Установка для производства гидрата метана

Изобретение относится к установке для получения гидрата метана, содержащая выполненный в виде вертикальной колонки реактор, внутри которого выполнены функциональные камеры и к которому подведены магистральный газопровод метана, водопровод с насосом и компрессором, и холодильная система. Установка характеризуется тем, что колонка реактора сверху вниз разделена на смесительную камеру, камеру предварительного охлаждения, камеру сбора стеклообразного газового гидрата метана и конденсата воды, снаружи реактора пристроена отдельная камера низких температур, при этом в смесительной камере расположены распылители газа и воды инжекторного типа, соединенные с магистральными трубопроводами высокого давления газа метана и воды, а под смесительной камерой расположена отделенная мелкоячеистой горизонтальной перегородкой камера предварительного охлаждения, в которой установлены конвекторы холодильной системы вертикального расположения, далее между этой камерой и камерой сбора стеклообразного газового гидрата метана расположена сепараторная решетка, отделяющая камеру сбора стеклообразного газового гидрата метана и конденсата воды, в которой к стенкам колонки с зазором установлен сливной лоток, имеющий уклон в сторону сливного отверстия, выполненного в стенке колонки, через которое проходит соединительная трубка с камерой низких температур, причем в верхней части камеры низких температур установлен конвектор холодильной системы горизонтального расположения, а в донной части имеется люк выгрузки готового продукта. Изобретение используется для получения гидрата метана как продукта, пригодного для хранения и транспортировки газа (метана) в газогидратном состоянии. 2 з.п. ф-лы, 1 пр., 1 ил.

 

Изобретение относится к области газовой промышленности и может быть использовано для получения гидрата метана как продукта, пригодного для хранения и транспортировки газа (метана) в газогидратном состоянии. При непрерывном росте потребления традиционных энергоносителей - нефти, природного газа, каменного угля и неизбежном истощении их запасов, все острее встает задача о вовлечении в потребление альтернативных энергоносителей. Одним из таких энергоносителей является гидрат природного газа. Запасы природного газа в наземных залежах Арктики и Антарктики, на дне океанов и морей в составе газовых гидратов на порядки превышают разведанные запасы свободного природного газа. По различным оценкам, запасы углеводородов в гидратах составляют от 1.8×1014 до 7.6×1018 м3. Это делает весьма привлекательным рассмотрение возможности использования в перспективе газовых гидратов в качестве сырья для получения свободного природного газа. Кроме того, гидраты природного газа следует рассматривать как продукт сбора, промышленной переработки и хранения из природного газа непосредственно в местах добычи.

Газовые гидраты представляют собой клатратные соединения, состоящие из молекул газа, окруженные каркасом из молекул воды. Газовые гидраты образуют твердую фазу при давлениях выше 50 атмосфер и при температурах ниже 0°С. Собственно метан CH4 - бесцветный газ без запаха, применяется как топливо, сырье в химической промышленности, производный продукт - гидрат метана обладает следующими характеристиками:

- формула - CH4-5,9 H2O;

- соотношение массы метана к воде -1:6,64;

- плотность гидрата - 0,90 г/см3;

- удельная теплота сгорания - 57,7 кДж/моль;

- количество теплоты - 112,8 ккал/кг.

Известен способ и устройство добычи свободного газа конверсией газового гидрата из скважины (патент РФ №2370642). Согласно данному изобретению газ удаляют из газового гидрата приведением в контакт гидрата с высвобождающим агентом. Когда высвобождающий агент контактирует с газовым гидратом, высвобождающий агент самопроизвольно замещает газ в гидратной структуре без плавления гидратной структуры. Недостатком данного способа является, что он позволяет получить газ из гидрата, но не синтезировать гидрат самостоятельно.

Настоящее изобретение относится к устройствам для получения из природного газа метана гидрата метана в виде стеклообразного жидкотекучего продукта, предназначенного для его транспортировки в термотаре с возможностью последующей рекуперации метана в газообразный или сжиженный вид топлива. В предлагаемой установке реализуется способ образования гидрата газа в условиях, далеких от термодинамического состояния равновесия двухкомпонентной водно-газовой смеси, которые в результате охлаждения первоначально формируют стеклообразные слои водно-газовой смеси с последующим переходом из стеклообразного в жидкотекучее состояние.

Поставленная задача решается тем, что установка для получения гидрата из газа включает такие принципиальные элементы, как реактор, системы подачи газа метана и воды, холодильные установки и контрольные приборы. Реактор выполнен в виде вертикальной колонки, разделенной сверху вниз на функциональные камеры: смесительная камера, камера предварительного охлаждения, камера сбора стеклообразного газового гидрата, камера-сборник жидкого гидрата. Дополнительно к реактору пристроена камера низких температур, имеющая в верхней части охлаждающий теплообменник, а в донной части люк для выемки готового продукта. Подача в смесительную камеру исходных компонентов гидрата метана - газ (метан) и вода осуществляется через форсунки с головками-распылителями, которые соединены с магистральными трубопроводами высокого давления воды и газ - метана. Смесительная камера отделена от камеры предварительного охлаждения горизонтальной перегородкой, выполненной из мелкоячеистой сетки. В этой камере установлены вертикальные теплообменники охладительной системы. Эта камера отделена от камеры сбора жидкотекучего гидрата метана горизонтальной сепаратной решеткой, под которой расположен лоток с уклоном в сторону сливного отверстия в стенке колонки, причем лоток закреплен к стенке колонки с некоторым зазором. Под лотком установлен сборник водного конденсата, который стекает через донное отверстие в нагревательную емкость. Нагревательная емкость в свою очередь соединена с внешней водопроводной системой, включающей в себя магистральный водопровод, насос и компрессор, который подает воду под давлением к форсунке. С внешней стороны колонки установлена камера низких температур, полость которой связана с камерой сбора жидкотекущего гидрата метана сливным патрубком. Камера низких температур представляет собой замкнутую емкость, оборудованную теплообменником холодильной системы, а в донной части имеется люк для извлечения накопленного в сменной термотаре готового продукта и установки новой термотары.

На фиг. 1 показана схема установки для производства гидрата метана.

Установка для получения гидрата из природного газа включает реактор, выполненный в виде вертикальной герметичной и имеющей с наружной стороны теплоизолирующее покрытие колонны 1, которая разделена сверху вниз на функциональные камеры: смесительную камеру 2, камеру предварительного охлаждения 3, камеру сбора стеклообразного газового гидрата метана 4 и конденсата воды 5. Кроме того, установка включает в себя пристроенную к колонке 1 отдельную камеру низких температур 6, магистральный газопровод метана 7, систему водопровода 8 с насосом 9 и компрессором 10, холодильную систему 11 и нагреватель конденсата воды 12 с обратным клапаном 13, установленные в донной части колонки 1. В смесительной камере 2 расположены распылители газа 14 и воды 15 инжекторного типа, которые соединены с магистральными трубопроводами высокого давления воды 8 и газа метана 7, при этом камера 2 отделена от камеры предварительного охлаждения 3 горизонтальной перегородкой 16, выполненной из мелкоячеистой сетки. В камере 3 вертикально установлены конвекторы 17 холодильной системы 11. Между камерой 3 и камерой сбора стеклообразного газового гидрата метана 4 установлена сепараторная решетка 18, под которой к стенкам колонки 1 с зазором закреплен сливной лоток 19, имеющий уклон в сторону сливного отверстия в стенке колонки, через которое проходит соединительная трубка 20 с камерой низких температур 6. В камере низких температур 6 установлен конвектор горизонтального расположения 21 холодильной системы 11. В донной части выполнен люк 22 для выгрузки готового продукта в виде брикетов гидрата метана или накопленного в сменной термотаре. Под лотком 19 занимает место камера 5 - сборник конденсата воды, стекающей по стенкам колонки 1 в нижнюю часть камеры 12, которая после подогрева нагревательным электрическим элементом 23 попадает в водопроводную систему 8 для повторного использования. Для исключения обратного попадания воды в колонку 1 за нагревательным элементом установлен обратный клапан 13. Кроме того, в установке использованы контрольные приборы давления газа метана 24 и воды 25, расположенные перед смесительной камерой 2, датчик контроля давления и температуры 26 и 27 в камерах охлаждения 3 и 6 соответственно.

Принцип работы установки заключается в следующем. В смесительную камеру 2 из магистрального газопровода 7 и водопровода 8 подаются газ (метан) и вода - основные компоненты для производства гидрата метана. Подача этих компонентов осуществляется через распылительные инжекторные головки 14 и 15 под давлением 30-150 атм и температуре 0÷-50°С. Внутри колонки поддерживается постоянные показатели давления в диапазоне 30-150 атм. Объемы подаваемых компонентов и их процентное соотношение также регулируются по подаче в смесительную камеру. В процессе смешивания метана с водяным паром в условиях термодинамического равновесия происходит образование газового гидрата, переходящее в лавинообразную кристаллизацию молекул газа в оболочке воды с поступательным смещением фронта газообразных и кристаллизованных масс в нижнюю часть смесительной камеры с постепенным просачиванием каплеобразных соединений газа с водой через сетчатую разделительную перегородку 16 между смесительной камерой 2 и камерой предварительного охлаждения 3, вследствие чего они проникают в зону пониженных температур, постепенно сливаясь в единую стекловидную жидкоподвижную массу. В процессе продвижения этой массы через камеру охлаждения 3 температура ее поддерживается в пределах, при которых невозможен обратный процесс молекулярного разложения и превращения метана в газообразное состояние, но достаточная для поддержания массы в жидкоподвижном состоянии. В последующем стекловидная масса проникает через достаточно большие ячейки сепараторной решетки 18 между камерами, падает в сборный лоток 4 и под тяжестью собственного веса смещается в сторону сливного отверстии, заполняя переходную трубку 20. Под действием собственного веса и избыточного давления, которое постоянно поддерживается в камерах 2, 3 и 4, стекловидная масса попадает в камеру низких температур 6, где она подвергается дополнительному охлаждению до температур, необходимых для транспортировки продукта, фасуется в виде брикетов, которые периодически извлекаются через люк 22, расположенный в нижней части камеры, или заполняется в сменную термотару. Вода, которая не участвовала в химическом процессе соединения с газом метана, конденсируется на стенках колонки 1, стекает в нижнюю часть камеры - сборника конденсата 12, эта вода, содержащая пары газа, с помощью нагревательного элемента 23 нагревается до температуры, соответствующей температуре воды водопроводной системы и направляется через обратный клапан в водопроводную систему 8 для повторного использования. Для исключения обратного попадания воды в колонку 1 за нагревательным элементом установлен обратный клапан 13. Кроме того, в установке использованы контрольные приборы давления газа метана 24 и воды 25, расположенные перед смесительной камерой 2, датчик контроля давления и температуры 26 и 27 в камерах охлаждения 3 и 6 соответственно. Не участвовавший в начальной стадии процесса газ метан как самая легкая фракция всегда находится в верхней части смесительной камеры 2 до полного использования.

Пример 1. В смесительную камеру 2 подается метан под давлением 80 атм и температуре +15°С. Вода из магистрального водопровода подвергается сжатию до давления примерно 150 атм и поступает через распылительную инжекторную головку 15 в смесительную камеру 2 с расширением до давления 80 атм. Давление в камерах поддерживается на уровне 80 атм. Температура камеры предварительного охлаждения поддерживается на уровне -3°С. В последующем гидратная масса падает в сборный лоток 4 и под тяжестью собственного веса заполняет переходную трубку 20. Образующийся гидрат попадает в камеру низких температур 6, где она подвергается дополнительному охлаждению до температуры -10°С. В результате образуются частицы гидрата в размере 1-8 мм, с газосодержанием 150 м3 метана в 1 м3 гидрата. Некристаллизующаяся вода стекает в сборник конденсата 12 и с помощью насоса возвращается в цикл и повторно поступает в смесительную камеру 2 через распылительные инжекторные головки 15. Полученный гидрат метана возможно направлять на хранение и транспортировку в изолированной термотаре.

1. Установка для получения гидрата метана, содержащая выполненный в виде вертикальной колонки реактор, внутри которого выполнены функциональные камеры и к которому подведены магистральный газопровод метана, водопровод с насосом и компрессором и холодильная система, отличающаяся тем, что колонка реактора сверху вниз разделена на смесительную камеру, камеру предварительного охлаждения, камеру сбора стеклообразного газового гидрата метана и конденсата воды, снаружи реактора пристроена отдельная камера низких температур, при этом в смесительной камере расположены распылители газа и воды инжекторного типа, соединенные с магистральными трубопроводами высокого давления газа метана и воды, а под смесительной камерой расположена отделенная мелкоячеистой горизонтальной перегородкой камера предварительного охлаждения, в которой установлены конвекторы холодильной системы вертикального расположения, далее между этой камерой и камерой сбора стеклообразного газового гидрата метана расположена сепараторная решетка, отделяющая камеру сбора стеклообразного газового гидрата метана и конденсата воды, в которой к стенкам колонки с зазором установлен сливной лоток, имеющий уклон в сторону сливного отверстия, выполненного в стенке колонки, через которое проходит соединительная трубка с камерой низких температур, причем в верхней части камеры низких температур установлен конвектор холодильной системы горизонтального расположения, а в донной части имеется люк выгрузки готового продукта.

2. Установка для получения гидрата метана по п. 1, отличающаяся тем, что расположенная под сливным лотком камера сбора конденсата воды в нижней части снабжена нагревательным электрическим элементом и соединена с водопроводной системой посредством водопровода с клапаном обратного действия.

3. Установка для получения гидрата метана по п. 1, отличающаяся тем, что в ней установлены контрольные приборы давления газа метана и воды, расположенные перед смесительной камерой, а также датчики контроля давления и температуры в смесительной камере, камере предварительного охлаждения и камере низких температур.



 

Похожие патенты:
Изобретение относится к способу переработки природных и попутных нефтяных углеводородных газов с повышенным содержанием тяжелых гомологов метана в топливный газ путем смешивания углеводородного газа с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов : кислород 10÷1:1 и проведения прямого парциального окисления тяжелых компонентов при температуре 350-420°С и давлении 10-40 бар с получением паро-газовой смеси, содержащей углеводородные газы, СО, оксигенаты и Н2О, которую затем смешивают с кислородом или кислородсодержащим газом до содержания кислорода 2-5% об.

Изобретение раскрывает установку паровой конверсии сернистого углеводородного газа, которая оснащена линией ввода сырьевого газа и линией вывода конвертированного газа с рекуперационным устройством, включает также нагреватель и конвертор, при этом установка оборудована узлом адсорбционного обессеривания, состоящим, по меньшей мере, из двух переключаемых адсорберов, по меньшей мере один из которых, находящийся в режиме регенерации адсорбента, соединен с линией вывода конвертированного газа в дефлегматор, установленный в качестве рекуперационного устройства и оснащенный линией вывода подготовленного газа, а остальные адсорберы, находящиеся в режиме адсорбции, установлены на линии ввода сырьевого газа, кроме того, установка оснащена блоком подготовки воды, соединенным линией подачи подготовленной воды с линией подачи сырьевого газа после адсорбера и оснащенным линиями ввода воды, подачи дегазированного водного конденсата из дефлегматора и вывода солевого концентрата, при этом нагреватель установлен на линии подачи парогазовой смеси из дефлегматора в конвертор.

Изобретение относится к способу одновременного получения обработанного природного газа, фракции обогащенной С3+ углеводородами и обогащенного этаном потока. Способ характеризуется тем, что включает следующие стадии: отбор рециркуляционного потока в верхнем потоке, выходящем из колонны выделения; установление определенного теплообменного взаимодействия между рециркуляционным потоком и по меньшей мере одной частью верхнего потока, выходящего из колонны выделения; повторное введение, после расширения, охлажденного и расширенного рециркуляционного потока в колонну выделения; отбор в кубе колонны выделения по меньшей мере одного кубового потока повторного кипячения и обеспечение теплообмена между потоком повторного кипячения и по меньшей мере одной частью исходного природного газа или/и с рециркуляционным потоком, при этом осуществление повторного кипячения кубовой жидкости обеспечивается за счет калорий, поглощаемых из исходного потока природного газа или/и рециркуляционного потока.

Изобретение описывает способ получения метана из биомассы, включающий гидропиролиз биомассы в реакторе гидропиролиза, с получением продукта гидропиролиза; отделение угля из продукта гидропиролиза; гидроковерсию продукта гидропиролиза с получением продукта гидроконверсии; выделение из продукта сконденсированной воды и газообразной смеси, содержащей СО2, Н2 и метан; введение первой части газообразной смеси в установку парового реформинга; введение второй части газообразной смеси в реактор метанирования, при этом стадии гидропиролиза и гидроконверсии являются экзотермическими.

Изобретение относится к области переработки отходов, например отходов полимеров, резин, полимерных отходов медицинской промышленности, лигнинсодержащих отходов, бумаги и картона, масел и углеродсодержащих органических отходов, методом газификации.

Изобретение относится к области использования возобновляемых источников сырья - биомассы. Заявлен способ каталитической газификации биомассы с получением газообразных топлив.
Изобретение относится к способу получения горючего газа для газовых двигателей из образующегося при добыче нефти попутного газа, который содержит метан, этан, пропан, углеводороды с более чем тремя атомами углерода и по обстоятельствам пропен, причем получаются газообразная фракция и жидкостная фракция путем частичной конденсации попутного газа, причем процесс конденсации проводится при таких соотношениях давления и температуры, что жидкостная фаза по существу не содержит метана, этана, пропана и по обстоятельствам пропена и что газообразная фаза по существу свободна от н-бутана и изобутана.

Изобретение относится к технологии переработки углеводородов, к способам и устройствам для переработки углеводородного газа в стабильные жидкие синтетические нефтепродукты.

Изобретение относится к способу подготовки топливного газа, включающему компримирование с помощью жидкостно-кольцевого компрессора, сепарацию компрессата с получением газа и жидкости, мембранное разделение газа сепарации на отбензиненный газ и рециркулируемый низконапорный жирный газ, при этом перед компримированием сырьевой газ подвергают нагреву, каталитической дегидроциклодимеризации и охлаждению, в качестве рабочей жидкости используют подготовленную нефть, а при мембранном разделении газа сепарации дополнительно выделяют газ, обогащенный водородом, который затем смешивают воздухом и подвергают каталитическому окислению с получением газа окисления, используемого в качестве теплоносителя для поддержания температуры каталитической дегидроциклодимеризации.
Изобретение относится к модификатору горения твердого, жидкого и газообразного топлива, в частности древесины, природного газа, угля, мазута и других углеводородов, в энергетических котлах, в закрытых или открытых камерах, характеризующемуся тем, что указанный модификатор содержит от 10 до 30 масс.% воды, от 20 до 80 масс.% по меньшей мере одного алифатического спирта, от 5 до 15 масс.% карбамида или его производных, выбранных из алкилмочевины типа R1R2N(CO)NR1R2, где R1, R2 являются одинаковыми или различными и представляют собой С1-С6 алкильные группы, и от 5 до 15 масс.% моноацетилферроцена.

Изобретение относится к способу обработки сжиженных углеводородов. Способ обработки сжиженных углеводородов, содержащих кислые газы, для отделения вышеупомянутых кислых газов при одновременном сокращении до минимума потери аминосоединений включает стадию контакта сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, где первое аминосоединение имеет структуру в которой либо: a) R1 является водородом и R2 выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси; или b) R1 выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси; или c) каждый из R1 и R2 индивидуально выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси.

Изобретение относится к водному раствору алканоламина для удаления сероводорода из газовых смесей, содержащих сероводород. Водный раствор алканоламина для удаления кислых газов, включающих в себя сероводород, из газовых смесей, содержащих сероводород, содержит:(i) от 20 до 50 массовых процентов 3-(диметиламин)-1,2-пропандиола или 3-(диэтиламин)-1,2-пропандиола, и (ii) от 2 до 10 массовых процентов пиперазина, при этом массовый процент берется в расчете на общую массу водного раствора алканоламина и при этом упомянутый водный раствор алканоламина не содержит ортофосфорную кислоту, фосфорную кислоту, соляную кислоту, серную кислоту, сернистую кислоту, азотную кислоту, пирофосфорную кислоту, теллуровую кислоту, уксусную кислоту, муравьиную кислоту, адипиновую кислоту, бензойную кислоту, н-бутановую кислоту, монохлоруксусную кислоту, лимонную кислоту, глутаровую кислоту, молочную кислоту, малоновую кислоту, щавелевую кислоту, о-фталевую кислоту, янтарную кислоту, о-толуиловую кислоту.
Изобретение относится к способу переработки природных и попутных нефтяных углеводородных газов с повышенным содержанием тяжелых гомологов метана в топливный газ путем смешивания углеводородного газа с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов : кислород 10÷1:1 и проведения прямого парциального окисления тяжелых компонентов при температуре 350-420°С и давлении 10-40 бар с получением паро-газовой смеси, содержащей углеводородные газы, СО, оксигенаты и Н2О, которую затем смешивают с кислородом или кислородсодержащим газом до содержания кислорода 2-5% об.

Изобретение раскрывает энергоцентр, включающий источник топлива, оснащенный линией подачи топлива в блок получения электроэнергии с линией вывода дымового газа, блок получения теплоносителя, при этом в качестве источника топлива используется объект подготовки, транспорта или хранения нефти или газа, на линии подачи топлива размещен блок метанирования с линией подачи воды, соединенный линией подачи прямого теплоносителя/возврата обратного с блоком получения теплоносителя, установленным на линии вывода дымовых газов.

Изобретение относится к способу очистки сжиженных углеводородов, таких как сжиженный нефтяной газ (LPG) или сжиженный природный газ (NGL). Способ обработки сжиженных углеводородов, содержащих кислые газы, для удаления упомянутых кислых газов при сведении к минимуму потери аминосоединений, включает этап контактирования упомянутых сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, причем упомянутое первое аминосоединение имеет структуру: ,в которой R1 представляет собой водород, пропан-2,3-диол и их смеси, и R2 представляет собой пропан-2,3-диол.

Изобретение описывает способ удаления тяжелых углеводородов при сжижении природного газа, заключающийся в том, что предварительно очищенный и осушенный исходный природный газ охлаждают, разделяют полученную парожидкостную смесь в сепараторе на жидкую и паровую фазы, отводят жидкую фазу с повышенным содержанием тяжелых углеводородов на утилизацию, при этом охлаждение исходного природного газа осуществляют в теплообменнике, паровую фазу из сепаратора направляют на вход пассивного потока эжектора, из установки сжижения природного газа выводят часть холодного потока высокого давления и направляют ее на вход активного потока эжектора, выходящий из эжектора поток направляют в дополнительный сепаратор, в котором поток разделяют на газ и жидкость, газ направляют в теплообменник для рекуперации холода, после рекуперации холода газ направляют в компрессор, газ после компрессора направляют в установку сжижения природного газа.

Изобретение относится к способу отделения кислых газов от содержащего воду потока текучей среды. Способ включает приведение в контакт содержащего воду потока текучей среды в зоне абсорбции с абсорбирующим средством, которое содержит амин, с получением потока текучей среды, подвергнутого удалению кислоты, и абсорбирующего средства, насыщенного кислыми газами, приведение в контакт потока текучей среды, подвергнутого удалению кислоты, с водной промывной жидкостью в зоне промывки, через которую промывную жидкость проводят за однократный проход без перекачивания насосом, чтобы перевести совместно унесенный амин в эту промывную жидкость, с получением потока текучей среды, подвергнутого удалению амина и удалению кислоты, и насыщенной амином промывной жидкости, охлаждение потока текучей среды, подвергнутого удалению амина и удалению кислоты, ниже зоны промывки по направлению движения потока, при этом конденсируется конденсат из головной части абсорбционного аппарата, подачу насыщенного абсорбирующего средства в зону десорбции, в которой кислые газы высвобождаются, при этом получают регенерированное абсорбирующее средство и десорбированные кислые газы, подачу регенерированного абсорбирующего средства обратно в зону абсорбции, чтобы организовать замкнутый цикл абсорбирующего средства, введение в замкнутый цикл абсорбирующего средства насыщенной амином промывной жидкости и конденсата из головной части абсорбционного аппарата, проведение десорбированных кислых газов через зону концентрирования и охлаждение кислых газов, выходящих из головной части зоны концентрирования, для конденсирования из них конденсата из головной части десорбционного аппарата, который частично подается обратно в зону концентрирования, а частично выводится из процесса.

Изобретение описывает способ комплексной подготовки газа, при котором газ входной сепарации подвергают дефлегмации за счет охлаждения газом низкотемпературной сепарации с получением газа дефлегмации и флегмы, которую смешивают с конденсатом входной сепарации, и выветривают с получением выветренного конденсата и газа выветривания, который совместно с редуцированным газом дефлегмации подвергают низкотемпературной сепарации с получением газа и конденсата, а при стабилизации смеси конденсатов получают газ стабилизации и стабильный конденсат, отличающийся тем, что сырой газ перед входной сепарацией редуцируют и смешивают с газом стабилизации с помощью эжектирующего устройства, газ входной сепарации охлаждают редуцированным выветренным конденсатом и предварительно нагретым газом низкотемпературной сепарации, а смесь конденсата входной сепарации и флегмы редуцируют и смешивают с конденсатом низкотемпературной сепарации с помощью эжектирующего устройства перед выветриванием.

Изобретение относится к способу обработки потоков сжиженных углеводородов (NGL или LPG). Способ обработки сжиженных углеводородов, содержащих кислые газы, для удаления указанных кислых газов при минимизации потерь соединений аминов, содержит стадию приведения в контакт указанных сжиженных углеводородов с поглощающим водным раствором первого аминосоединения, причем указанное первое аминосоединение имеет структуру ,где R1 представляет собой пропан-2,3-диол; R2 представляет собой водород, метил, этил, 2-гидроксиэтил или пропан-2,3-диол; и R3 представляет собой водород, метил, этил, 2-гидроксиэтил или пропан-2,3-диол.

Изобретение относится к устройствам подготовки путем отбензинивания попутного нефтяного газа и газа дегазации конденсата. Блок отбензинивания низконапорного тяжелого углеводородного газа включает компрессор, установленный на линии сырьевого газа, и дефлегматор с линией вывода конденсата и тепломассообменным блоком, охлаждаемым хладагентом.

Изобретение относится к способам подготовки углеводородных газов паровой конверсией и может быть применено, например, для подготовки попутного нефтяного газа к использованию или трубопроводному транспорту в нефтяной и газовой промышленности. Способ подготовки попутных нефтяных газов селективной паровой конверсией включает каталитическую конверсию нагретой парогазовой смеси, охлаждение и сепарацию конвертированного газа с получением подготовленного газа, при этом попутные нефтяные газы смешивают с водой, нагревают сначала конвертированным газом в дефлегматоре и рекуперативном теплообменнике, а затем в нагревателе, полученную парогазовую смесь подвергают селективной конверсии с неполным превращением углеводородов С2+, при этом степень конверсии и качество подготовленного газа регулируют изменением объемной скорости подачи парогазовой смеси в пределах 1000-30000 ч-1 и температуры конверсии в интервале 250-450°С. Технический результат - повышение и регулирование качества подготовленного газа, снижение расхода энергии и уменьшение металлоемкости оборудования. 1 ил., 1 табл., 3 пр.

Изобретение относится к установке для получения гидрата метана, содержащая выполненный в виде вертикальной колонки реактор, внутри которого выполнены функциональные камеры и к которому подведены магистральный газопровод метана, водопровод с насосом и компрессором, и холодильная система. Установка характеризуется тем, что колонка реактора сверху вниз разделена на смесительную камеру, камеру предварительного охлаждения, камеру сбора стеклообразного газового гидрата метана и конденсата воды, снаружи реактора пристроена отдельная камера низких температур, при этом в смесительной камере расположены распылители газа и воды инжекторного типа, соединенные с магистральными трубопроводами высокого давления газа метана и воды, а под смесительной камерой расположена отделенная мелкоячеистой горизонтальной перегородкой камера предварительного охлаждения, в которой установлены конвекторы холодильной системы вертикального расположения, далее между этой камерой и камерой сбора стеклообразного газового гидрата метана расположена сепараторная решетка, отделяющая камеру сбора стеклообразного газового гидрата метана и конденсата воды, в которой к стенкам колонки с зазором установлен сливной лоток, имеющий уклон в сторону сливного отверстия, выполненного в стенке колонки, через которое проходит соединительная трубка с камерой низких температур, причем в верхней части камеры низких температур установлен конвектор холодильной системы горизонтального расположения, а в донной части имеется люк выгрузки готового продукта. Изобретение используется для получения гидрата метана как продукта, пригодного для хранения и транспортировки газа в газогидратном состоянии. 2 з.п. ф-лы, 1 пр., 1 ил.

Наверх