Способ механической обработки заготовки из титанового сплава

Изобретение относится к способу механической обработки заготовки из титанового сплава. Осуществляют предварительное локальное пластическое деформирование вращающейся заготовки и ее лезвийную обработку путем снятия припуска. Локальное пластическое деформирование заготовки осуществляют непрерывно движущимся с подачей шариком на величину, не превышающую значение снимаемого припуска лезвийной обработкой. При этом осуществляют постоянное давление шарика по винтовой траектории с углом наклона деформационного слоя по отношению к торцевой части заготовки. В результате повышается точность и качество механической обработки. 4 ил, 2 табл.

 

Изобретение относится к области металлообработки и предназначено для обработки деталей резанием из различного сортамента титановых сплавов малой пластичности, где предъявляются повышенные требования к качеству поверхностного слоя, обрабатываемых на токарных станках, оснащенных ЧПУ.

Известен способ обработки резанием (авторское свидетельство SU №1009610, опубл. 07.04.1983 г.), при котором перед обработкой режущим инструментом поверхность изделия подвергается предварительной деформации роликом с клиновидной рабочей частью.

Недостатком способа является его пригодность только для чернового точения заготовок с коркой, что является энергоемким процессом и не решает проблему повышения качества обработки поверхности.

Известен способ комбинированной обработки поверхностей (авторское свидетельство SU №1673274 А1, опубл. 30.08.1991 г.), включающий в себя совмещение плоскости сдвига пластически деформированной структуры и плоскость наибольших касательных напряжений, создаваемых режущей кромкой инструмента.

Недостатком способа являются создаваемые периодически повторяющиеся вредные вибрации при механической обработке деталей, что в свою очередь приводит к неравномерным нагрузкам на режущий инструмент и вследствие чего ведет к ухудшению параметров качества и точности обработки, и приводит к снижению стойкости режущего инструмента.

Известен способ обработки деталей резанием с опережающим пластическим деформированием (патент РФ №2399460, опубл. 20.09.2010 г.), принятый за прототип, относящийся к обработке слоя металла посредством воздействия на его поверхность роликом.

Недостатком способа является полное упрочнение срезаемого слоя металла, приводя в процессе резания к периодическим ударным нагрузкам при врезании режущего инструмента, что сказывается на его стойкости, а также понижает качество и точность поверхностного слоя, вследствие повышенного образования нароста на режущей кромке инструмента при снятии деформированного слоя.

Техническим результатом изобретения является создание способа механической обработки заготовки из титанового сплава, включающего предварительное локальное пластическое деформирование (ПЛПД) на каждом из этапов механической обработки, что позволит повысить точность и качество механической обработки, повысить стойкость режущего инструмента, а также расширить сортамент обрабатываемых материалов.

Технический результат достигается тем, что локальное пластическое деформирование заготовки осуществляют непрерывно движущимся с подачей шариком на величину, не превышающую значение снимаемого припуска лезвийной обработкой, с постоянным давлением по винтовой траектории и с углом наклона деформационного слоя μm по отношению к торцевой части заготовки, равного

где Sm - подача шарика за один оборот заготовки, мм, Dз - диаметр заготовки, мм.

Способ механической обработки заготовки из титанового сплава, включающий предварительное локальное пластическое деформирование, поясняется следующими фигурами:

Фиг. 1 - схема предварительного локального воздействия методом пластического деформирования;

Фиг. 2 - структурные изменения в поверхностном слое при предварительном локальном пластическом деформировании;

Фиг. 3 - параметры деформированного слоя по отношению к торцевой части заготовки;

Фиг. 4 - процесс лезвийной механической обработки заготовки после создания зоны локального пластического деформирования где:

1 - заготовка;

2 - локальная зона с измененной структурой;

3 - деформирующий шарик;

4 - диаметр заготовки;

5 - диаметр деформирующего шарика;

6 - подача шарика за один оборот заготовки, Sm;

7 - глубина деформации, h;

8 - величина припуска, hпp;

9 - угол наклона деформационного слоя;

10 - точки пересечения плоскости резания с зоной ПЛПД;

11 - подача резания, Sp;

12 - частота вращения заготовки, np;

13 - плоскость резания;

14 - длина окружности заготовки.

Способ осуществляется следующим образом. На этапе подготовки по поверхности заготовки 1 с диаметром 4 перемещается шарик 3 по винтовой траектории с подачей 6, производя давление РПЛПД на поверхность заготовки с постоянной линейной скоростью (фиг. 1), формируя локальную зону деформации 2 со структурой с отличными физико-механическими свойствами от основного материала с углом наклона деформационного слоя 9 на глубину воздействия 7 (фиг. 2). Диаметр шарика 5 выбирается таким образом, чтобы глубина воздействия 7 была достаточна для соответствующих размеров снимаемого припуска 8 (фиг. 2).

На этапе механической обработки заготовка вращается с частотой вращения 12, происходит съем слоя металла резцом с подачей 11 на глубину резания, превышающую или равную толщине предварительного локального пластического деформирования (фиг. 1, 2). Плоскость резания 13 в зоне пересечения линии с предварительным локальным пластическим деформированием образует концентратор напряжений 10 с измененными упругими свойствами по сравнению с исходным материалом. Угол наклона деформационного слоя 9 по отношению к торцевой части заготовки позволяет обеспечить безударное врезание в линию локального пластического деформирования (фиг. 3). Для расчета угла наклона деформационного слоя 9 к торцевой части заготовки требуется создать развертку данной заготовки. Проекции величины подачи локального пластического деформирования и торцевой части заготовки образуют между собой прямоугольный треугольник. Таким образом, угол деформационного слоя 9 определяется по формуле , где Sm - подача шарика за один оборот заготовки, мм, Dз - диаметр заготовки, мм. Равномерно повторяющиеся очаги деформации создают кратковременные изменения угла сдвига при формировании стружки, тем самым обеспечивая равномерную сегментацию и удаление нароста с режущей кромки инструмента, что положительно сказывается на качестве и точности обработанной поверхности.

Предлагаемый способ механической обработки заготовки из титанового сплава, включающий предварительное локальное пластическое деформирование, позволяет существенно уменьшить динамические нагрузки на режущий клин инструмента, в результате увеличить стойкость резцов и в следствии повысить точность и качество поверхностного слоя обработанной детали. При таком способе возможна обработка не только труднообрабатываемых пластичных цветных металлов и их сплавов, но и черных сталей и сплавов.

Примеры. Для формирования концентратора напряжения в локальной зоне поверхностного слоя цилиндрической детали (материал титановый деформируемый сплав ПТ-3В, D=120 мм, L=650 мм, производилось создание зоны локального пластического деформирования по винтовой траектории, шариком (материал шарика - ШХ15, HRC 64-66, D=10 мм).

Точение производилось на токарно-винторезном станке 16А20Ф3 проходным резцом с механическим креплением пластины ВК6 с главным углом в плане 45° со скоростью обработки 210 м/мин и продольной подачей 0,1 мм/об.

Согласно проведенным экспериментам (табл. 2), выполненным в соответствии с представленной расчетной формулой, выявлена зависимость стойкости режущего инструмента от величины подачи и угла наклона предварительного локального пластического деформирования, что позволило установить оптимальные значения параметров угла наклона (μm=15°) и подачи (Sm=100 мм), обеспечивающие наименьшую нагрузку на режущий клин инструмента, что положительно сказывается на стойкости режущего инструмента и, как следствие, на качестве обработки.

Данные параметры позволили обеспечить снижение энергоемкости процесса, уменьшить нагрузку и увеличить стойкость резца на 45-50% за счет обеспечения безударного вхождения режущего инструмента в зону с локальным пластическим деформированием, что положительно отразилось на стойкости резца, а также увеличить точность и качество поверхностного слоя детали на 35-40% (табл. 1, 2).

Способ механической обработки заготовки из титанового сплава, включающий предварительное локальное пластическое деформирование вращающейся заготовки и ее лезвийную обработку путем снятия припуска, отличающийся тем, что локальное пластическое деформирование заготовки осуществляют непрерывно движущимся с подачей шариком на величину, не превышающую значение снимаемого припуска лезвийной обработкой, с постоянным давлением по винтовой траектории и с углом наклона деформационного слоя μm по отношению к торцевой части заготовки, равного

где Sm - подача шарика за один оборот заготовки, мм, Dз - диаметр заготовки, мм.



 

Похожие патенты:

Изобретение относится к наноструктурирующему упрочнению поверхностного слоя прецизионных деталей выглаживанием. Используют выглаживающий инструмент, содержащий индентор, изготовленный из сверхтвердого инструментального материала, и модуль охлаждения индентора жидким теплоносителем.

Изобретение относится к изменению изгибной жесткости цилиндрических стержневых изделий. Осуществляют формирование остаточных напряжений при осесимметричном пластическом деформировании изделия с помощью деформирующего инструмента с конической рабочей частью.

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом и производят последующее упрочнение покрытия ультразвуковой обработкой с частотой ультразвуковых колебаний 18-22 кГц упрочняющим элементом.

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом с одновременным пропусканием через зону контакта деформирующего элемента с обрабатываемой поверхностью импульсного электрического тока силой 2-5 кА, напряжением 2-3 В, с длительностью импульсов 0,08-0,2 с и с частотой импульсов 0,16-0,4 Гц.

Изобретение относится к ультразвуковой обработке круглой пластины. Закрепляют пластину на опоре по ее краю, устанавливают источник ультразвуковых колебаний на пластине и осуществляют ее деформирование.

Изобретение относится к области раскатки дорожек качения колец шариковых подшипников. Установка содержит шариковую оправку с деформирующими элементами в виде шариков, механизм нагружения и механизм для установки и вращения заготовки.

Изобретение относится к упрочнению металлических втулок. Осуществляют фиксацию торцов полой заготовки.

Изобретение относится к упрочняющей обработке деталей. Обеспечивают пропускание в месте контакта деформирующего инструмента с деталью импульсов электрического тока.

Изобретение относится к технологии машиностроения и может быть использовано при финишной обработке поверхностей прецизионных деталей. Способ включает предварительную обработку заготовки с обеспечением макрогеометрии ее поверхности и последующее формирование на ней маслоудерживающего рельефа, который формируют на станке с ЧПУ путем нанесения сферической фрезой взаимно перпендикулярных канавок с параметрами, обеспечивающими получение толщины смазочной пленки не менее 5 мкм, приходящейся на единицу площади обрабатываемой поверхности.

Изобретение относится к отделочно-упрочняющей обработке цилиндрических поверхностей деталей выглаживанием. Осуществляют вращательное движение детали и продольное перемещение алмазного выглаживающего инструмента.

Способ включает предварительную подготовку обрабатываемой поверхности путем нагрева непрерывным лазерным лучом на глубину снимаемого припуска. Лазерный луч перемещают по прямой траектории с линейной скоростью и с постоянными мощностью излучения и длиной волны под углом наклона к обрабатываемой поверхности заготовки в пределах от 75 до 80° в виде сфокусированного светового пятна, диаметр которого выбирают из условия обеспечения плотности мощности, достаточной для фазовых превращений в структуре заготовки на глубину припуска и формирования в ней локальной метастабильной зоны с измененными упругими свойствами, пересечение которой с плоскостью резания обеспечивает сегментацию и дробление стружки.

Способ обработки включает обеспечение контактного взаимодействия более прочной областью передней поверхности режущего элемента с прерывистой обрабатываемой поверхностью.

Способ включает взаимодействие режущей поверхности резца с обрабатываемой поверхностью. В зоне контакта стружки с передней поверхностью резца осуществляют приложение прижимного усилия стружки к передней поверхности резца.

Изобретение относится к способам сверления глубокого отверстия в заготовке на универсальном токарном станке. Заготовку закрепляют одним концом в патроне станка, а вторым - в люнете, сверлят наметочное отверстие, затем растачивают его с использованием оправки.

Способ выбора инструментального материала заключается в поочередном силовом воздействии индентора из предназначенного для обработки материала на поверхность образцов инструментальных материалов при их взаимном перемещении.

Изобретение относится к области способов исследования материалов путем получения корней стружек при резании с последующим их изучением. Сущность: осуществляют установку и закрепление образца на столе устройства, задание маятнику начальной энергии путем оснащения грузом некоторой массы и поворота маятника вокруг оси качания в исходное положение, позиционирование образца смещением предметного стола относительно траектории качательного движения маятника.

Способ включает относительное перемещение обрабатываемой детали и режущего инструмента с одновременной подачей в зону резания смазочно-охлаждающей технологической среды, подвергаемой вибрационному воздействию в диапазоне частот от 1 до 40 кГц.

Изобретение относится к области металлообработки и может быть использовано для уменьшения эксцентричности внутренней поверхности (7) полой детали (1), в частности полого вала, относительно ее наружной поверхности (9).

Способ включает обработку поверхности вращения формообразующим токарным резцом и непрерывно вращающимся вокруг своей оси многозубым инструментом при сообщении заготовке вращения, а резцу и многозубому инструменту - движений равных осевых подач.

Способ предназначен для механической обработки осесимметричных деталей и включает воздействие под усилием режущего инструмента на вращающуюся деталь. Предельную скорость резания определяют по приведенной формуле в зависимости от критического значения разности температуры поверхностного и центрального слоев обрабатываемой детали, приводящей к появлению термопластических деформаций в поверхностных слоях детали и образованию остаточных напряжений, подачи резца за один оборот изделия и глубины резания.

Изобретение относится к упрочнению изделий, преимущественно валов со шлицевыми головками, и предназначено для обработки деталей, работающих на статическое и циклическое кручение. Для повышения качества упрочняемых изделий и стабильности процесса термомеханического упрочнения. К нагретому валу 1, имеющему шлицевые головки, через разрезные втулки 2 прикладывают усилие Poc1 осевого растяжения величиной, необходимой только для исправления кривизны вала, полученной при его нагреве, и для совмещения осей шлицевых головок и шлицевых втулок 3. К торцу головок вала 1 подводят подпружиненные шлицевые втулки 3, которые имеют возвратно-вращательное движение n у торцов вала, но не совершают осевого перемещения. При совмещении шлицев вала и втулки подпружиненная втулка 3 «заскакивает» на головку, после чего к ней прикладывают большее усилие P1 для полного сопряжения шлицевых втулок и шлицевых головок вала, затем к нижней шлицевой втулке 3 прикладывают крутящий момент Мкр, необходимый для осуществления деформации кручением, а к разрезным втулкам 2 - осевое усилие Рос.2 растяжения, превышающее по величине усилие Poc1 и необходимое для осевой деформации вала с требуемым удлинением и степенью деформации 0,5-1,0%. При этом нижние разрезные втулки 2 движутся вниз с определенной скоростью Voc.p. на длине Δl (необходимое удлинение вала), что позволяет во все время закручивания поддерживать осевое усилие растяжения. 3 ил.
Наверх