Волоконно-оптический тензометрический датчик

Изобретение относится к измерительной технике и предназначено для измерения напряжений и перемещений, связанных с деформацией объектов. Волоконно-оптический тензометрический датчик состоит из оптического волокна, покрытого металлом, двух волоконных брэгговских решеток (ВБР), защитной трубки и корпуса датчика. При этом оптическое волокно в зоне каждой из двух ВБР легировано германием, а вне зоны ВБР легировано фтором для повышения радиационной стойкости, волокна соединены в единое волокно посредством сварного соединения. При этом расположение ВБР позволяет изолировать одну из ВБР от влияния деформации для обеспечения термокомпенсации, оптическое волокно жестко закреплено в защитной трубке, защитная трубка жестко закреплена на корпусе датчика, корпус датчика имеет глухие отверстия для возможности крепежа к объекту испытаний. Технический результат заключается в обеспечении возможности уменьшения массогабаритных размеров датчика и повышения точности измерений. 2 ил.

 

Изобретение относится к измерительной технике и предназначено для измерения напряжений и перемещений, связанных с деформаций объектов и опытных образцов при механических испытаниях, объектов, деформирующихся под действием внешней нагрузки.

Известен волоконно-оптический датчик для измерения деформаций объекта (патент РФ №2003115958), содержащий линию задержки, последовательно установленные лазерный излучатель, направленный ответвитель, один выход которого соединен с устройством ввода излучения в измерительный преобразователь, состоящий из секций волоконно-оптического кабеля, а второй - с оптическим входом фотоприемника, выход которого подключен к входу устройства управления и обработки через усилитель. Недостатком датчика является амплитудный метод измерений, из-за которого удаленность размещения датчика от регистратора напрямую влияет на точность измерения, а также любые вибрационные нагрузки на датчик вносят дополнительную погрешность измерений. Также недостатками датчика являются его выходные массогабаритные размеры, отсутствие возможности работоспособности при высоких температурах.

Известен волоконно-оптический датчик перемещений (SU 1767327), содержащий тактильный преобразователь и дифференциальный усилитель, что позволяет производить калибровку датчика на линейном участке статической характеристики, компенсировать оптические шумы и температурный дрейф, осуществлять измерение как многократных, так и однократных перемещений. Недостатком датчика являются его выходные массогабаритные размеры, отсутствие возможности работоспособности при высоких температурах.

Наиболее близким аналогом является волоконно-оптический датчик деформации (JP 3797880), содержащий волоконную решетку Брэгга (ВБР), приклеенную к металлической конструкции датчика, используемой для измерения силы натяжения и силы сжатия с высокой чувствительностью, при этом ВБР расположена в области деформации. Недостатком датчика являются его выходные массогабаритные размеры, отсутствие возможности работоспособности при высоких температурах. Также недостатком датчика является отсутствие температурной компенсации, и конструкция датчика не обеспечивает защиту ВБР от внешних воздействий, что уменьшает время работоспособности датчика в целом.

С помощью заявленного изобретения решается техническая задача уменьшения массогабаритных размеров датчика, повышения точности измерения, уменьшения влияния внешних воздействий на точность измерения, упрощения конструкции датчика, обеспечение возможности работоспособности датчика при высоких температурах и повышенном радиационном фоне.

Поставленная задача решается тем, что волоконно-оптический тензометрический датчик состоит из оптического волокна, покрытого металлом, по меньшей мере, двух волоконных брэгговских решеток (ВБР), защитной трубки и корпуса датчика; при этом оптическое волокно в зоне каждой из двух ВБР легировано германием, а вне зоны ВБР легировано фтором для повышения радиационной стойкости, при этом волокна соединены в единое волокно посредством сварного соединения; при этом расположение ВБР позволяет изолировать одну из ВБР от влияния деформации для обеспечения термокомпенсации, оптическое волокно жестко закреплено в защитной трубке, защитная трубка жестко закреплена на корпусе датчика, корпус датчика имеет глухие отверстия для возможности крепежа к объекту испытаний.

Заявляемое изобретение поясняется рисунками, где на фиг. 1 приведена схема волоконно-оптического тензометрического датчика, на фиг. 2 - оптического волокна.

Тензометрический датчик (фиг. 1) состоит из оптического волокна, покрытого оболочкой из металла (1) с двумя ВБР, одна из которых является сенсором механической деформации датчика (2), другая - сенсором изменения температуры датчика (3), защитной трубки (4) и корпуса датчика (5). При этом волокно (1) жестко закреплено (6) в защитной трубке (4), а защитная трубка (4) жестко закреплена (7) на корпусе датчика (5). Корпус датчика имеет глухие отверстия (8) для возможности крепежа к объекту испытаний.

Оптическое волокно (фиг. 2) покрыто оболочкой из металла (1) с двумя ВБР, одна из которых является сенсором механической деформации датчика (2), другая - сенсором изменения температуры датчика (3). При этом оптическое волокно в зоне каждой из двух ВБР (9) легировано германием для повышения фоточувствительности, а вне зоны каждой из двух ВБР (10) легировано фтором для повышения радиационной стойкости, при этом волокна соединены в единое волокно посредством сварного соединения (11).

Технический результат, получаемый в предлагаемом датчике, достигается тем, что измерение деформации осуществляется методом регистрации спектрального сдвига решетки Брэгга, путем перераспределения нагрузки на корпус датчика в осевую нагрузку решеток Брэгга. Благодаря расположению ВБР, конструкции корпуса датчика, локального места крепления к объекту части корпуса, при деформационном воздействии достигается осевое сжатие/растяжение одной ВБР, и при этом отсутствие такового на второй ВБР. Такая конструкция позволяет проводить отстройку от температурного влияния на датчик, что повышает его точность и надежность. Два типа легирования оптического волокна позволяют обеспечить повышенную радиационную стойкость оптического волокна, а также увеличенную фоточувствительность в области ВБР. Оптические волокна соединяются в один посредством сварного соединения. При установке датчика на испытуемый объект его зафиксированное положение принимается за нулевое недеформированное состояние. Способ крепления оптического волокна, тип покрытия оптического волокна, а также метод крепления других элементов датчика позволяют существенно расширить температурный диапазон работы датчика, а также существенно повысить его надежность и долговечность с обеспечением минимальных массогабаритных размеров датчика. Метод является простым в исполнении - процесс записи ВБР в оптическом волокне технологичен и может быть легко автоматизирован, получающийся датчик обладает высокой надежностью, в реализуемом методе достигается практически полное отсутствие внешних воздействий на точность измерения, благодаря спектральному методу измерения, в отличие от широко распространенных амплитудных методов.

Волоконно-оптический тензометрический датчик, состоящий из оптического волокна, покрытого металлом, по меньшей мере, двух волоконных брэгговских решеток (ВБР), защитной трубки и корпуса датчика; при этом оптическое волокно в зоне каждой из двух ВБР легировано германием, а вне зоны ВБР легировано фтором для повышения радиационной стойкости, при этом волокна соединены в единое волокно посредством сварного соединения; при этом расположение ВБР позволяет изолировать одну из ВБР от влияния деформации для обеспечения термокомпенсации, оптическое волокно жестко закреплено в защитной трубке, защитная трубка жестко закреплена на корпусе датчика, корпус датчика имеет глухие отверстия для возможности крепежа к объекту испытаний.



 

Похожие патенты:

Изобретение относится к неразрушающему контролю заготовок. Способ контроля заготовки включает сохранение данных модели, связанных с заготовкой, в систему контроля и определение относительного положения измерителя удаленности по отношению к заготовке.

Изобретение относится к панорамному телевизионному наблюдению для технологического контроля внутренней поверхности труб и трубопроводов большого диаметра. Контроль осуществляется компьютерной системой при помощи монохромной или цветной телевизионной камеры кругового обзора в области, близкой к полусфере, с принудительной подсветкой.

Изобретение относится к панорамному телевизионному наблюдению для технологического контроля внутренней поверхности труб и трубопроводов большого диаметра. Контроль осуществляется компьютерной системой при помощи монохромной (черно-белой) телевизионной камеры кругового обзора в области, близкой к полусфере, которая принудительно подсвечивается для получения оптимальной чувствительности изображения.

Группа изобретений относится к медицинской технике, а именно к диагностическим магнитно-резонансным системам. Система для регулирования содержит устройство регулирования рентгеновской визуализации, которая содержит порт ввода для приема данных трехмерного изображения, полученных с помощью датчика при трехмерном наблюдении объекта, причем принятые таким образом данные трехмерного изображения содержат информацию о пространственной глубине, при этом данные трехмерного изображения описывают геометрическую форму объекта в трех измерениях, анализатор данных трехмерного изображения, выполненный с возможностью вычислять по принятым данным трехмерного изображения данные анатомических ориентиров объекта, причем вычисленные данные управления устройством визуализации включают в себя демаркационные данные, определяющие границу окна коллимирования устройства визуализации для области объекта, представляющей интерес, устанавливать из принятых данных трехмерного изображения данные положения анатомических ориентиров объекта, блок управления, причем функционирование устройства рентгеновской визуализации включает в себя операцию коллимирования для рентгеновского пучка, исходящего из рентгеновского источника.

Изобретение относится к контрольно-измерительным методам исследования механических напряжений и деформаций в деталях машин и элементах конструкций и может быть использовано для определения пластических деформаций изделий в машиностроении, авиастроении и других отраслях промышленности.
Изобретение относится к процессу обработки результатов внутритрубных диагностических обследований магистральных нефте- и нефтепродуктопроводов, выполненных всеми методами неразрушающего контроля, а именно к способу построения отображения диагностических данных на развертке трубы.

Изобретение относится к системе индикации и может быть использовано для диагностики состояния элементов внутри турбинных узлов и деталей проточных частей на закрытой турбине, как на валоповороте, так и на полном останове турбин.

Способ измерения компонентов сложных перемещений объекта заключается в использовании связанного с контролируемым объектом тестового объекта, формировании изображения последнего в приемнике изображения, где создается шкала в виде виртуальных меток, фиксируемых в начальный такт измерения на поверхности приемника изображения в определенных заранее точках изображения тестового объекта, по перемещениям изображения относительно которых судят о перемещениях контролируемого объекта.

Изобретение относится к области контрольно-измерительной техники и может быть использовано в устройствах по определению возникновения перемещений конструкций сооружения относительно друг друга.

Изобретение относится к способу сканирования трубы, предназначенной для обработки на станке для лазерной резки. Способ включает этапы, на которых: а) излучают посредством режущей головки (50) станка для лазерной резки сфокусированный лазерный луч таким образом, чтобы не происходила резка или вытравливание материала трубы (Т); b) передвигают режущую головку (50) вдоль заданного направления (х) сканирования; и с) во время перемещения режущей головки (50) вдоль направления (х) сканирования детектируют посредством соответствующих датчиков (56) излучения, отраженное или излучаемое трубой (Т), и устанавливают последовательно точка за точкой, на основе сигнала, предоставляемого датчиками (56), присутствие или отсутствие материала трубы (Т).

Изобретение относится к устройствам для регистрации сигналов от набора датчиков физических величин на внутриволоконных решетках Брэгга в системах встроенного неразрушающего контроля.

Изобретения относятся к медицине. Способ калибровки интервенционного медицинского инструмента осуществляют с помощью системы калибровки интервенционного медицинского инструмента.

Заявленная группа изобретений относится области для измерения формы и/или положения связанного объекта в пространстве. Заявленное изобретение состоит из оптической системы, содержащей оптические волокна, имеющие одну или более сердцевин оптического волокна с одной или более волоконными брэгговскими решетками, проходящими вдоль всей длины, где должны определяться положение и/или форма упомянутого объекта.

Устройство контроля напряженно-деформируемого состояния конструкции летательного аппарата содержит измерительные каналы на волоконно-оптических брегговских датчиках, измерительные каналы многовитковых волоконно-оптических датчиков на внутрисветовом эффекте Доплера, блок волоконно-оптической коммутации, блок источника света, блок спектрального анализа, блок хранения и анализа информации, соединенные определенным образом.

Способ исследования термических напряжений, возникающих в твердом материальном теле, поляризационно-оптическим методом включает в себя следующие этапы. Модель из пьезооптического материала нагревают локальным тепловым потоком.

Изобретение относится к определению скорости распространения поверхностной волны. Устройство для определения скорости распространения поверхностной волны содержит источник когерентного света для формирования по меньшей мере первого и второго световых пятен на поверхности.

Изобретение относится к волоконно-оптическим измерителям. Система на основе тензодатчика, а также способ его изготовления и применения включают в себя: оптическое волокно, генератор оптических сигналов, передающий оптический сигнал через указанное оптическое волокно.

Система контроля угловых деформаций крупногабаритных платформ содержит крупногабаритную платформу, с закрепленными на ней базовым контрольным элементом и двумя контрольными элементами, представляющими собой призмы с аттестованными между собой зеркальными гранями и размещенными в вершинах треугольника, образованного нормалями к граням контрольных элементов.

Изобретение относится к области метрологии, в частности к системам для определения положения неровностей поверхности, их размеров и количества на расстоянии. Заявленный способ бесконтактного определения рельефа поверхности материалов включает получение информации об объекте с помощью считывающего устройства, обработку информации путем формирования универсальной матрицы поверхности, состоящей из информационных ячеек, содержащих информацию об эталонных и фактических координатах меток поверхности.

Изобретение относится к подземной, открытой и строительной геотехнологиям и может быть использовано как деформационный способ комплексного определения параметров напряженного состояния и упругих характеристик массива пород, крепи горных выработок, метрополитенов и тоннелей, а также конструкций мостов и гидротехнических сооружений.

Изобретение относится к вспомогательным приспособлениям контрольно-измерительной техники и может быть использовано для повышения точности измерений деформаций при статических и повторно-статических испытаниях образцов на растяжение, сжатие и изгиб в особенности при многоосевом нагружении образца. Установка содержит силовую раму с элементами крепления испытываемого образца, нагружающее устройство и измерительное устройство, установленное в силовой раме и жестко связанное в верхней части с силовой рамой. Измерительное устройство снабжено детектирующим прибором, установленным с возможностью регулирования своего положения относительно испытываемого образца. Измерительное устройство выполнено в виде дополнительной рамы из тонкостенного профиля. Дополнительная рама прикреплена в верхней части к силовой раме в непосредственной близости от точек крепления испытываемого образца к силовой раме. Нижняя часть дополнительной рамы расположена свободно. Технический результат: создание установки с повышенной точностью измерения деформации, упрощение настройки луча лазера по угловому положению. 2 з.п. ф-лы, 3 ил.
Наверх