Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера зависимости резонансной частоты электромагнитных колебаний металлической полости резонатора от объема заполняющего полость вещества с различными электрофизическими параметрами. Техническим результатом настоящего изобретения является расширение функциональных возможностей способа измерения, характеризуемое увеличением чувствительности и, как следствие, точности измерений за счет увеличения диапазона и характера изменения резонансной частоты резонатора в зависимости от измеряемого количества вещества в емкости. В предлагаемом способе измерения количества вещества в металлической емкости, при котором возбуждают электромагнитные колебания в полости емкости и измеряют резонансную частоту электромагнитных колебаний полости емкости, по которой судят об измеряемом количестве вещества, стенки емкости на, по меньшей мере, части ее длины выполняют сжимаемыми или растягиваемыми за счет силы тяжести, при этом изменяют объем емкости как функцию количества вещества в емкости. 5 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера зависимости резонансной частоты электромагнитных колебаний металлической полости резонатора от объема заполняющего полость вещества с различными электрофизическими параметрами.

Известны способы измерения количества (объема, массы, уровня) веществ в различных емкостях, при которых определяют количество вещества в емкости с применением датчиков в виде отрезков линий передачи электромагнитных волн - отрезков длинных линий, полых волноводов, волноводных резонаторов (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1980. 280 с.). При измерении уровня диэлектрических жидкостей диапазон изменения информативного параметра, в частности, резонансной частоты электромагнитных колебаний резонатора в виде отрезка длинной линии или полого волноводного резонатора оказывается малым, что затрудняет проведение измерений вследствие невысоких значений чувствительности датчиков уровня и точности измерений уровня. Это характерно для измерений уровня жидкостей с малым значением диэлектрической проницаемости, в частности, для криогенных жидкостей (жидкого кислорода, водорода, гелия и др.).

Известно также техническое решение (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с. С. 86-90), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Этот способ-прототип заключается в возбуждении электромагнитных колебаний в емкости с контролируемым веществом - металлическом полом резонаторе, в данном случае полом волноводном резонаторе с контролируемым веществом (жидкостью), размещаемом вертикально. Измеряя резонансную (собственную) частоту электромагнитных колебаний резонатора, можно определить уровень диэлектрической или электропроводной жидкости, заполняющей полость этого резонатора. Однако для диэлектрических жидкостей с малым значением диэлектрический проницаемости (менее 2) диапазон изменения резонансной частоты и, соответственно, чувствительность уровнемера с чувствительным элементом в виде такого волноводного резонатора является малой величиной, что затрудняет проведение измерений уровня с высокой точностью. Для электропроводных жидкостей диапазон измерения количества ограничен на практике, что обусловлено весьма высокими значениями резонансной частоты, при больших значениях количества электропроводной жидкости в емкости: резонансная частота стремится к бесконечности при приближении значения количества к значению объема емкости.

Техническим результатом настоящего изобретения является расширение функциональных возможностей способа измерения, характеризуемое увеличением чувствительности и, как следствие, точности измерений за счет увеличения диапазона и характера изменения резонансной частоты резонатора в зависимости от измеряемого количества вещества в емкости.

Технический результат достигается тем, что в предлагаемом способе измерения количества вещества в металлической емкости, при котором возбуждают электромагнитные колебания в полости емкости и измеряют резонансную частоту электромагнитных колебаний полости емкости, по которой судят об измеряемом количестве вещества, стенки емкости на, по меньшей мере, части ее длины выполняют сжимаемыми или растягиваемыми за счет силы тяжести, при этом изменяют объем емкости как функцию количества вещества в емкости.

Предлагаемый способ поясняется чертежами.

На фиг. 1 приведен пример первого устройства для реализации способа измерения.

На фиг. 2 и фиг. 3 приведены графики, поясняющие работу устройства на фиг. 1.

На фиг. 4 приведен пример второго устройства для реализации способа измерения.

На фиг. 5 приведены графики, поясняющие работу устройства на фиг. 2.

Здесь показаны резонатор 1 с контролируемым веществом 2, элемент связи 3, генератор электромагнитных колебаний 4, элемент связи 5, регистратор 6, сильфон 7, элемент крепления 8, диэлектрическая платина 9.

Способ реализуется следующим образом.

В устройстве для измерения количества - в данном случае уровня вещества в металлической полости (фиг. 1) - для реализации данного способа измерения в полом резонаторе 1 с контролируемым веществом 2 возбуждают электромагнитные колебания. Возбуждение электромагнитных колебаний осуществляют с помощью элемента связи 3 от генератора электромагнитных колебаний 4. Прием электромагнитных колебаний осуществляют с помощью элемента связи 5, подсоединенного с помощью линии связи к регистратору 6, служащему для определения резонансной частоты резонатора 1 и, следовательно, уровня контролируемого вещества 2 в емкости.

Сама эта полость резонатора 1 является датчиком уровня x контролируемого вещества 2 (фиг. 1). Выходным (информативным) параметром датчика служит зависимость резонансной (собственной) частоты электромагнитных колебаний какого-либо, в частности низшего, типа, изменяющаяся при заполнении полости резонатора 1 контролируемым веществом 2. Параметром датчика, который поставлен в зависимость от уровня x (и, следовательно, объема, массы) вещества в рассматриваемой полости-резонаторе, является его длина .

Если выполнить боковые стенки резонатора из растягиваемого/сжимаемого материала хотя бы на части его длины, например, в виде сильфона 7, и подвесить резонатор, закрепив его в его верхней части (фиг. 1) с помощью элементов крепления 8, то тем самым обеспечивается соответствие степени заполнения веществом полости-резонатора ее длине. Длина подвешенного резонатора изменяется при растяжении или сжатии сильфона (на фиг. 1 показано линией, имеющей стрелки на концах, вблизи сильфона 7) под действием веса полости с веществом, увеличиваясь или уменьшаясь соответственно при увеличении или уменьшении уровня x (и, следовательно, объема, массы) вещества. Тем самым изменяется функция преобразования датчика.

На фиг. 2 показан характер зависимости для резонатора с неизменной длиной (линия 1) и для резонатора с зависящей от уровня x длиной (линия 2) при заполнении этих резонаторов диэлектрическим веществом в устройстве на фиг. 1. Выбором материала боковых стенок резонатора можно увеличить чувствительность датчика, в принципе, до любого значения.

Интересно отметить, что при заполнении объема такого полого резонатора 1 электропроводным веществом, также выбором материала стенок можно изменить знак чувствительности: с увеличением степени заполнения резонатора таким веществом его резонансная (собственная) частота будет не увеличиваться, как это было при неизменной длине (фиг. 3, кривая 1), а уменьшаться (фиг. 3, кривая 2). То есть в этом случае изменение чувствительности S, вызванное таким изменением функции преобразования датчика, имея противоположный знак по сравнению с чувствительностью S0 датчика с неизменной функцией преобразования, превышает ее по абсолютной величине. Изменение чувствительности ΔSx, вызванное таким изменением функции преобразования датчика, имеет противоположный знак по сравнению с чувствительностью S0 датчика с неизменной функцией преобразования и превышает ее по абсолютной величине. Графики на фиг. 2 и фиг. 3 не показывают возможную нелинейность кривых, а поясняют качественно характер указанных зависимостей.

Если рассматриваемую полость резонатора 1 (фиг. 1) заполняют электропроводным веществом, то объем полости V0 является функцией объема V данного вещества в ней, уменьшаясь при увеличении V. Поэтому

где - начальное (при V=0) значение резонансной частоты резонатора.

Следовательно

,

где V - объем вещества в полости резонатора, V0 - начальный (при V=0) объем полости резонатора, - чувствительность датчика с неизменной функцией преобразования (V0=const), - изменение чувствительности датчика.

Поскольку , , , то S0>0, ΔSx<0. Таким образом, при чувствительность датчика сохраняет знак, но S<S0. Если же , то чувствительность S датчика изменяет знак на противоположный, то есть S<0, и с возрастанием уровня электропроводного вещества в полости резонансная частота резонатора уменьшается (см. фиг. 3, линия 2). Если, более того, , то чувствительность S, имея противоположный S0 знак, возрастает с увеличением V, превосходя S0 по модулю (фиг. 3, линия 3).

Выбором параметров растягиваемого или сжимаемого элемента (пружины, сильфона и т.п.), изменяющего под действием силы тяжести длину данного датчика уровня по мере его заполнения контролируемым веществом, можно обеспечить то или иное соотношение между значениями S0 и S чувствительности датчика.

Изменение длины резонатора по мере заполнения веществом полости-резонатора имеет место и в другом случае, которому соответствует устройство на фиг. 4. В устройстве в полом резонаторе 1 с контролируемым веществом 2 возбуждают электромагнитные колебания. Возбуждение электромагнитных колебаний осуществляют с помощью элемента связи 3 от генератора электромагнитных колебаний 4. Прием электромагнитных колебаний осуществляют с помощью элемента связи 5, подсоединенного с помощью линии связи к регистратору 6, служащему для определения резонансной частоты резонатора 1 и, следовательно, уровня контролируемого вещества 2 в емкости. Здесь сильфон 7 содержится в нижней части полого резонатора 1, причем заполняется веществом только часть полости выше герметично размещенной в ней горизонтально тонкой диэлектрической платины 9. При этом электромагнитное поле существует во всем объеме полого резонатора 1, т.е. включает часть объема полости ниже диэлектрической платины 9. Длина резонатора изменяется при сжатии или растяжении сильфона (на фиг. 4 показано линией, имеющей стрелки на концах, вблизи сильфона 7) под действием веса полости с веществом, уменьшаясь или увеличиваясь соответственно при увеличении или уменьшении уровня x (и, следовательно, объема, массы) вещества.

Рассмотрение влияния увеличения и уменьшения степени заполнения полости резонатора 1 в устройстве на фиг. 4 проводится аналогично рассмотрению такого влияния для устройства на фиг. 1. В данном случае при заполнении полости резонатора 1 диэлектрическим веществом на величину резонансной частоты оказывают влияние два противоположно направленных механизма: с увеличением уровня (объема, массы) вещества в полости резонансная частота уменьшается по мере заполнения, а с другой стороны, она увеличивается вследствие уменьшения длины полости резонатора 1 при сжатии сильфона 7. Если второй фактор оказывает более сильное влияние, то ожидаемый характер зависимости резонансной (собственной) частоты электромагнитных колебаний резонатора от уровня x диэлектрического вещества (уменьшение с увеличением x при неизменной длине) изменяется на противоположный: увеличивается с увеличением уровня x диэлектрического вещества. Это противоречит общепринятым представлениям о возможном характере данной зависимости.

Возможность изменения знака чувствительности с увеличением степени заполнения резонатора диэлектрическим веществом показана на фиг. 5. При заполнении объема такого полого резонатора 1 диэлектрическим веществом, также выбором материала стенок его резонансная (собственная) частота будет не уменьшаться, как это было при неизменной длине (рис. 5, кривая 1), а увеличиваться (рис. 5, кривая 2). В этом случае изменение чувствительности ΔSx, вызванное таким изменением функции преобразования датчика, имея противоположный знак по сравнению с чувствительностью S0 датчика с неизменной функцией преобразования, может превышать ее по абсолютной величине (рис. 5, кривая 3). Графики на фиг. 5 не показывают возможную нелинейность кривых, а поясняют качественно характер указанных зависимостей.

Таким образом, управлением функцией преобразования датчика достигается повышение чувствительности до требуемой величины и изменение ее знака, если это необходимо. Последнее обстоятельство может изменить общепринятое представление о характере функциональной связи резонансной частоты электромагнитных колебаний и количества диэлектрического или электропроводного вещества в емкости. Данный способ применим для измерений количества (уровня, объема, массы) вещества (жидкости, сыпучего вещества) в емкости. Также он может быть использован в процессе обучения в демонстрационных экспериментах для описания возможного, в том числе отличного от общепринятого, характера зависимости резонансной частоты электромагнитных колебаний металлической полости-резонатора от объема заполняющего полость вещества с различными электрофизическими параметрами.

Способ измерения количества вещества в металлической емкости, при котором возбуждают электромагнитные колебания в полости емкости и измеряют резонансную частоту электромагнитных колебаний полости емкости, по которой судят об измеряемом количестве вещества, отличающийся тем, что стенки емкости на, по меньшей мере, части ее длины выполняют сжимаемыми или растягиваемыми за счет силы тяжести, при этом изменяют объем емкости как функцию количества вещества в емкости.



 

Похожие патенты:

Изобретение относится к измерительной технике и предназначено для контроля уровня материалов в резервуарах путем измерения ослабления микроволнового зондирующего сигнала.

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости и сыпучих сред, находящихся в какой-либо емкости.

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью.

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых емкостях, например, оно может быть применено для определения уровня жидкого металла.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат заключается в повышении точности измерений.

Заявленная группа изобретений относится к средствам для измерения уровня заполнения на основе времени распространения сигнала. Предложенное устройство измерения уровня заполнения содержит передающий блок для отправки передаваемого сигнала, который отражается на поверхности загруженного продукта заполняющей среды и по меньшей мере одном втором отражателе; приемный блок для регистрации отраженного переданного сигнала, который является эхо-кривой, которая имеет множество эхо-сигналов; блок оценки для выполнения способа отслеживания для группировки соответственно вызванных идентичными отражателями эхо-сигналов эхо-кривых, зарегистрированных в различные моменты времени, причем блок оценки выполнен с возможностью выполнения следующих этапов: (а) определение первого трека первой группы эхо-сигналов, которые вызваны первым отражателем, и второго трека второй группы эхо-сигналов, которые вызваны вторым отражателем, причем каждый трек описывает время распространения соответствующего переданного сигнала от передающего блока до ассоциированного с треком отражателя и обратно в приемный блок в различные моменты времени; (b) определение линейного отношения между первым треком и вторым треком, задаваемое линейным уравнением; (c) определение одной или нескольких неизвестных из линейного отношения между первым треком и вторым треком.

Предложенная группа изобретений относится к средствам для мониторинга и эксплуатации радиолокационной системы измерения уровня для определения уровня наполнения резервуара.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др.

Изобретение относится к технической области измерения уровня заполнения. В частности, настоящее изобретение относится к устройству измерения уровня заполнения, к способу определения и читаемому компьютером носителю.

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В способе определения количества диэлектрической жидкости в металлической емкости, при котором в первом цикле измерений возбуждают электромагнитные колебания последовательно в фиксированном диапазоне частот [ƒ1, ƒ2] в полости емкости и подсчитывают число N возбуждаемых типов колебаний, дополнительно, во втором цикле измерений производят излучение электромагнитных волн фиксированной частоты ƒ, для которой длина волны λ в свободном пространстве меньше характерного размера полости, в пространство, ограниченное металлической оболочкой емкости, измеряют среднее за цикл значение выводимой из полости мощности Р электромагнитного поля на длине волны λ, осуществляют совместное функциональное преобразование N и Р. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной с оконечным горизонтальным участком фиксированной длины z0, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования ƒ и Δϕ согласно соотношению. 1 ил.

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально два отрезка коаксиальной длинной линии, с оконечными горизонтальными участками фиксированной длины, скачкообразно заполняемыми средами и опорожняемыми при, соответственно, поступлении сред в емкость и их удалении из нее. Возбуждают в отрезках длинной линии электромагнитные колебания на разных резонансных частотах и , которым соответствуют разные распределения энергии электромагнитного поля стоячей волны, и измеряют эти резонансные частоты в зависимости от координаты положения границы раздела двух сред. Между параллельными наружными проводниками отрезков длинной линии возбуждают электромагнитные колебания как в отрезке двухпроводной длинной линии, имеющем на конце его горизонтального участка нагрузочное реактивное сопротивление, отличное от нагрузочных реактивных сопротивлений отрезков коаксиальной длинной линии, измеряют резонансную частоту отрезка двухпроводной длинной линии и производят совместную функциональную обработку. 3 ил.

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают вертикально отрезок длинной линии, возбуждают электромагнитные колебания на его резонансной частоте ƒ, осуществляют ее измерение, возбуждают электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых волн и осуществляют совместное функциональное преобразование ƒ и Δϕ. Измерение Δϕ производят в том же или другом, идентичном ему, отрезке длинной линии с равномерным вдоль него распределением энергии электрического поля при измерении ƒ и положение нижерасположенной и вышерасположенной границы раздела определяют по разности величин, одна из которых пропорциональна, соответственно, разности между отношением величины, пропорциональной значению Δϕ при наличии среды в емкости к его значению в отсутствие этой среды, и единицей, а другая величина - разности между величиной, пропорциональной квадрату отношения значения ƒ в отсутствие среды к его значению при наличии этой среды в емкости, и единицей. 2 ил.
Наверх