Способ получения магнитной жидкости на органической основе

Изобретение может быть использовано в электротехнике, машиностроении и химической промышленности. Способ получения магнитной жидкости на органической основе, не смешивающейся с водой, включает введение магнитной жидкости на водной основе, содержащей магнитные наночастицы Fе3O4, в жидкость на органической основе, не смешивающуюся с водой. Перемешивают и отстаивают водно-органическую смесь до появления четкой границы раздела между водной и органической составляющими. При помощи магнитного поля перемещают магнитные наночастицы Fе3O4 в органическую основу. Выдерживают гетерогенную систему до разделения магнитной жидкости на органической основе, не смешивающейся с водой, и водной основы. Удаляют водную основу и проводят сушку магнитной жидкости, содержащей магнитные наночастицы Fе3O4, на органической основе с помощью осушающих реагентов. Изобретение позволяет получить магнитную жидкость с улучшенными эксплуатационными характеристиками высокопроизводительным, простым и экономичным способом. 1 ил.

 

Изобретение может быть использовано в области машиностроения, химической области, а также в области электротехники.

Известны магнитные жидкости и их получение [Patent US №3,764,540], включающие измельчение путем жидкого помола и диспергирование немагнитного субоксида железа типа вюстит с составом от Fe0,95O до Fe0,85O при перемешивании с олеиновой кислотой в керосине с образованием стабильной коллоидной суспензии субоксида в жидкости, затем восстановление субоксида железа при нагревании суспензии до температуры в интервале 570-800°С, но ниже температуры разложения жидкости, в течение времени, достаточного для существенного превращения немагнитного субоксида в ферромагнитную форму.

Измельчение при перемалывании не дает возможности получить частицы очень малого размера, распределение частиц по размерам, достигнутое таким путем измельчения, очень широкое, а это влияет как на склонность частиц к агломерации (более мелкие стремятся присоединиться к более крупным, образуя агломератные комплексы), так и в конечном счете на эксплуатационные характеристики, связанные с неравномерным распределением магнитных частиц в жидкости-носителе и их агломерацией. Нагрев суспензии до указанных температур также ведет к необратимой агломерации частиц. К магнитным жидкостям на органической основе часто предъявляется требование стабильности при повышенных температурах, возникающих в узлах трения, где такие жидкости предполагается применять, но используемая в качестве стабилизатора олеиновая кислота обладает низкой термоокислительной способностью, что может привести к коагуляции коллоида. В полученной таким способом магнитной жидкости присутствуют как магнитные частицы магнетита, так и частицы железа, склонные к окислению, а потому магнитные характеристики такой жидкости нестабильны во времени и будут снижаться.

Наиболее близким к заявляемому является способ получения магнитной жидкости на органической основе [В.Е. Фертмана [Фертман В.Е. Магнитные жидкости: Справочное пособие- Минск: Вышэйшая школа, 1988, 184 с.] Способ включает механическое измельчение крупнодисперсных частиц магнетита с подводом поверхностно-активного вещества (ПАВ) и первоначальной основы (воды). Далее в полученную водную магнитную жидкость вводят флоккулирующий агент (ацетон) и удаляют жидкую фазу, содержащую первоначальное ПАВ и воду, мокрые твердые частицы отмывают водой, удаляя жидкость, содержащую остатки флоккулирующего агента. Затем проводят сушку частиц посредством нагрева до 93°С, и сухие твердые частицы подвергают механическому измельчению при параллельном введении конечного ПАВ и конечной основы.

Недостатком способа является неполное удаление влаги из исходной магнитной жидкости при сушке при температуре до 93°С, поскольку магнитная основа является высокопористой структурой и вода, находящаяся в капиллярах, требует для своего удаления более высокой температуры нагрева.

А присутствие воды в порах магнитной жидкости на органической основе при применении ее на повышенных температурах будет вести к постепенному слипанию частиц, участвующих в образовании пор, включающих внутрь себя воду, что в конечном счете понизит эксплуатационные характеристики магнитной жидкости. Во время сушки при нагреве полученные на водной основе магнитные наночастицы необратимо слипаются, а механическое измельчение в дальнейшем не дает возможности получить частицы малого размера. К недостаткам данного метода также относится многоэтапность, которая, в том числе ведет к большим потерям магнитного материала и уменьшению выхода магнитной жидкости на органической основе. Способ является экономически невыгодным из-за многошаговости и энергозатратности процесса получения магнитной жидкости по описанной технологии.

Технической проблемой является получение магнитной жидкости на органической основе высокопроизводительным и простым экономичным способом с улучшенными эксплуатационными характеристиками.

Для решения проблемы предложен способ получения магнитной жидкости на органической основе, не смешивающейся с водой. Способ включает введение магнитной жидкости на водной основе в жидкость на органической основе, перемешивание и отстаивание водноорганической смеси до появления четкой границы раздела между водной и органической составляющими. Затем с помощью магнитного поля перемещают магнитную составляющую магнитной жидкости в органическую основу, выдерживают гетерогенную систему для разделения магнитной жидкости на органической основе от водной основы, после чего удаляют водную основу и проводят сушку магнитной жидкости на органической основе с помощью осушающих реагентов.

Введение магнитной жидкости на водной основе в жидкость на органической основе и перемешивание водноорганической смеси позволяет распределить и частично заменить водное окружение магнитных частиц.

Отстаивание до появления четкой границы раздела между водной и органической составляющими и перемещение магнитной составляющей магнитной жидкости в органическую основу при помощи магнитного поля позволяет перевести магнитные частицы из водной основы в органическую и удержать их в ней, осуществив таким образом замену основы магнитной жидкости и быстрое по времени разделение водной основы и магнитной жидкости на органической основе с целью дальнейшего удаления отделенной водной основы и получения магнитной жидкости на органической основе.

Удаление из магнитной жидкости на органической основе следов воды с помощью осушающих реагентов позволяет полностью обезводить готовую смесь, осуществив полный перевод магнитной жидкости на водной основе в магнитную жидкость на органической основе и обеспечив абсолютно безводную среду.

Предложенный способ реализуется без нагрева, что способствует получению магнитных жидкостей на органической основе с частицами значительно меньшего размера, чем в описанных ранее способах, поскольку температурное воздействие способствует агломерации частиц, а это снижает в конечном счете эксплуатационные характеристики готовой магнитной жидкости. Отсутствие длительных обработок в мельнице позволяет существенно уменьшить время получения магнитной жидкости, значительно сократив при этом экономические затраты на операцию и максимально упростив процесс получения магнитной жидкости на органической основе. Действие магнитного поля также способствует быстрому переводу магнитных частиц из одной основы в другую и, кроме того, не создает благоприятных для агломерации частиц условий. Применение осушающих реагентов позволяет полностью удалить воду из магнитной жидкости и получить полностью обезвоженную магнитную жидкость на органической основе с высокими эксплуатационными характеристиками.

Устройство, с помощью которого реализуется предлагаемый способ, содержит: 1 - штатив с лапкой, 2 - делительную воронку, 3 - кольцевой магнит, 4 - органическую основу с магнитными частицами, 5 - водную основу (фиг. 1).

Магнитную жидкость Fe3O4 на водной основе, приготовленную методом химического осаждения и содержащую магнитные наночастицы со средним размером 10 нм, вливают в жидкость на органической основе - керосин. Смешение проводят в сосуде в виде делительной воронки. Затем устанавливают делительную воронку на механической качалке для перемешивания водноорганической смеси, обеспечивая тем самым плавное скольжение одной жидкости по другой, после чего закрепляют воронку на штативе в вертикальном положении. При появлении четкой границы раздела между водной и органической (керосиновой) составляющими с помощью кольцевого магнита, установленного с внешней стороны сосуда на уровне верхней части смеси, находящейся в делительной воронке, перемещают магнитные наночастицы Fe3O4 из магнитной жидкости на водной основе в керосин (фиг. 1), выдерживают гетерогенную систему для разделения органической (керосиновой) и водной основы, отделяют водную основу путем слива через нижний кран делительной воронки. Затем из магнитной жидкости на основе керосина удаляют следы воды в эксикаторе с помощью осушающего реагента Р4О10. Магнитные наночастицы в составе магнитной жидкости на органической основе имеют средний размер примерно 12 нм и имеют узкое распределение по размерам, что положительно влияет на эксплуатационные характеристики магнитной жидкости, так как постоянный примерно равный размер частиц обеспечивает ей высокую устойчивость во времени. Магнитная жидкость в соответствии с предложенным способом при полном удалении воды может быть получена в течение нескольких часов, что значительно меньше, чем в предложенных ранее способах. Способ прост в реализации, не требует сложного оборудования и высоких затрат, легко поддается масштабированию.

Магнитную жидкость Fe3O4 на водной основе, приготовленную методом химического осаждения и содержащую магнитные наночастицы со средним размером 10 нм, вливают в жидкость на органической основе - полиметилсилоксан (ПМС). Смешение проводят в сосуде в виде делительной воронки. Затем устанавливают делительную воронку на механической качалке для перемешивания водноорганической смеси, обеспечивая тем самым плавное скольжение одной жидкости по другой, после чего закрепляют воронку на штативе в вертикальном положении. При появлении четкой границы раздела между водной и полиметилсилоксановой составляющими с помощью кольцевого магнита, установленного с внешней стороны сосуда на уровне верхней части смеси, находящейся в делительной воронке, перемещают магнитные наночастицы Fe3O4 из магнитной жидкости на водной основе в ПМС (фиг. 1), выдерживают гетерогенную систему для разделения органической (полиметилсилоксановой) и водной основы, отделяют водную основу путем слива через нижний кран делительной воронки. Затем из магнитной жидкости на основе ПМС удаляют следы воды в U-образной трубке с помощью металлического Li.

Магнитные наночастицы в составе магнитной жидкости на органической основе имеют средний размер примерно 13 нм и обладают монодисперсностью, что успешно сказывается на эксплуатационных характеристиках магнитной жидкости, поскольку постоянный примерно равный размер частиц обеспечивает ей высокую устойчивость во времени. Магнитная жидкость в соответствии с предложенным способом при полном удалении воды может быть получена в течение нескольких часов, что существенно меньше, чем в предложенных ранее способах. Способ прост в реализации, не требует сложного оборудования и высоких затрат, легко масштабируется.

Способ получения магнитной жидкости на органической основе, не смешивающейся с водой, отличающийся тем, что магнитную жидкость на водной основе, содержащую магнитные наночастицы Fе3O4, вводят в жидкость на органической основе, не смешивающуюся с водой, перемешивают и отстаивают водно-органическую смесь до появления четкой границы раздела между водной и органической составляющими, при помощи магнитного поля перемещают магнитные наночастицы Fе3O4 в органическую основу, выдерживают гетерогенную систему до разделения магнитной жидкости на органической основе, не смешивающейся с водой, и водной основы, после чего удаляют водную основу и проводят сушку магнитной жидкости, содержащей магнитные наночастицы Fе3O4, на органической основе с помощью осушающих реагентов.



 

Похожие патенты:

Изобретение относится к химической композиции, чувствительной к температуре и пригодной для получения датчиков для тестирования условий хранения продуктов, которые требуют постоянного хранения при низкой температуре.

Изобретение касается способа изготовления магнитной керамики. Способ включает следующие этапы: компактирование в пресс-форме порошковой композиции, содержащей смесь железа и BN, выдавливание компактированной массы из пресс-формы, размещение в кальцийкарбонатном контейнере с графитовым нагревателем, обработка при 2-8 ГПа и 1000-2000°С.

Изобретение относится к области получения постоянных магнитов и может быть использовано при производстве высокоэнергетических постоянных магнитов на основе редкоземельных (РЗМ) сплавов и, в частности, на основе неодима, железа и бора (сплав Nd-Fe-B).

Изобретение относится к электротехнике, к трансформаторостроению и может найти применение при изготовлении обмоток трансформаторов и реакторов. Технический результат состоит в расширении функциональных возможностей при относительной простоте изготовления.

Изобретение относится к раствору для образования изоляционного покрытия на листе текстурированной электротехнической стали и к листу текстурированной электротехнической стали, имеющему изоляционное покрытие.

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом и азотом, и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях промышленности.

Изобретение относится к области коллоидной химии и может быть использовано для получения магнитных жидкостей, применяемых в медицине для доставки лекарственных препаратов в требуемые органы живых организмов.

Изобретение относится к получению керамических перовскитоподобных манганитов и может быть использовано в электротехнике, магнитной и спиновой электронике. Поликристаллический материал на основе лантан-стронциевого манганита имеет состав La0,810Sr0,190Mn1-x(Zn0,5Ge0,5)xO3, где x принимает значения от 0,148 до 0,152.

Изобретение относится к области черной металлургии. Для обеспечения высокой магнитной проницаемости стали и равномерности магнитных свойств осуществляют выплавку стали, содержащей медь от 0,4 до 0,6 мас.%, разливку, горячую прокатку, травление, двукратную холодную прокатку с промежуточным обезуглероживающим отжигом, нанесение на полосу магнезиального покрытия, высокотемпературный и выпрямляющий отжиги.

Изобретение относится к области металлургии, а именно к листу нетекстурированной электротехнической стали толщиной 0,10-0,50 мм, используемому в качестве материала для сердечника приводного двигателя и электрогенератора.

Изобретение относится к разделителю твердых веществ и жидкостей и к способу разделения твердых веществ и жидкостей. Разделитель твердых веществ и жидкостей, в котором используется вещество А, способное растворять воду и масло, и осуществляется удаление воды и масла из подлежащего обработке объекта, которым является смесь воды и твердого вещества, или масла и твердого вещества, или воды, масла и твердого вещества в качестве подлежащего обработке объекта, содержащий вещество В, которое циркулирует в замкнутой системе, вызывая при этом изменение состояния в замкнутой системе, компрессор, который сжимает вещество В, первый теплообменник, в котором происходит обмен теплотой конденсации вещества В и теплотой испарения вещества А, средство расширения для декомпрессии, которое возвращает конденсированное вещество В к состоянию до сжатия, второй теплообменник, в котором происходит обмен теплотой испарения вещества В и теплотой конденсации вещества А, бак для обработки, в котором смешиваются вещество А, конденсированное во втором теплообменнике после испарения вещества А при отделении от воды и масла в первом теплообменнике, и подлежащий обработке объект, и насос для перекачивания вещества А.
Изобретение относится к невоспламеняющимся композициям, включающим фторированное соединение, представляющее собой 1,1,1,3,3-пентафторбутан, 1,2-дихлорэтилен и эффективное количество стабилизатора фторированного соединения или 1,2-дихлорэтилена, где количество стабилизатора составляет меньше чем 0,5% масс.

Изобретение относится к способам получения аморфного мезопористого гидроксида алюминия со слоисто-волокнистой микроструктурой и может быть использовано в керамической промышленности, производстве сорбентов, катализаторов и их носителей, а также теплоизоляционных, резинотехнических и некоторых полимерных материалов.

Изобретение относится к оборудованию для обработки жидкостями твердых частиц и может быть использовано в химической, нефтехимической, фармацевтической, пищевой, лесохимической, гидрометаллургической и других промышленностях.

Изобретение относится к удалению влаги из мелких частиц. .

Изобретение относится к электротехнической листовой стали с изоляционным покрытием с превосходными штампуемостью и адгезионными свойствами. Электротехническая листовая сталь с изоляционным покрытием содержит электротехническую листовую сталь и изоляционное покрытие, сформированное на электротехнической листовой стали. Изоляционное покрытие содержит Si и Fe. Масса Si в изоляционном покрытии в пересчете на SiO2 составляет от 50 до 99% от общей массы покрытия. Мольное отношение (Fe/Si) содержания Fe к содержанию Si в изоляционном покрытии составляет от 0,01 до 0,6. Изоляционное покрытие может содержать органическую смолу и/или смазку, причем в изоляционном покрытии отношение (С (органическая смола + смазка)/(Fe2O3 + SiO2)) массы в покрытии органической смолы и/или смазки в пересчете на С к сумме массы в покрытии Fe в пересчете на Fe2O3 и массы в покрытии Si в пересчете на SiO2 составляет от 0,05 до 0,8. 1 з.п. ф-лы, 1 ил., 5 табл.
Наверх