 1-3; ингибитор коррозии 1,5-2; техническая вода – остальное. В качестве водного раствора наночастиц коллоидной двуокиси кремния используют 1-2%-ный водный раствор наночастиц коллоидной двуокиси кремния, содержащий, мас.%: коллоидную двуокись кремния в акриловой кислоте 32-40; монометиловый эфир пропиленгликоля 59,5-67,5; воду – остальное. В качестве водного раствора ПАВ используют 2-4%-ный водный раствор ПАВ, содержащий, мас.%: диэтиленгликоль 1-3; гидрофобизатор на основе амидов 0,5-2; техническую воду – остальное. В качестве углеводородного растворителя используют растворитель на основе толуольной фракции прямогонного бензина или на основе концентрата ароматических углеводородов С10. 1 з.п. ф-лы, 7 ил.
Наверх