Способ ранней диагностики остеоартроза коленного сустава

Изобретение относится к медицине, в частности к лучевой диагностике, ревматологии, ортопедии и травматологии, и может быть использовано для диагностики остеоартроза. Изобретение включает рентгенологическое исследование коленного сустава с получением рентгенограммы. Рентгенограмму оцифровывают. На цифровом изображении коленного сустава выбирают зону интереса в области субхондральной кости медиального большеберцового плато, которое переводят в бинарный вид, рассчитывают фрактальный размер методом квадратов, при полученных значениях от 1,726 до 1,739 определяют остеоартроз I стадии, при полученных значениях от 1,740 до 1,767 определяют остеоартроз II стадии, при полученных значениях от 1,768 до 1,772 определяют остеоартроз III стадии, а при значениях в диапазоне от 1,773 до 1,787 определяют остеоартроз IV стадии. Значения фрактального размера от 1,700 до 1,725 соответствуют норме. Технический результат изобретения заключается в том, что в результате скринингового исследования путем определения фрактального размера субхондральной кости в области большеберцового плато медиального мыщелка большеберцовой кости появилась возможность раннего выявления наличия даже незначительного сужения суставной щели и назначить своевременное лечение. Также увеличена безопасность диагностического исследования, поскольку лучевая нагрузка (менее 0,001 мЗт) на костный мозг и внутренние органы достаточно низкая, что позволяет проводить исследования у лиц любой возрастной группы. Также важно, что способ достаточно прост для применения. 1 табл., 2 ил.

 

Изобретение относится к области медицины, в частности к лучевой диагностике, ревматологии, травматологии и ортопедии, а именно к исследованию состояния костной ткани и ее количественному выражению.

Известен способ диагностики остеоартроза коленного сустава, включающий рентгенологическое исследование плотности костной ткани всего тела человека с использованием специальной укладки трапециевидной формы для фиксации стопы, получение показателя плотности костной ткани в разных отделах бедренной и большеберцовой костей, расчет соотношений минеральной плотности латерального мыщелка бедренной кости к латеральному мыщелку большеберцовой кости, латерального мыщелка большеберцовой кости к ее медиальному мыщелку, латерального мыщелка бедренной кости к медиальному мыщелку большеберцовой кости. В результате получают коэффициент, по величине которого судят о степени остеоартроза (патент №2406442, РФ, опубл. 20.12.2010).

Однако известный способ является дорогостоящим, несет высокую лучевую нагрузку на пациента, так как используется протокол рентгеновской остеоденситометрии «все тело», не предназначен для рутинной рентгенологической диагностики остеоартроза коленного сустава согласно действующим Российским (Алексеева Л.И. Федеральные рекомендации по диагностике и лечению остеоартроза, АРР, 2013 http://rheumatolog.ru/experts/klinicheskie-rekomendacii) и международным рекомендациям (OARSI, 2014, https://www.oarsi.org/sites/default/files/docs/2014/non_surgical_treatment_of_kne e_oa_march_2014.pdf), которые рекомендуют в качестве диагностики использовать стандартную рентгенографию для визуализации коленного сустава.

В качестве прототипа выбран рентгенологический способ диагностики остеоартроза, основанный на визуальном определении изменений суставов, включающий рентгенографию пораженного сустава в передне-задней проекции, получении пленочной рентгенограммы, описательной оценке врачом-рентгенологом качественных изменений, включающих сужение суставной щели, склероз субхондральной пластинки, краевые остеофиты, кистозное перерождение суставных концов костей, образующих сустав. На основании полученного описания рентгенологической картины делают вывод о стадии заболевания (Косинская Н.С. Дегенеративно-дистрофические поражения костно-суставного аппарата. - Л.: Медгиз. - 1961. - С. 17-19).

Однако известный способ связан с субъективной описательной оценкой рентгенограммы и зависит от опыта врача, не позволяет достоверно выявить изменения, возникающие в структуре субхондральных части сочленяющихся костей, образующих коленный сустав при остеоартрозе на очень ранних стадиях развития, основан на использовании качественных признаков.

Задачей настоящего изобретения является разработка простого способа ранней диагностики остеоартроза коленного сустава при небольшом сужении суставной щели, повышение безопасности лучевого воздействия на костный мозг и внутренние органы пациента в период диагностического исследования, скрининговое исследование путем определения фрактального размера субхондральной кости в области большеберцового плато медиального мыщелка большеберцовой кости для ранней диагностики остеоартроза коленного сустава.

Для решения поставленной задачи в способе ранней диагностики остеоартроза коленного сустава, включающем рентгенологическое исследование с получением рентгенограммы, согласно изобретению выполняют оцифрование рентгенограммы, на полученном цифровом изображении выбирают зону интереса в области субхондральной кости медиального плато большеберцовой кости, которое переводят в бинарный вид, рассчитывают фрактальный размер методом квадратов, при полученных значениях от 1,726 до 1,739 определяют остеоартроз I стадии, при полученных значениях от 1,740 до 1,767 определяют остеоартроз II стадии, при полученных значениях от 1,768 до 1,772 определяют остеоартроз III стадии, а при значениях в диапазоне от 1,773 до 1,787 определяют остеоартроз IV стадии. Значения фрактального размера от 1,700 до 1,725 соответствуют норме.

Технический результат изобретения заключается в том, что в результате скринингового исследования путем определения фрактального размера субхондральной кости в области большеберцового плато медиального мыщелка большеберцовой кости появилась возможность раннего выявления наличия даже незначительного сужения суставной щели. Также увеличена безопасность диагностического исследования, поскольку лучевая нагрузка (менее 0,001 мЗт) на костный мозг и внутренние органы достаточно низкая, что позволяет проводить исследования у лиц любой возрастной группы. Также важно, что способ достаточно прост для применения.

На Фиг. 1 отражен выбор области интереса на рентгенограмме.

На фиг. 2 представлены изображения области интереса: А - полутоновое изображение области интереса, Б - бинарное изображение области интереса.

Целесообразно для более четкого определения границ выделенную область проекции мыщелка ограничить прямоугольником.

Способ осуществляют следующим образом.

Обследуемого пациента укладывают на столе рентгенологического аппарата в положении на спине для осуществления рентгенологической съемки коленного сустава в передне-задней проекции, производят рентгенографическое исследование. Получают рентгенограмму (электронную или пленочную). Пленочную рентгенограмму следует оцифровывать любым известным способом. Полученное цифровое изображение анализируют максимальном разрешении обрабатывают с помощью программы ImageJ (https://imagej.nih.gov/ij/) или любого другого подобного программного обеспечения. Для этого инструментом «прямоугольник» выделяют область интереса, включающую участок субхондральной кости размером 48±2×90±4 пикселов в области медиального плато большеберцовой кости. Выделенное таким образом изображение области интереса подвергают процедуре бинаризации с помощью автоматического протокола. Для бинарного изображения рассчитывают фрактальный размер (D) методом квадратов.

При полученных значениях D в диапазоне от 1,700 до 1,725 определяют нормальное состояние.

При полученных значениях D в диапазоне от 1,726 до 1,739 определяют остеоартроз I стадии.

При полученных значениях D в диапазоне от 1,740 до 1,767 определяют остеоартроз II стадии.

При полученных значениях D в диапазоне от 1,768 до 1,772 определяют остеоартроз III стадии.

При полученных значениях D в диапазоне от 1,773 до 1,787 определяют остеоартроз IV стадии.

Проведена оценка диагностической значимости предлагаемого способа по сравнению со стандартной рентгенографией (таблица). На модели хорошего качества чувствительность данного метода составляет от 91,0%, специфичность от 75,0% в зависимости от стадии заболевания. Для определения раннего остеоартроза диагностическая ценность: чувствительность 95%, специфичность 83%.

Клинические пример выполнения способа.

Пример 1

Пациентка Н., 56 лет, с жалобами на боль механического ритма левом коленном суставе.

Стандартное рентгенологическое обследование левого коленного сустава по общепринятой методике в прямой проекции на цифровом рентгенологическом аппарате «КРТ ОКО Электрон». Цифровые рентгенограммы обрабатывали в режиме «pixel to pixel» с помощью программы ImageJ. На изображении выбирали область интереса в области медиального плата большеберцовой кости, включающую участок субхондральной кости размером 49×92 пиксела, переводили полутоновое изображение в бинарное с помощью стандартной автоматической процедуры, рассчитывали фрактальный размер методом квадратов, который был равен 1,728. Полученные значения соответствуют I стадии остеоартроза коленного сустава.

Для подтверждения полученного результата произведено стандартное подписание опытным врачом-рентгенологом рентгенограммы, на которой определялся незначительное сужение суставной щели, не определялись краевые костные разрастания и остеосклероз. Клинико-рентгенологические результаты подтверждают наличие у обследуемой I стадии остеоартроза коленного сустава.

Пример 2

Пациент Т., 44 года, с жалобами на боль невропатического ритма в области левого коленного сустава и голени.

Выполнено стандартное рентгенологическое обследование левого коленного сустава по общепринятой методике в прямой проекции на аналоговом рентгенологическом аппарате «CLINODIGIT». Полученные таким образом пленочные рентгенограммы оцифровывали с помощью сканера «brother ads-2600we» в высоком качестве разрешения (1200 bp). Полученные цифровые изображения подвергали анализу в режиме с помощью программы ImageJ. На изображении выбирали область интереса в области медиального плато большеберцовой кости, включающую участок субхондральной кости размером 48×92 пиксела, переводили полутоновое изображение в бинарное с помощью стандартной автоматической процедуры, рассчитывали фрактальный размер методом квадратов, который был равен 1,716. Полученные значения соответствуют норме.

Для подтверждения полученного результата произведено стандартное подписание опытным врачом-рентгенологом рентгенограммы, на которой определялся нормальная конфигурация и размеры суставной щели, отсутствие остеофитов и признаков субхондрального остеосклероза. Клинико-рентгенологические результаты подтверждают наличие у обследуемой II стадии остеоартроза коленного сустава.

Предлагаемый способ позволяет проводить скрининговое исследование для определения признаков остеоартроза, в том числе на очень ранних стадиях, и может быть использовано для дифференциальной диагностики у пациентов с болью в коленном суставе. Кроме того, предложенный способ благодаря высокой доступности, простоте использования, низкой лучевой нагрузке (менее 0,001 мЗт) на костный мозг и внутренние органы позволяет проводить исследования у лиц любой возрастной группы.

Способ ранней диагностики остеоартроза коленного сустава, включающий рентгенологическое исследование с получением рентгенограммы, отличающийся тем, что получают цифровое изображение рентгенограммы коленного сустава, на которой выбирают зону интереса в области субхондральной кости медиального большеберцового плато, которое переводят в бинарный вид, рассчитывают фрактальный размер методом квадратов, при полученных значениях от 1,726 до 1,739 определяют остеоартроз I стадии, при полученных значениях от 1,740 до 1,767 определяют остеоартроз II стадии, при полученных значениях от 1,768 до 1,772 определяют остеоартроз III стадии, а при значениях в диапазоне от 1,773 до 1,787 определяют остеоартроз IV стадии, значения фрактального размера от 1,700 до 1,725 определяют как норму.



 

Похожие патенты:

Изобретение относится к медицине, в частности к лучевой диагностике, ревматологии, ортопедии и травматологии, и может быть использовано для диагностики остеоартроза.

Изобретение относится к медицине, радионуклидной диагностике, кардиологии и кардиохирургии. Диагностику хронического миокардита проводят путем количественного измерения зон интереса (ROI) в области средостения на совмещенных ОФЭКТ/КТ изображениях.

Изобретение относится к медицине, нейровизуализационным методам исследования и может быть использовано для прогнозирования развития сепсиса у больных с нетравматическими внутричерепными кровоизлияниями.

Изобретение относится к ветеринарии, диагностике патологий коленного сустава у собак. Прогнозирование вывиха коленной чашки у собак проводят путем анализа компьютерных томограмм коленного сустава.

Изобретение относится к медицине, эндоскопической ларингохирургии и компьютерно-томографическим методам исследования гортани. Дооперационно выполняют КТ головы и шеи в положении пациента на спине с запрокинутой назад головой, под которую подложена подушка.

Группа изобретений относится к медицине, травматологии, нейрохирургии и ортопедии в клинической практике и научных исследованиях для решения диагностических задач и планирования вида лечения различных повреждений позвоночника.

Изобретение относится к медицинской технике, в частности к средствам визуализации. Мультимодальная система визуализации содержит неподвижный гентри, поворотный гентри, соединенный с неподвижным гентри по меньшей мере тремя точками крепления.

Изобретение относится к медицине, урологии, диагностике расстройств мочевыделительной функции и может быть использовано для выбора вида лечения при расстройствах мочевыделения, в частности при гиперактивном мочевом пузыре, для контроля эффективности лечения.

Изобретение относится к медицине, сосудистой хирургии и может быть использовано в диагностике нарушений венозной гемодинамики при лечении пациентов с хронической венозной недостаточностью нижних конечностей (ХВН НК).

Изобретение относится к медицине, лучевой диагностике, челюстно-лицевой хирургии, предназначено для оценки эффективности реконструктивной операции на орбите. Для этого после реконструктивной операции проводят МСКТ обеих орбит в объемном режиме с толщиной среза 0,5 мм в аксиальной плоскости.

Изобретение относится к офтальмологии и предназначено для прогнозирования частичной атрофии зрительного нерва при болезни Штаргардта. Проводят спектральную оптическую когерентную томографию. Прогнозируют ЧАЗН при толщине сетчатки 245 мкм и менее в кольцевидной зоне, расположенной в 3-5 мм от центра фовеа, и объеме сетчатки 4,5 мм3 и менее в макулярной зоне диаметром 6 мм. Способ обеспечивает возможность прогнозирования тяжести течения заболевания у пробанда, прогноза для родственников и потомства пробанда, оценку тяжести выявленных у пациента мутаций и осуществление клинико-генетических корреляций, проведение пренатальной профилактики детей с тяжелыми мутациями у потомков пробанда до начала клинических проявлений заболевания. 5 ил.

Изобретение относится к способам обработки изображений при ангиографическом методе исследования кровеносных сосудов. Способ содержит этапы, на которых выполняют получение исходной ангиографической серии кадров, формирование субтракционной серии кадров из исходной ангиографической серии кадров, определение кадров субтракционной серии кадров, соответствующих границам фаз кровообращения. Определение кадра, соответствующего моменту окончания артериальной фазы, максимального капиллярного наполнения, начала венозной фазы, окончания венозной фазы, при этом генерируют составное изображение и расставляют визуальные атрибуты для идентификации отдельных фаз кровообращения на составном изображении. К каждому кадру субтракционной серии кадров применяют ориентационно-чувствительный фильтр по меньшей мере одной конфигурации, рассчитывают энергию отклика изображения в каждом кадре субтракционной серии кадров на ориентационно-чувствительный фильтр, кадр, соответствующий моменту окончания артериальной фазы, определяют по первому максимуму энергии отклика среди кадров субтракционной серии кадров, кадр, соответствующий моменту максимального капиллярного наполнения, определяют по минимуму энергии отклика, полученному после момента окончания артериальной фазы, кадр, соответствующий моменту начала венозной фазы, определяют по первому максимуму энергии отклика, полученному после момента максимального капиллярного наполнения, кадр, соответствующий моменту окончания венозной фазы, определяют по минимуму энергии отклика, полученному после момента начала венозной фазы. Также способ содержит этапы, содержащие получение исходной ангиографической серии кадров, формирование субтракционной серии кадров из исходной ангиографической серии кадров, определение для каждого кадра субтракционной серии кадров минимальной яркости пикселей на кадре, на основании которой определяют кадры субтракционной серии кадров, соответствующие границам фаз кровообращения, а именно определяют кадр максимального капиллярного наполнения, начала артериальной фазы, при этом по меньшей мере для одной фазы кровообращения генерируют составное изображение и расставляют визуальные атрибуты для идентификации отдельных фаз кровообращения на составном изображении. Для каждого кадра субтракционной серии кадров дополнительно определяют количество пикселей в изображении сосудов. Для каждого кадра субтракционной серии кадров находят произведение количества пикселей в изображении сосудов и минимальной яркости пикселей на кадре, кадр, соответствующий моменту максимального капиллярного наполнения, определяют по максимальному значению полученного произведения среди кадров субтракционной серии кадров, для каждых двух соседних кадров субтракционной серии кадров определяют величину разницы между соответствующими значениями полученного произведения, в качестве кадра, соответствующего началу артериальной фазы, выбирают кадр, для которого значение полученной разницы превышает заданный порог. Способ также содержит этапы, включающие получение исходной ангиографической серии кадров, определение кадров исходной ангиографической серии кадров, соответствующих границам фаз кровообращения, а именно определение кадра начала артериальной фазы, и максимального капиллярного наполнения, при этом по меньшей мере для одной фазы кровообращения генерируют составное изображение и расставляют визуальные атрибуты для идентификации отдельных фаз кровообращения на составном изображении, для каждого кадра исходной ангиографической серии кадров выделяют изображение, соответствующее области интереса, для элементов которого определяют заданную характеристику яркости. В качестве кадра, соответствующего началу артериальной фазы, выбирают первый кадр, для которого значение заданной характеристики яркости для выделенного изображения изменилось на заданную величину по сравнению со значением той же характеристики яркости для выделенного изображения на предшествующем кадре, в качестве кадра, соответствующего моменту максимального капиллярного наполнения, выбирают кадр, для которого значение заданной характеристики яркости для выделенного изображения максимально отличается от значения той же характеристики яркости для выделенного изображения на первом кадре исходной ангиографической серии. Изобретение обеспечивает увеличение точности определения границ фаз кровообращения. 3 н. и 2 з.п. ф-лы, 8 ил.

Группа изобретений относится к медицине, а именно к системе для наложения деформируемой модели на анатомическую структуру в медицинском изображении. Машиночитаемый носитель содержит команды для предписания процессорной системе выполнять этапы способа. Способ генерирования деформируемой модели для сегментации анатомической структуры в медицинском изображении включает в себя этапы для генерирования деформируемой модели, которая содержит: первую поверхностную сетку для наложения на первый поверхностный слой стенки; вторую поверхностную сетку для наложения на второй поверхностный слой стенки; и сетку промежуточного слоя для наложения в промежутке между первым поверхностным слоем и вторым поверхностным слоем. По меньшей мере часть сетки промежуточного слоя содержит топологию сетки, которая согласована с топологией сетки для имеющей анатомическое соответствие части сетки, выбранной из обеих поверхностных сеток. Сетка промежуточного слоя сгенерирована посредством дублирования части выбранной поверхностной сетки для получения упомянутой части сетки промежуточного слоя. При этом деформируемая модель сгенерирована посредством задания соответствий между исходными узлами выбранной поверхностной сетки и продублированными узлами сетки промежуточного слоя, тем самым устанавливая множество узловых пар. Деформируемая модель сгенерирована посредством минимизации энергетической функции, бракующей нежелательные положения сеток, причем энергетические условия учитывают: а) отклонение длин ребер между поверхностной сеткой и сеткой промежуточного слоя, b) пространственное отклонение продублированных узлов от нормали исходных узлов и с) рост ребер сетки промежуточного слоя. Машиночитаемый носитель содержит данные модели, задающие деформируемую модель. Система для наложения деформируемой модели на анатомическую структуру в медицинском изображении содержит: хранилище данных, содержащее данные модели, задающие деформируемую модель; и подсистему обработки, выполненную с возможностью наложения деформируемой модели на анатомическую структуру в медицинском изображении. Группа изобретений позволяет уменьшить время от сканирования до постановки диагноза. 5 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к медицине, оториноларингологии и лучевой диагностике. Способ диагностики фенестральной формы отосклероза включает просмотр компьютерных томограмм (КТ) височных костей в режиме костного окна с шириной W : 4000 и уровнем L : 700. При отсутствии патологических изменений костной капсулы лабиринта или выявлении участков, подозрительных на деминерализацию, переходят в ручной режим изменения параметров костного окна и осуществляют просмотр КТ в дополнительном костном окне. Для него ширину окна W выбирают в пределах от 850 до 900, а уровень окна L выбирают в пределах от 1200 до 1300. Способ обеспечивает повышение точности визуализации, информативности получаемого рентгеновского изображения при данной форме отосклероза путем улучшения визуализации очагов малых размеров. 4 ил., 2 пр.

Изобретение относится к медицине, а именно к кардиохирургии и торакальной хирургии, и может быть использовано при определении степени заживления грудины при ее фиксации после кардиохирургических операций со срединной стернотомией. Для этого по данным компьютерной томографии проводят расчеты по аксиальным срезам в костном режиме в 4-х определяющих точках, соответствующих наложению швов, соединяющих края грудины и несущих основную нагрузку: верхний край рукоятки грудины (M1), нижний край рукоятки грудины (M2), верхняя часть тела грудины на уровне 2-го межреберья (C1), нижняя часть тела грудины на уровне 4-го межреберья (C2). Затем осуществляют оценку по баллам-критериям: 0 - диастаз между фрагментами грудины более 3 мм, 1 - диастаз между фрагментами грудины 0-3 мм без признаков сращения, 2 - диастаза между фрагментами грудины нет, имеются рентген-признаки формирующейся костной мозоли - облаковидные, нитевидные тени, 3 – полная консолидация. По полученной сумме баллов судят о степени заживления грудины от минимальной – при сумме 0 баллов, что соответствует диастазу грудины более 3 мм на всем протяжении без возможности самостоятельного сращения, до максимальной – при сумме 12 баллов, что соответствует полной консолидации грудины на всем ее протяжении. Способ обеспечивает наиболее точное определение степени заживления грудины у таких пациентов, что позволяет выработать адекватную тактику лечения. 1 ил., 1 пр.

Изобретение относится к области медицины, а именно нейрохирургии, лучевой диагностике, и может быть использовано при выполнении селективного ЭИКМА в регионе гипоперфузии с использованием нейронавигации. На дооперационном этапе выполняют КТ-ангиографию экстра- и интракраниальных артерий и ОФЭКТ головного мозга. На ОФЭКТ головного мозга выявляют зону гипоперфузии с показателями кровотока на уровне менее 38 мл/мин/100 г. Путем последовательного оконтуривания вышеописанной зоны на всех аксиальных срезах создают 3D-модель зоны гипоперфузии. На навигационной станции совмещают в одном диалоговом окне данные ОФЭКТ и КТ-ангиографии. На каждом срезе оконтуривают изображение интракраниальной артерии-реципиента. Артерия-реципиент должна находиться в очаге пониженного кровоснабжения и иметь диаметр 0,8-1,0 мм. Также на изображении оконтуривают до трех потенциальных артерий-доноров из бассейна наружной сонной артерии толщиной до 1,0-1,5 мм и длиной не менее 6 см. Артерии-доноры должны находиться в проекции артерии-реципиента, для этого на 3D-модели из отмеченных артерий-доноров выбирают артерию, расположенную как можно ближе к очагу пониженного кровоснабжения, имеющую диаметр, равный или больше диаметра артерии-реципиента, и находящуюся на расстоянии от артерии-реципиента не более чем 1-3 см. Затем проводят моделирование краниотомии, для чего на 3D-модели выделяют область диаметром 2-4 см, центром которой является точка пересечения проекции артерии-реципиента на выбранную артерию-донора. В условиях операционной с использованием безрамной нейронавигации проводят сопоставление кожных ориентиров с полученными данными на 3D-модели и выполняют разметку артерий и операционного доступа. Осуществляют трепанацию в проекции региона гипоперфузии с последующим наложением ЭИКМА между искомыми артериями. Способ обеспечивает возможность селективной реваскуляризации необходимого региона головного мозга с высокой точностью с целью улучшения перфузии и функциональных исходов после перенесенного острого нарушения мозгового кровообращения у пациентов с окклюзией внутренней сонной артерии. 10 ил., 1 пр.

Группа изобретений относится к медицинской технике, а именно к средствам для лучевой терапии и медицинской визуализации. Система лучевой терапии содержит блок трехмерной визуализации в реальном масштабе времени, который генерирует базовое изображение и трехмерные изображения в режиме реального времени по меньшей мере участка области тела субъекта, включающей в себя целевой объект и один или более органов, подверженных риску (ОПР), блок регистрации, который деформируемо регистрирует плановое изображение области тела субъекта и базовое изображение, а также наносит карту способностей ткани поглощать излучение в плановом изображении на базовое изображение, блок движения, который измеряет движение целевого объема и ОПР в процессе проведения лучевой терапии на основе изображений в реальном масштабе времени, и подсистему расчета дозы в реальном масштабе времени, которая вычисляет дозу облучения на основе способностей ткани поглощать излучение, нанесенных в виде карты с базового изображения или планового изображения на трехмерные изображения в реальном масштабе времени, причем доза облучения в реальном масштабе времени основана на первоначальных интенсивностях пучков излучения, ведущих к каждому пересекаемому вокселу и пересекающих его, ослаблении вдоль траектории каждого из пучков излучения и времени, при котором каждый пучок пересекает каждый воксель. Способ лучевой терапии обеспечивается работой системы лучевой терапии при использовании невременного машиночитаемого носителя информации для проведения лучевой терапии и электронного устройства обработки данных для проведения лучевой терапии. Система лучевой терапии по второму варианту выполнения содержит линейный ускоритель (LINAC), выполненный с возможностью генерировать множество пучков излучения в по меньшей мере один целевой объем в теле субъекта, при этом каждый пучок имеет размер, форму, направление, интенсивность и продолжительность, заданные на основе плана лучевой терапии, управляемый роботом преобразователь ультразвуковой (УЗ) визуализации, выполненный с возможностью генерировать 3-мерные (3D) данные УЗ-изображения области тела субъекта, включающей в себя по меньшей мере один целевой объем и окружающие ткани, подверженные воздействию множества пучков излучения, по меньшей мере один процессор, спроектированный с возможностью повторно реконструировать во время доставки пучков излучения данные УЗ-изображения в трехмерные изображения тела субьекта, деформируемо регистрировать рентгеновское плановое изображение компьютерной томографии (КТ) и базовое изображение из ультразвуковых (УЗ) изображений, сгенерированных до проведения терапии, и наносить карту плотностей тканей, основанную на плановом изображении КТ, на базовые трехмерные УЗ-изображения для создания трехмерной карты плотностей тканей, измерять движения целевого объема и окружающих тканей из трехмерных изображений, сгенерированных во время доставки пучков излучения, регистрировать трехмерную карту плотностей тканей на трехмерных УЗ-изображениях, сгенерированных во время доставки пучков излучения, и вычислять дозу облучения в реальном масштабе времени, причем УЗ-изображения в реальном масштабе времени сгенерированы во время доставки пучков излучения, доза облучения в реальном масштабе времени основана на первоначальных интенсивностях пучков излучения, ведущих к каждому пересекаемому вокселу и пересекающих его, ослаблении вдоль траектории каждого из пучков излучения и времени, при котором каждый пучок пересекает каждый воксель, и измеренном движении, и по меньшей мере одно из управления LINAC на основе вычисленной дозы в реальном масштабе времени и управления дисплеем для отображения планового изображения в комбинации с вычисленной дозой в реальном масштабе времени. Использование изобретений позволяет усовершенствовать адаптивный расчет доз в реальном времени при лучевой терапии. 5 н. и 15 з.п. ф-лы, 2 ил.
Наверх