Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления



Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления
Покрытия волоконных световодов из ароматических полиамидов и способ их изготовления

Владельцы патента RU 2644891:

Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) (RU)
Федеральное государственное бюджетное учреждение науки Научный центр волоконной оптики Российской академии наук (НЦВО РАН) (RU)

Изобретение относится к покрытиям волоконных световодов из растворимых ароматических полиамидов и способу их изготовления. Предложено покрытие волоконного световода из ароматического гомо- или сополиамида формулы I с молекулярной массой от 35000 до 85000:

,

где х:у=0-1:1-0;

Способ включает вытягивание световода из заготовки. Протягивание его через фильеру, содержащую раствор полиамида формулы I с вязкостью 2400-18000 мПа⋅с в апротонном диполярном растворителе амидного типа, и удаление растворителя при нагревании в печи. Изобретения позволяют изготавливать покрытия волоконных световодов, характеризующиеся высокой термостабильностью и удовлетворительной адгезией к волокну, которые могут быть легко удалены с помощью органических растворителей амидного типа. 2 н. и 1 з.п. ф-лы, 2 ил., 1 табл., 8 пр.

 

Изобретение относится к волоконной оптике, а именно к первичным защитным термостойким покрытиям волоконных световодов из ароматических полиамидов (ПА) и способу их изготовления.

Изобретение наиболее эффективно может быть использовано при изготовлении оптических волокон для применения в авиакосмических технологиях, нефтегазовой и автомобильной промышленности, энергетике и медицине.

Полиамиды относятся к широко используемому в качестве первичных защитных покрытий оптических волокон классу органических полимеров в силу своей гидрофобности, механической прочности и необходимой адгезии к волокну [Лаптев А.Ю. Нанесение полимерных оболочек на волоконные световоды из кварцевого стекла: Дис. … канд. хим. наук. Нижний Новгород, 1992]. К сожалению, большая часть заявок и патентов на изобретения, посвященных таким покрытиям, не содержит сведений о структуре заявляемых ПА и способах их нанесения на световоды. Можно констатировать лишь, что наиболее востребованными являются алифатические (например, коммерчески доступные ПА 6, ПА 6,6, ПА 12) и полуароматические гомо- и сополиамиды и различные композиции на их основе, а главным способом их нанесения является экструзия [JP S5928101 (А), 1984; WO 2001040841; JP 2000098195 (A); JP H11241018 (А), 1999; JP S59188603 (А), 1984; JP 2003227975 (A); JPS6125114 (А), 1986]. К достоинству алифатических и полуароматических ПА относится хорошая перерабатываемость, а основным недостатком является невысокая термостойкость.

Существует потребность в термостабильных покрытиях, которая может быть обеспечена ароматическими ПА, поскольку они широко применимы в качестве высокопрочных материалов с превосходными термическими свойствами [Garcia J.M., Garcia F.C., Sema Р., L. High-performance aromatic polyamides. progress in Polymer Science, 2010, 35(5), 623-686; M., P., N., A., F.C., Serna F., de la J.L., J.M. Recent patents on aromatic polyamides. Recent Patents on Materials Science, 2009, 2 (3), 190-208]. Правда, из таких полимеров изготавливают синтетические волокна и ткани, мембраны и фильтры, а использование их для получения покрытий, в том числе волоконных световодов, ограничено вследствие низкой термопластичности и плохой растворимости.

Известно техническое решение по созданию недорогого волоконно-оптического кабеля с высокой тепло- и морозостойкостью путем покрытия световода готовой арамидной пленкой толщиной 2-20 мкм, характеризующейся высокой разрывной прочностью, низким коэффициентом термического расширения в продольном направлении (3,5×10-5/°C) и скоростью усадки ≤5,0% при 250°C [патентная заявка Японии JP H02280106 (А), 1990]. Однако в этом решении не описан метод фиксации арамидной пленки и ее устойчивость на поверхности световода, а также не приведены свойства полученного волоконно-оптического кабеля.

Наиболее близким к заявляемому способу аналогом является способ получения покрытий оптических волокон, заключающийся в нанесении на световод раствора, содержащего ароматический ПА с гидроксильными группами, эпоксидную смолу, ускоритель отверждения и органический растворитель, и последующем отверждении раствора на поверхности световода при нагревании [патентная заявка Японии JP 2010-004611].

В ароматическом ПА

Ar1 и Ar3 - ароматические группы; Ar2 - гидроксилсодержащий ароматический радикал; n/(m+n)>0,05; 0<m+n≤200.

Отмечается низкая температура формования покрытий и их превосходные термическая стабильность и огнестойкость.

К недостаткам способа-прототипа относятся: использование смеси компонентов для формирования покрытия; одновременное протекание при этом двух процессов - конденсации эпоксидной смолы с гидроксилсодержащим ПА и удаления растворителя; образование нерастворимого в органических растворителях покрытия.

Задачей изобретения является создание термостойких растворимых ароматических полиамидных покрытий волоконных световодов и разработка способа их изготовления из растворов соответствующих ПА в органических растворителях.

Задача решается заявляемыми термостойкими растворимыми покрытиями волоконных световодов из гомо- и сополиамидов общей формулы I

,

где x:y=0-1:1-0;

А также задача решается способом их получения, включающим вытягивание световода из заготовки, протягивание его через фильеру, содержащую раствор полиамида формулы I с вязкостью 2400-18000 мПа⋅с, и удаление растворителя при нагревании в печи при 250-350°C. Для приготовления раствора полиамида используют апротонные диполярные растворители амидного типа, такие как N-метил-2-пирролидон (N-МП), N,N-диметилформамид (ДМФА), N,N-диметилацетамид (ДМАА).

Заявляемые покрытия растворимы в N-МП, ДМФА, ДМАА и имеют высокие эксплуатационные характеристики, определяемые свойствами используемых для их изготовления ароматических полиамидов и получаемых из них пленок. Теплостойкость (Tc) всех полиамидов формулы I превышает 300°С, а термостойкость составляет более 400°С (см. таблицу), что делает возможным использование покрытий из них в экстремальных условиях. Разрывная прочность пленок, формируемых полиамидами I, составляет 100-140 МПа (см. таблицу).

Адгезия покрытий из полиамидов I достаточна для эффективной защиты световодов от механических и термических воздействий без использования аппретов. Потеря прочности световода с покрытием при изгибе после выдержки при 300°C в течение 3 ч в худшем случае составляет 30% (см. фиг. 2).

Важнейшей отличительной особенностью предлагаемых полиамидных покрытий световодов по сравнению с применяемыми и описанными ранее является использование ароматических полиамидов, а не алифатических или полуароматических полиамидных смол, что обеспечивает значительную термическую устойчивость покрытий.

Способ изготовления покрытий по изобретению включает нанесение раствора ПА формулы I на поверхность вытянутого из заготовки световода при его протягивании через фильеру и последующее удаление растворителя (фиг. 1). Достоинством заявляемого способа является его совместимость с существующими технологическими установками изготовления термостойких полиимидных покрытий [Семенов С.Л., Сапожников Д.А., Ерин Д.Ю., Забегаева О.Н., Куштавкина И.А., Нищев К.Н., Выгодский Я.С., Дианов Е.М. Высокотемпературное полиимидное покрытие для волоконных световодов. Квантовая электроника, 2015, 45 (4), 330-332].

Для приготовления наносимых на световод растворов ароматических ПА применяют амидные растворители: N-МП, ДМФА и ДМАА. Растворимость в таких растворителях гомо- и сополиамидов по настоящему изобретению обусловлена содержанием в них кардовых (флуореновых или фталидных), Cl- или НОС(O)-групп.

Раствор (со)полиамида готовят растворением синтезированного и выделенного полимера в подобранном растворителе или используют раствор синтезированного ПА без выделения (in situ), если поликонденсацию проводят, например, в N-МП или ДМАА. Во всех случаях доводят раствор до вязкости 2400-18000 мПа⋅с. В данном диапазоне вязкости на световоде образуется гладкое равномерное покрытие. При меньших значениях вязкости на световоде в процессе его вытяжки успевают сформироваться капли, а при более высоких значениях - возрастает вероятность образования прочих дефектных областей, например "гребешков". Значение вязкости раствора определяется молекулярной массой полиамида, его концентрацией, природой растворителя и температурой. В заявляемом способе применимы полиамиды с широким диапазоном молекулярных масс - от 35000 до 85000, что соответствует логарифмической вязкости полимера от 0,4 до 1,2 дл/г.

На фиг. 1 показана схема установки для изготовления световода с полимерным покрытием, где 1 - заготовка, 2 - печь, 3 - фильера, 4 - печь, 5 - катушка.

На фиг. 2 показано изменение прочности покрытий на изгиб в зависимости от температуры и времени теплового воздействия; ln{ln[1/(1-F)]} - функция Вейбулла, где F - накопленная вероятность разрушения световода.

Новизна заявляемого способа состоит в нанесении на световод не расплава полимера, традиционно применяемого для формирования покрытий на основе алифатических полиамидов, а полиамидного лака с последующим удалением растворителя.

Результатами предлагаемого изобретения являются разработка термостойких растворимых покрытий волоконных световодов из разнообразных ароматических полиамидов и их изготовление нанесением раствора соответствующего ПА на световод с последующим удалением растворителя термообработкой.

Изобретение иллюстрируется приведенными ниже примерами и чертежами.

Общая методика изготовления полиамидного покрытия

Ароматические полиамиды получают низкотемпературной поликонденсацией в растворе дихлорангидридов ароматических дикарбоновых кислот с ароматическими диаминами [Виноградова С.В., Васнев В.А., Выгодский Я.С. Кардовые полигетероарилены. Синтез, свойства и своеобразие. Успехи химии, 1996, 65 (3), 266-296]. После окончания синтеза ПА, как правило, выделяют, очищают и сушат, затем растворяют в подобранном растворителе до достижения вязкости раствора 2400-18000 мПа⋅с и наносят на световод.

При проведении поликонденсации в N-МП или ДМАА возможно исключение стадии выделения ПА. Полученный в ходе синтеза полимерный раствор разбавляют до требуемой вязкости и наносят на световод.

На установке для изготовления световода с полимерным покрытием (фиг. 1) из заготовки 1, разогретой в печи 2, вытягивают волокно диаметром порядка 110-150 мкм и протягивают через фильеру 3 с диаметром отверстия 200-250 мкм, содержащую раствор соответствующего ПА. Затем световод с нанесенным раствором попадает в печь 4, где происходит удаление растворителя в течение 3-8 с. Температурный режим в печи (250-350°С) зависит от температуры кипения используемого растворителя. Его подбирают таким образом, чтобы обеспечить наиболее полное удаление растворителя. После выхода из печи световод с готовым полиамидным покрытием наматывают на катушку 5, частота вращения которой определяет диаметр оптического волокна, толщину наносимого покрытия и время сушки. Разница между диаметром отверстия фильеры и диаметром вытягиваемого световода определяет толщину наносимого слоя раствора полиамида. Толщина изготавливаемого слоя полиамидного покрытия световода за 1 цикл нанесения раствора достигает 5-10 мкм.

Пример 1

Из предварительно синтезированного, выделенного и очищенного полиамида Ia на основе дихлорангидрида терефталевой кислоты и 9,9-бис-(4'-аминофенил)флуорена готовят 15-20%-ный раствор в N-МП, соответствующий требуемому диапазону вязкости. Раствор фильтруют и заливают в фильеру, через которую протягивают световод согласно общей методике. Температура в печи, где происходит удаление растворителя, составляет 300-350°C.

Покрытие из полимера представленного строения имеет температуру стеклования порядка 390°C и температуру 10%-ной потери массы на воздухе около 510°C. Пленочные образцы полимера демонстрируют разрывную прочность порядка 115 МПа, модуль упругости при растяжении 2350 МПа, разрывное удлинение около 8% (таблица).

Световод с покрытием из полиамида Ia устойчив к продолжительным термическим воздействиям: выдержка в течение 120 ч при 250°C приводит к 10%-ной потере прочности на изгиб, при 300°C - 30%-ной (фиг. 2).

Пример 2

Покрытие изготавливают из раствора сополиамида Ib на основе дихлорангидрида терефталевой кислоты (1,0 моль), 9,9-бис-(4'-аминофенил)флуорена (0,5 моль) и 2-хлор-1,4-диаминобензола (0,5 моль) в N-МП. Температура в печи 300-350°C.

Покрытие имеет температуру стеклования порядка 390°C и температуру 10%-ной потери массы на воздухе около 470°C. Разрывная прочность пленочных образцов составляет порядка 140 МПа, модуль упругости при растяжении - 2060 МПа при разрывном удлинении 10% (таблица). Выдержка световода с покрытием из сополиамида Ib в течение 3 ч при 250 и 300°C уменьшает его прочность на изгиб не более чем на 15 и 30% соответственно (фиг. 2).

Пример 3

Покрытие изготавливают из раствора сополиамида Ic на основе дихлорангидрида терефталевой кислоты (1,0 моль), 9,9-бис-(4'-аминофенил)флуорена (0,3 моль) и 2-хлор-1,4-диаминобензола (0,7 моль) в N-МП. Температура в печи 300-350°C.

Покрытие обладает свойствами, сопоставимыми с описанными в примере 2.

Пример 4

Покрытие изготавливают из раствора сополиамида Id на основе дихлорангидрида терефталевой кислоты (1,0 моль), 9,9-бис-(4'-аминофенил)флуорена (0,5 моль) и 3,5-диаминобензойной кислоты (0,5 моль) в N-МП. Температура в печи 300-350°C.

Покрытие из полимера представленного строения имеет температуру стеклования порядка 360°C и температуру 10%-ной потери массы на воздухе около 440°C. Пленочные образцы полимера демонстрируют разрывную прочность порядка 135 МПа, модуль упругости при растяжении 1600 МПа и разрывное удлинение около 11% (таблица).

Световоды с покрытием из сополиамида Id устойчивы к значительным термическим воздействиям. Прочность световода на изгиб с покрытием из такого полимера не уменьшается после выдержки в течение 72 и 3 ч при 250 и 300°C соответственно (фиг. 2).

Пример 5

Покрытие изготавливают из раствора сополиамида Ie на основе 3,3-бис-[(4'-хлоркарбонил)фенил]фталида и 2-хлор-1,4-диаминобензола в N-метил-2-пирролидоне. Температура в печи 300-350°C.

Покрытие характеризуется температурой стеклования порядка 360°C и температурой 10%-ной потери массы на воздухе около 470°C. Пленки из полиамида Ie имеют разрывную прочность порядка 100 МПа, модуль упругости при растяжении 1700 МПа и разрывное удлинение около 18% (таблица). Прочность световода на изгиб с покрытием из такого полимера не уменьшается после выдержки в течение 1 ч при 350°C и уменьшается не более чем на 10% после выдержки в течение 72 ч при 300°C (фиг. 2).

Пример 6

Изготовление покрытия из полиамида Ia, представленного в примере 1, осуществляют аналогично, но для приготовления раствора полиамида используют N,N-диметилформамид, а температура в печи составляет 250-300°C. Свойства покрытия аналогичны свойствам покрытия, описанного в примере 1 (см. таблицу).

Пример 7

Изготовление покрытия из полиамида Ia, представленного в примере 1, осуществляют аналогично, но для приготовления раствора полиамида используют N,N-диметилацетамид, а температура в печи составляет 250-300°C. Свойства покрытия аналогичны свойствам покрытия, описанного в примере 1 (см. таблицу).

Пример 8

Синтез полиамида Ia, используемого в примере 1, осуществляют в N-метил-2-пирролидоне. Полученный в результате синтеза раствор разбавляют до требуемой вязкости и используют без выделения полимера (in situ) в соответствии с методикой, описанной в примере 1. Свойства покрытия схожи со свойствами покрытия, описанного в примере 1 (см. таблицу).

Все полиамидные покрытия, полученные в примерах 1-8, растворимы в N-МП, ДМФА и ДМАА.

Технический результат - новые термостойкие покрытия волоконных световодов из растворимых ароматических гомо- и сополиамидов, удобный способ их изготовления из раствора и возможность удаления с помощью соответствующего растворителя.

Заявляемое изобретение обладает следующими преимуществами:

- получаемые покрытия волоконных световодов термостабильны и легко удаляются с поверхности благодаря использованию при их изготовлении растворимых ароматических гомо- и сополиамидов с высокой тепло- и термостойкостью;

- для изготовления покрытий и их удаления с поверхности световода можно использовать широкий круг органических растворителей амидного типа;

- после нанесения раствора полиамида на световод для формирования конечного покрытия необходимо только удаление растворителя при нагревании (отсутствуют химические превращения при формировании покрытия, которые подразумевает способ-прототип);

- требуемая толщина покрытия в 5-10 мкм достигается в результате однократного нанесения;

- можно получать полиамидные покрытия волоконных световодов из кардовых и других ароматических гомо- и сополиамидов с варьируемыми свойствами;

- получаемые покрытия обладают необходимой адгезией к поверхности световода и прочно удерживаются на его поверхности, что обусловливает высокую прочность на изгиб после термообработки в отличие от арамидной пленки, используемой в роли термостабильного покрытия.

1. Термостойкое растворимое покрытие волоконного световода из ароматического гомо- или сополиамида формулы I с молекулярной массой от 35000 до 85000:

,

где х:у=0-1:1-0;

2. Способ изготовления покрытия по п. 1, включающий вытягивание световода из заготовки, протягивание его через фильеру, содержащую раствор полиамида формулы I с вязкостью 2400-18000 мПа⋅с, и удаление растворителя при нагревании в печи при 250-350°С.

3. Способ по п. 2, отличающийся тем, что для приготовления раствора полиамида формулы I используют апротонные диполярные растворители, такие как N-метил-2-пирролидон, N,N-диметилформамид, N,N-диметилацетамид.



 

Похожие патенты:

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим элементом, оптоволоконный жгут с полированным торцом, собранный из световодов, концевой участок которого установлен внутри камеры с помощью, по меньшей мере, двух фиксирующих элементов, один из которых обеспечивает плотную упаковку световодов на его приторцевой части, между соседними световодами имеются зазоры, образующие межволоконное пространство.

Группа изобретений относится к измерительным системам для контроля состояния композитного материала. Композитная конструкция содержит композитный материал и оптическое волокно, размещенное в этом композитном материале.

Группа изобретений относится к измерительным системам для контроля состояния композитного материала. Композитная конструкция содержит композитный материал и оптическое волокно, размещенное в этом композитном материале.

Изобретение относится к области техники передачи и усиления лазерного излучения по оптическому волокну, а точнее к способу вытягивания высокоэффективного сдвоенного лазерного волокна и полученному по нему волокну.

Группа изобретений относится к оптическому волокну, характеризующемуся эффективной формой профиля показателя преломления в сердцевине. Оптическое волокно содержит сердцевину и оболочку, окружающую внешнюю окружность сердцевины, в котором первая относительная разность показателей преломления Δ1a больше, чем 0.

Изобретение относится к волоконным световодам и может быть использовано в широкополосных волоконно-оптических системах связи, при разработке перестраиваемых непрерывных импульсных лазеров.

Изобретение относится к области волоконной оптики и может быть использовано при конструировании волоконно-оптических гироскопов и других интерферометрических датчиков физических величин с использованием одномодовых световодов.

Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для изготовления конструктивных элементов сенсоров, при химической модификации их внутренней поверхности.

Заявленное изобретение относится к волоконно-оптической связи, а более конкретно к оптическому волокну, оптимизированному для обеспечения как одномодовой, так и многомодовой передачи.

Изобретение относится к области оптического приборостроения и может найти применение для изготовления волоконных брэгговских решеток показателя преломления. Способ состоит в использовании импульсного излучения фемтосекундного лазера, которое с помощью микрообъектива фокусируется через шлифованную боковую грань прозрачной феррулы в сердцевину нефоточувствительного волоконного световода с защитным покрытием.

Изобретение относится к композициям для покрытия на водной основе, подходящим в качестве покрытий для емкостей, подверженных воздействию пищевых продуктов, вызывающих коррозию.

Изобретение относится к области получения композитных материалов с применением нанотехнологии, а именно касается технологии получения нанокомпозитов на основе наноструктурированного карбида кремния с полиимидной матрицей, которые могут быть применены в различных областях техники, в частности при изготовлении конструкционных материалов, используемых в авиационной и космической отрасли, в ракетостроении, электротехнике, в кабельной промышленности и микроэлектронике.

Изобретение относится к новым термостойким растворимым полиимидным покрытиям волоконных световодов и способу их изготовления. Полученные покрытия характеризуются удовлетворительной адгезией к волокну как в присутствии аппрета, так и без него.

Изобретение относится к поверхностным покрытиям с противообледенительными свойствами, формованным изделиям и устройствам, содержащим такое покрытие, способам получения и использования таких покрытий, формованных деталей и устройств.

Изобретение относится к полимерной химии, в частности к электроизоляционным лакокрасочным материалам для покрытия эмаль-проводов. .

Изобретение относится к сшиваемым защитным коллоидам, способу полимеризации этиленовоненасыщенных мономеров с применением сшиваемых защитных коллоидов, а также к получаемым с их помощью полимерам, соответственно дисперсиям полимеров и их применению.

Изобретение относится к формованному изделию, выполненному из полиамидной смолы либо из композиции на основе полиамидной смолы, а также к способу получения формованного изделия.

Изобретение относится к материалу в порошкообразной форме, предназначенному для лазерного спекания, способу приготовления такого материала, а также к твердому объекту.

Изобретение относится к маточной смеси для полиамидной смоляной композиции, используемой для изготовления упаковочного материала, непроницаемого для бензина материала, волокнистого материала, материалов для шлангов, упаковочных бутылок, а также к способу получения полиамидной смоляной композиции с применением вышеуказанной маточной смеси.

Изобретение относится к полиамидной полимерной композиции, используемой для изготовления формованных изделий. Композиция включает полиамидный полимер (A), содержащий структурные звенья диамина и структурные звенья дикарбоновой кислоты, где 70 мол.% или более структурных звеньев диамина образованы из ксилилендиамина, и 50 мол.% или более структурных звеньев дикарбоновой кислоты образованы из себациновой кислоты, и от 1 до 40 мас.
Наверх