Кварцевый генератор

Настоящее изобретение относится к области электровакуумных приборов, и в частности к области приборов кварцевой стабилизации частоты, а именно к кварцевым генераторам, и может быть использовано для стабилизации частоты. Задача изобретения - упрощение конструкции кварцевого генератора. Кварцевый генератор состоит из металлического вакуумированного корпуса, в котором размещены керамическая подложка со смонтированными электронными компонентами, нераспыляемый газопоглотитель и некорпусированный кварцевый пьезоэлемент, причем металлический корпус выполнен в виде основания с герметичными электрическими вводами и металлической крышки, соединенной с основанием, с наружной стороны в основании корпуса генератора выполнено сквозное отверстие в виде конуса и, соответственно, корпус газопоглотителя с запрессованным внутри газопоглотителем выполняется в виде конусообразной детали, причем стенки отверстия покрыты припоем, а боковые поверхности корпуса газопоглотителя - золотым покрытием с подслоем титан-никель, или тонким слоем припоя, а для удержания расплавленного припоя на боковых поверхностях выполнены кольцевые проточки. Конусообразное отверстие в основании корпуса генератора дополнительно со стороны внутреннего объема корпуса генератора прикрывается тонким тепловым экраном с отверстиями. 1 з.п. ф-лы, 3 ил.

 

Настоящее изобретение относится к области электровакуумных приборов, в частности к области приборов кварцевой стабилизации частоты, а именно к кварцевым генераторам, и может использоваться для стабилизации частоты.

Для обеспечения стабильности частоты в настоящее время широко используются кварцевые генераторы. Одной из распространенных конструкций кварцевого генератора является конструкция, состоящая из металлического вакуумированного корпуса, в котором размещены керамическая подложка со смонтированными радиоэлементами (электрическая схема генератора) и некорпусированный кварцевый пьезоэлемент [1].

Достоинством данной конструкции являются малые габариты генератора из-за отсутствия отдельного корпуса для кварцевого пьезоэлемента.

Недостатком данной конструкции является недостаточная долговременная стабильность частоты кварцевого генератора - во время работы, особенно при повышенных температурах, происходит десорбция остаточных газов из объема радиоэлементов и внутренней поверхности корпуса. Эту десорбцию можно значительно уменьшить за счет длительного отжига в вакууме компонентов кварцевого генератора, однако это не дает гарантии того, что в течение нескольких лет эксплуатации долговременная стабильность генератора останется на первоначальном уровне. Опыт эксплуатации кварцевых генераторов, имеющих подобную конструкцию, показал, что уход частоты может наблюдаться после 4-5 лет эксплуатации. Это связано со снижением степени вакуума в объеме корпуса кварцевого генератора.

Известно техническое решение по снижению давления остаточных газов путем применения газопоглотителя [2]. В металлическом корпусе размещаются некорпусированный кварцевый пьезоэлемент, элементы крепления и нераспыляемый газопоглотитель. За счет применения газопоглотителя обеспечивается долговременная работа кварцевого пьезоэлемента. Недостатками такой конструкции являются: увеличенный объем корпуса из-за необходимости размещения внутри газопоглотителя, необходимость в дополнительных электрических вводах для подачи напряжения на нагреватель газопоглотителя с целью его активации, необходимость в защитных экранах от теплового излучения газопоглотителя в момент его активации. Температура активации газопоглотителя лежит в пределах от 350°С до 1000°С в зависимости от его состава. При использовании внутри корпуса электронных компонентов (полупроводниковых приборов, конденсаторов и резисторов), образующих электрическую схему генератора, выход теплового излучения во время активации газопоглотителя может повредить или модифицировать характеристики электронных компонентов.

Наиболее близким техническим решением к заявляемому является вакуумированная конструкция детектирующего элемента [3]. В данном прототипе газопоглотитель не встраивается во внутренний объем корпуса, а размещается на наружной поверхности основания корпуса. Внутренний объем газопоглотителя связан с внутренним объемом корпуса прибора - детектирующего элемента - отверстием. Перед герметизацией элемент размещают в специальную вакуумную камеру. В вакуумной камере происходит одновременная откачка и дегазация внутреннего пространства прибора и высокотемпературная активация внутреннего пространства газопоглотителя, выполненного в виде отдельного корпуса с закрепленной внутри, например, таблеткой газопоглотителя. Причем корпус прибора и отдельный корпус с газопоглотителем в момент обезгаживания и активации находятся на некотором удалении друг от друга, таком, что тепловое излучение от газопоглотителя не повреждало электронные компоненты внутри прибора.

На основании корпуса прибора выполнено углубление с кольцеобразной областью, покрытой припоем. На корпусе газопоглотителя также имеется кольцеобразная область с золотым покрытием. После окончания процесса активации и обезгаживания корпус газопоглотителя своей кольцевой областью соединяется с кольцевой областью на корпусе прибора. Припой смачивает золотое покрытие и после выключения подогрева происходит вакуумплотное соединение основания корпуса с корпусом газопоглотителя. Достоинство данного технического решения - газопоглотитель не увеличивает размеры прибора, не требуются дополнительные электрические вводы для активации газопоглотителя, инфракрасное излучение при активации газопоглотителя не повреждает электронные компоненты, находящиеся внутри корпуса прибора.

Недостатком данной конструкции прибора, в котором полость в основании прибора выполнена в виде углубления, в которое встраивается корпус с газопоглотителем, с дном со стороны внутреннего объема прибора и отверстием в дне для сообщения объемов газопоглотителя и внутреннего объема прибора, а по периметру дна выполняется кольцевая проточка, покрытая припоем, являются:

1 - высота корпуса газопоглотителя с газопоглотителем внутри, а следовательно, и его объем ограничены глубиной полости в основании прибора, распространяющейся до дна в основании прибора, что уменьшает объем газа, поглощаемым этим газопоглотителем, а следовательно, и срок службы прибора;

2 - для надежного соединения пайкой корпуса газопоглотителя с основанием прибора, кольцевая проточка должна иметь достаточную ширину (1-2 мм), тем самым занимается полезная площадь на основании прибора, что в ряде случаев неприемлемо.

Задача изобретения - упрощение конструкции кварцевого генератора.

Эта задача достигается следующим образом. Кварцевый генератор представляет собой конструкцию, состоящую из металлического вакуумированного корпуса, в котором размещены керамическая подложка со смонтированными электронными компонентами (электрическая схема генератора) и некорпусированнный кварцевый пьезоэлемент. Металлический корпус выполнен в виде основания с герметичными электрическими вводами и металлической крышки, соединенной с основанием методами сварки, пайки или при помощи клея. В основании корпуса генератора выполняется отверстие в виде конуса, и, соответственно, корпус газопоглотителя с газопоглотителем внутри выполняется в виде конусообразной детали, причем стенки отверстия в основании генератора покрываются припоем, а боковые поверхности корпуса газопоглотителя - золотым покрытием с подслоем титан-никель или тонким слоем припоя, а для удержания расплавленного припоя на боковых поверхностях выполнены кольцевые проточки. Эта конструкция позволяет более точно (без зазоров) производить соединение корпуса газопоглотителя с корпусом генератора.

На фиг. 1 показана конструкция кварцевого генератора с отверстием в корпусе в виде конуса и корпусом газопоглотителя также в виде конусообразной детали.

Здесь: 1 - основание корпуса генератора, 2 - крышка, 3 - керамическая подложка со смонтированными электронными компонентами (электрическая схема генератора), 4 - кварцевый пьезоэлемент, 5 - замкнутая полость генератора, 6 - вводы в основании корпуса, 7 - корпус газопоглотителя, 8 - газопоглотитель, 9 - кольцеобразная область на основании корпуса (конусообразное отверстие), покрытая припоем - область соединения основания корпуса генератора с корпусом газопоглотителя.

На фиг. 2 показана конструкция корпуса газопоглотителя с газопоглотителем в сборе. Здесь: 7 - корпус газопоглотителя, 8 - газопоглотитель, 10 - кольцевые проточки. Проточки необходимы для удержания расплавленного припоя на поверхности конусообразной детали корпуса газопоглотителя.

На фиг. 3 показан фрагмент конструкции корпуса с дополнительным тепловым экраном. Здесь: 1 - основание корпуса генератора, 11 - тепловой экран с отверстиями 12.

Устройство работает следующим образом (фиг. 1). Соединение основания корпуса генератора 1 с основанием газопоглотителя 8 осуществляется следующим образом. В специальной вакуумной камере производится обезгаживание (предварительный прогрев при температуре до 150°С в течение от нескольких минут до десятков часов) корпуса генератора 1 и корпуса газопоглотителя 7 со смонтированным газопоглотителем 8, после чего производится активация газопоглотителя 8 при соответствующей температуре, присущей данному применяемому газопоглотителю (нагрев до температуры 350-600°С в течение десятков минут). Причем корпус генератора 1 и отдельный корпус газопоглотителя 7 с газопоглотителем 8 (фиг. 2) в момент обезгаживания и активации располагаются на некотором удалении друг от друга, таком, чтобы тепловое излучение от газопоглотителя не повреждало электронные компоненты внутри прибора. Температура корпуса генератора 1 (фиг. 1) поддерживается на 10-20°С ниже температуры расплавления припоя в кольцеобразной области основания корпуса генератора 1, например, на уровне 150°С при использовании в качестве припоя индия. В кольцеобразной канавке 10 (фиг. 2) в корпусе газопоглотителя 7 также используется припой, который при высокой температуре активации (350-600°С) расплавляется и принимает в сечении выпуклую форму, например в виде полусферы. Температура газопоглотителя 8 обычно выбирается ниже температуры припоя. В случае применения в качестве припоя индия температура испарения более 800°С, а применение в качестве припоя олова более 1000°С.

По истечении времени активации (обычно от нескольких минут до нескольких часов) производится соединение корпуса газопоглотителя 7 с кольцеобразной областью 9 в основании корпуса генератора 1, при этом часть тепла от корпуса газопоглотителя 7 передается на припой на боковой поверхности кольцеобразной области 9 в основании корпуса генератора 1, что приводит к его расплавлению. В этот момент выключается нагрев корпуса газопоглотителя 7 и корпуса генератора 1. Припой в месте соединения основания корпуса генератора 1 и корпуса газопоглотителя 7 затвердевает, при этом образуется вакуумплотное соединение корпуса газопоглотителя 7 с корпусом генератора 1. При этом происходит герметизация замкнутой полости генератора 5 (фиг. 1). Активированный газопоглотитель поддерживает в течение жизненного цикла кварцевого генератора (до 25 лет) вакуум внутри замкнутой полости генератора 5, тем самым, обеспечивая высокую долговременную стабильность частоты.

Для уменьшения влияния теплового воздействия от нагретого корпуса газопоглотителя 7 на керамическую подложку со смонтированными электронными компонентами (электрическая схема генератора) 3 (фиг. 1), кольцеобразная область 9 (фиг. 1) в основании корпуса генератора 1 может быть дополнительно со стороны внутреннего объема корпуса генератора прикрываться тепловым экраном 11 с отверстиями 12, как это показано на фиг. 3.

По сравнению с прототипом заявленная конструкция кварцевого генератора обладает следующими преимуществами.

1. Нет необходимости в обеспечении кольцевой области на корпусе газопоглотителя и на основании корпуса генератора, что позволяет экономить занимаемую площадь на основании корпуса генератора.

2. Кольцевая область на основании корпуса генератора выполняется в виде сквозного отверстия, что позволяет увеличить объем газопоглотителя, встраиваемого в основание корпуса генератора, а сквозное отверстие позволяет увеличить скорость откачки остаточных газов газопоглотителем в процессе обезгаживания и эксплуатации кварцевого генератора.

3. Конусообразная конструкция корпуса газопоглотителя и конусообразное отверстие в основании корпуса генератора позволяет более точно (без зазоров) производить соединение корпуса газопоглотителя с корпусом генератора.

Источники информации

1. Термостатируемый кварцевый генератор. Патент РФ №2503122 от 27.12.2013 г.

2. Кварцевый резонатор. Патент РФ №2351062 от 23.03.2009 г.

3. Элемент для детектирования электромагнитного излучения, в частности инфракрасного излучения, модуль формирования оптического инфракрасного изображения, включающий такой элемент и способ для его реализации. Патент РФ №2386157 от 10.04.2010 г.

1. Кварцевый генератор, состоящий из металлического вакуумированного корпуса, в котором размещены керамическая подложка со смонтированными электронными компонентами, нераспыляемый газопоглотитель и некорпусированный кварцевый пьезоэлемент, причем металлический корпус выполнен в виде основания с герметичными электрическими вводами и металлической крышки, соединенной с основанием, отличающийся тем, что с наружной стороны в основании корпуса генератора выполнено сквозное отверстие в виде конуса и, соответственно, корпус газопоглотителя с запрессованным внутри газопоглотителем выполняется в виде конусообразной детали, причем стенки отверстия покрыты припоем, а боковые поверхности корпуса газопоглотителя - золотым покрытием с подслоем титан-никель, или тонким слоем припоя, а для удержания расплавленного припоя на боковых поверхностях выполнены кольцевые проточки.

2. Кварцевый генератор по п. 1, отличающийся тем, что конусообразное отверстие в основании корпуса генератора дополнительно со стороны внутреннего объема корпуса генератора прикрывается тонким тепловым экраном с отверстиями.



 

Похожие патенты:

Изобретение относится к радиоэлектронике и может быть использовано в технике перестраиваемых управляемых кварцевых генераторов. Технический результат заключается в повышении надежности работы схемы, обеспечении запоминания частоты кварцевого генератора, независимо от наличия или отсутствия напряжения питания, а также уменьшении уровня фазовых шумов.

Изобретения относятся к области радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и могут быть использованы для создания устройств генерации и частотной модуляции.

Изобретение относится к области радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы. Технический результат изобретения заключается в увеличении линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные средства радиосвязи с заданным количеством радиоканалов.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот. Технический результат заключается в повышении диапазона генерируемых колебаний и генерации высокочастотных сигналов на заданном количестве частот при произвольных комплексных сопротивлениях нагрузки.

Изобретение относится к области радиосвязи и может быть использовано для генерации высокочастотных (ВЧ) сигналов. Достигаемый технический результат - расширение диапазона генерируемых колебаний, генерация ВЧ сигналов на заданном количестве частот при произвольных комплексных сопротивлениях нагрузки.

Изобретение относится к области радиосвязи. Технический результат изобретения заключается в эффективности устройства генерации и частотной модуляции за счет увеличения линейного участка частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента, цепи внешней обратной связи и параметрах резистивного четырехполюсника.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации и частотной модуляции с увеличенным линейным участком частотной модуляционной характеристики при произвольных характеристиках нелинейного элемента.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот. Технический результат изобретения заключается в повышении диапазона генерируемых колебаний, что позволяет формировать сложные сигналы и создавать эффективные устройства генерации для средств радиосвязи с заданным количеством радиоканалов.

Изобретение относится к области радиосвязи и может быть использовано для создания средств радиосвязи с заданным количеством радиоканалов. Достигаемый технический результат - увеличение диапазона генерируемых колебаний, генерация высокочастотных сигналов на заданном количестве частот при произвольных комплексных сопротивлениях нагрузки.

Изобретение относится к области радиотехники и может быть использовано в синтезаторах частот, работающих вплоть до СВЧ диапазона. Технический результат изобретения заключается в уменьшении спектральной плотности фазовых флуктуаций генераторных устройств каскодного типа. Управляемый напряжением генератор содержит активный элемент, выполненный на первом и втором транзисторах, которые включены по схеме «общий эмиттер - общая база», делитель напряжения, образованный первым, вторым и третьим резисторами, а также эмиттерный резистор первого транзистора и коллекторный резистор второго транзистора, за счет чего обеспечиваются режимы работы транзисторов по постоянному току. Генератор содержит четыре разделительных конденсатора, три развязывающих элемента и блокировочную емкость. Кроме этого в состав генератора входят первая и вторая индуктивности, первый и второй конденсаторы, первый второй, третий и четвертый варикапы, которые являются частотозадающими элементами. 9 ил.

Изобретение относится к различным вариантам выполнения цепи генератора. Технический результат заключается в расширении арсенала средств того же назначения. Цепь (100) генератора содержит первую цепь (T1) колебательного контура, содержащую индуктивный элемент (L) и емкостной элемент (C), подключенные последовательно между первой шиной (14) напряжения и первым узлом (12) возбуждения. Каскад (F) обратной связи подключен к первому выходу (13) колебательного контура первой цепи (T1) колебательного контура и к первому узлу (12) возбуждения. Каскад (F) обратной связи выполнен с возможностью генерировать в соответствии с первым осциллирующим напряжением на колебательном контуре, присутствующим на первом выходе (13) колебательного контура, первое осциллирующее напряжение возбуждения на первом узле (12) возбуждения, синфазное с первым осциллирующим током колебательного контура, текущим в индуктивном элементе (L) и емкостном элементе (C), что вынуждает генератор (100) совершать колебания в режиме последовательного резонанса индуктивного элемента (L) и емкостного элемента (C). 3 н. и 22 з.п. ф-лы, 22 ил.
Наверх