Способ получения водородной воды и устройство для его осуществления



Способ получения водородной воды и устройство для его осуществления
Способ получения водородной воды и устройство для его осуществления
Способ получения водородной воды и устройство для его осуществления
C25B1/04 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2645492:

Багич Геннадий Леонидович (RU)

Изобретение относится к устройству и способу получения обогащенной водородом воды и может быть использовано в медицинском оборудовании для оздоровительно-лечебных процедур и в хозяйственно бытовой деятельности. Устройство содержит корпус с горловиной, две индуктивности, расположенные соосно и имеющие противоположно направленную проволочную обмотку, первый неизолированный положительный кислородный трубчатый электрод, расположенный в центре корпуса, второй неизолированный положительный кислородный электрод с цилиндрической поверхностью, расположенный на периферии корпуса коаксиально первому положительному кислородному электроду, и изолированный отрицательный водородный электрод, причем электроды расположены в корпусе между индуктивностями, при этом отрицательный водородный электрод представляет собой пустотелый электрод, состоящий из двух токопроводящих электрически связанных изолированных поверхностей, образующих межповерхностный объем, связанный через отверстия в одной из токопроводящих пластин с объемом устройства, и двухстороннюю пробку, перекрывающую горловину, с расположенными в ней клапаном и контактным устройством. Изобретение обеспечивает эффективное получение обогащенной водородом воды и снижение себестоимости. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к медицинскому оборудованию для оздоровительно-лечебных процедур и может быть использовано в хозяйственно-бытовой деятельности.

Японские ученые изобрели аппарат, позволяющий насытить воду водородом, и устройства, позволяющие этот водород там удерживать (см. на сайте http://www.beautvinsider.ru/2015/05/19/enhel-water-new-anti-aee-best-treatment/ статью Вода с водородом Enhel Water - новая панацея от всего?). Недостатком устройств является использования для получения водорода электролиза, при котором происходит выпадение тяжелых металлов в воду, которая на некоторое время насыщается молекулярным водородом.

Известны промышленные способы и устройства разложения воды (см., например, Российские патенты №2506349, 2535304, 2496917, 2521868), которые из-за высокой производительности не предназначены для бытового применения.

Целью изобретения является снижение себестоимости устройств.

Указанная цель реализуется за счет того, что вода разлагается на водород и кислород при действии постоянного электрического поля конденсатора с изолированной отрицательной обкладкой (водородным электродом, другой электрод кислородный не изолирован), вектор напряженности которого направлен перпендикулярно действующим попеременно в разные стороны векторам электромагнитных напряженностей, вырабатываемых двумя соосно расположенными индуктивностями, имеющими противоположно направленную проволочную обмотку. При ориентации диполей воды вдоль вектора электрического поля происходит разрыв или ослабление в зависимости от количества прикладываемой энергии атомных связей молекул воды за счет тепловой энергии воды и энергии электрического поля. Известно, что при очень значительной энергии электрического поля происходит не только разложение воды, но и пробой ее как диэлектрика. В нашем случае мощность, создаваемая конденсатором с изолированной обкладкой, ослаблена. Для ее восстановления необходимо увеличить входное напряжение. Для увеличения производительности разложения воды используем боковые по отношению к диполям воды электромагнитные поля, действующие на диполи попеременно с двух сторон, тем самым разрывая за счет вращающих моментов молекулярные связи атомов воды. После разложения воды ионы кислорода нейтрализуются у неизолированной положительной обкладки конденсатора и выходят из воды. Ионы водорода концентрируются (притягиваются) у изолированной отрицательной обкладки и остаются в воде. Для накопления ионов водорода площадь обкладки увеличиваем за счет придания ей объемной формы. Таким образом, отключив напряжение питания, но оставив потенциал изолированной обкладки, создается возможность длительное время сохранять ионы водорода в воде. Для нейтрализации ионов, отрицательный потенциал обкладки переводим на нейтрализационную не изолированную токопроводящую поверхность, например перфорированную или сетку. Таким образом, способ получения водородной воды включает подачу воды в объем устройства, включение контактным устройством напряжения питания, воздействие на воду постоянного электрического поля водяного конденсатора с изолированной отрицательной обкладкой, вектор напряженности которого направлен перпендикулярно действующим периодически попеременно в разные стороны векторам магнитных напряженностей, вырабатываемых двумя соосно расположенными индуктивностями, в результате чего происходит разрыв атомных связей молекул воды с образованием ионов водорода и кислорода за счет тепловой энергии воды, энергии электрического и магнитных полей, при этом отрицательные ионы кислорода притягиваются к положительному неизолированному электроду и нейтрализуются, преобразуясь в молекулы кислорода, которые выходят в атмосферу, а положительные ионы водорода притягиваются к поверхности отрицательного изолированного электрода, скапливаясь в межповерхностном объеме с уплотнением, величина которого пропорциональна напряженности электрического поля, при отключении контактным устройством напряжения питания, и подачей отрицательного потенциала на токопроводящую поверхность отрицательного электрода, происходит нейтрализация ионов водорода и равномерное распределение образовавшихся молекул водорода по всему объему неразложившейся воды.

На фиг. 1 показано устройство получения водородной воды. Оно содержит диэлектрический корпус 1 с объемом 13, в нижней и верхней части которого расположены индуктивности 2 и 3 с правой и левой обмотками. В корпусе расположен центральный трубчатой формы неизолированный кислородный электрод 8. Второй кислородный электрод, расположенный на периферии, представляет собой, например, цилиндрическую коаксиально расположенную первому поверхность. Между двумя кислородными электродами коаксиально им расположен пустотелый изолированный водородный электрод, содержащий две токопроводящие электрически связанные изолированные поверхности 12, межповерхностный объем 14 которых связан отверстиями 11 с объемом 13 устройства. На внутренней стороне объема 14 закреплена с некоторым зазором токопроводящая поверхность 12, например сетка или перфорированный тонколистовой металлический лист. В корпус устройства вставлена горловина 4, перекрываемая двухсторонней пробкой 7, содержащей клапан. В зависимости от того, какой стороной перекрыта горловина, клапан по отношению к объему может считаться открытым (см. фиг. 1) или закрытым. После выключения напряжения пробку переворачиваем, при этом вделанное в пробку контактное устройство, на фиг. 1 условно не показано, снимает потенциал с водородного электрода и подключает отрицательный потенциал, например, от аккумулятора, на поверхность 15.

Работа устройства заключается в том, что через горловину заливаем пищевую воду, горловину закрываем пробкой согласно фиг. 1, после чего включаем контактом К2 напряжение питания (см. фиг. 2). Электронное устройство, роль которого играют контакты К1, с заданной частотой производит включение-отключение индуктивностей L2, L3. Начинается процесс разложения воды на отрицательные ионы кислорода и положительные ионы водорода. Положительные ионы водорода скапливаются в межповерхностном объеме 14 между изолированными поверхностями 12 отрицательного водородного электрода, а отрицательные ионы кислорода, отдавая электроны положительному кислородному электроду, нейтрализуются аналогично в электролизном процессе и через клапан выходят в атмосферу. Через заданное время реле времени отключая контакт К2, отключает источник питания. Перед употреблением водородной воды пробку переворачиваем. С помощью выключателя, вделанного в пробку, подается сигнал на катушку, реле которое отключает контакт К3 и включает К4, подключая отрицательный полюс аккумулятора 5 к токопроводящей поверхности 15. Происходит нейтрализация водорода аналогично электролизу, после чего молекулы водорода равномерно распространяются по всему объему воды. Для увеличения концентрации водорода в воде работу устройства повторяем.

На фиг. 3 представлена схема увеличения энергии электрического поля с помощью конденсатора С2, включенного параллельно рабочему С. Ввиду того что при входном переменном синусоидальном напряжении согласно схеме фиг. 3 амплитуда подаваемого на каждую индуктивность напряжения сдвинута на 180 градусов, а полярность питающего индуктивности напряжения, подаваемого на каждую индуктивность, меняется обмотка индуктивностей производится односторонней, при этом направление векторов напряженностей магнитных полей индуктивностей должно быть встречным, соответствующим периодическому их действию на диполи воды периодически с противоположных сторон. Следует отметить, что работа схемы излучения магнитных полей может происходить в резонансном режиме.

Предлагаемый способ позволяет разлагать воду на кислород и водород любой загрязненности, например морскую. При съемных катодных электродах создается возможность переноса и хранения ионов водорода так же, как и при съемных изолированных электродах анода кислорода. Причем масса переносимых газов зависит от степени напряженности статических электродных полей. Поэтому по степени напряженности статических полей можем определить переносимую массу ионов. Следует отметить, что переносимые газовые ионы обладают идеальной чистотой.

1. Устройство для получения обогащенной водородом воды, содержащее корпус с горловиной, две индуктивности, расположенные соосно и имеющие противоположно направленную проволочную обмотку, первый неизолированный положительный кислородный трубчатый электрод, расположенный в центре корпуса, второй неизолированный положительный кислородный электрод с цилиндрической поверхностью, расположенный на периферии корпуса коаксиально первому положительному кислородному электроду, и изолированный отрицательный водородный электрод, причем электроды расположены в корпусе между индуктивностями, при этом отрицательный водородный электрод представляет собой пустотелый электрод, состоящий из двух токопроводящих электрически связанных изолированных поверхностей, образующих межповерхностный объем, связанный через отверстия в одной из токопроводящих пластин с объемом устройства, и двухстороннюю пробку, перекрывающую горловину, с расположенными в ней клапаном и контактным устройством.

2. Способ получения водородной воды с применением устройства по п. 1, включающий подачу воды через горловину в объем устройства, включение контактным устройством напряжения питания, воздействие на воду постоянного электрического поля водяного конденсатора с изолированной отрицательной обкладкой, вектор напряженности которого направлен перпендикулярно действующим периодически попеременно в разные стороны векторам магнитных напряженностей, вырабатываемых двумя соосно расположенными индуктивностями, в результате чего происходит разрыв атомных связей молекул воды с образованием ионов водорода и кислорода за счет тепловой энергии воды, энергии электрического и магнитных полей, при этом отрицательные ионы кислорода притягиваются к положительному неизолированному электроду и нейтрализуются, преобразуясь в молекулы кислорода, которые выходят в атмосферу, а положительные ионы водорода притягиваются к поверхности отрицательного изолированного электрода, скапливаясь в межповерхностном объеме с уплотнением, величина которого пропорциональна напряженности электрического поля, при отключении контактным устройством напряжения питания, путем переворачивания пробки и подачей отрицательного потенциала на токопроводящую поверхность отрицательного электрода, происходит нейтрализация ионов водорода и равномерное распределение образовавшихся молекул водорода по всему объему неразложившейся воды.



 

Похожие патенты:

Изобретение относится к способу получения раствора хлорноватистой кислоты, включающему подачу исходного раствора хлорида щелочного металла в электролизер, межэлектродное пространство которого разделено на анодную и катодную камеры пористой керамической диафрагмой, электрохимическую обработку исходного раствора и вывод раствора хлорноватистой кислоты из анодной камеры.

Изобретение относится к трем вариантам газогенератора. Один из вариантов содержит: бак для воды, имеющий первую полость, предназначенную для того, чтобы вмещать подвергаемую электролизу воду; и устройство для электролиза, имеющее корпус для электролиза, при этом корпус для электролиза размещен внутри первой полости бака для воды, при этом устройство для электролиза выполнено с возможностью осуществления электролиза подвергаемой электролизу воды для образования газа, содержащего водород, в баке для воды; причем уровень подвергаемой электролизу воды, которой наполнена первая полость бака для воды, составляет более 90% максимального уровня воды бака для воды.

Изобретение относится к устройству для приготовления водного раствора электролита с отрегулированным значением рН, содержащему: регулятор рН, предназначенный для приготовления водного раствора электролита с отрегулированным значением рН; второй узел, находящийся в жидкостном сообщении с регулятором рН и предназначенный для распределения водного раствора электролита с отрегулированным значением рН, при этом упомянутый регулятор рН содержит: электролизную ячейку, включающую в себя анод и катод; упомянутый катод содержит псевдоемкостной материал, при этом при работе регулятора рН псевдоемкостной материал получает электроны от анода и адсорбирует катионы из водного раствора электролита при электрохимической реакции с упомянутыми катионами, ОН- в водном растворе электролита расходуются, теряя электроны, расход Н+ в водном растворе электролита уменьшается, оставляя Н+ в водном растворе электролита; или упомянутый анод содержит псевдоемкостной материал, и при работе регулятора рН псевдоемкостной материал теряет электроны и адсорбирует анионы из водного раствора электролита при электрохимической реакции с упомянутыми анионами, Н+ в водном растворе электролита расходуются на катоде, получая электроны, расход ОН- в водном растворе электролита уменьшается, оставляя ОН- в водном растворе электролита; упомянутый псевдоемкостной материал содержит оксид переходного металла или сопряженные проводящие полимеры; контроллер, предназначенный для управления процессом электролиза в электролизной ячейке.

Изобретение может быть использовано в нефтегазодобывающей, нефтехимической, газоперерабатывающей промышленности и металлургии. Установка для получения элементарной серы из сероводорода включает установленные на основаниях две герметичные емкости с вмонтированными внутри электродами - анодом и катодом, присоединенными к положительному и отрицательному полюсам источника постоянного тока.

Изобретение относится к двум вариантам электролизера, узлу для защиты боковой стенки электролизера и способу защиты боковой стенки электролизера. Электролизер включает в себя: анод; катод в отстоящем от анода положении; расплавленную ванну электролита в жидкостном сообщении с анодом и катодом, причем расплавленная ванна электролита имеет химический состав ванны, включающий по меньшей мере один компонент ванны; корпус электролизера, имеющий: подину и по меньшей мере одну боковую стенку, окружающую подину, причем корпус электролизера выполнен с возможностью удерживать расплавленную ванну электролита, при этом боковая стенка состоит по существу из упомянутого по меньшей мере одного компонента ванны, причем боковая стенка дополнительно включает: первую часть боковой стенки, выполненную с возможностью установки на теплоизоляционную футеровку боковой стенки и удерживания электролита; и вторую часть боковой стенки, выполненную выступающей вверх от подины корпуса электролизера.

Группа изобретений относится к пищеконцентратной промышленности, в частности к способам производства пищевых продуктов, при которых производят обезвоживание пищевых продуктов.

Изобретение относится к способу получения окисленного лигнина путем электрохимического модифицирования гидролизного лигнина в водном кислотном электролите на углеродных электродах при температуре окружающей среды.

Изобретение относится к способу производства газообразного кислорода и газообразного водорода из жидкостного щелочного электролитического раствора в процессе электролиза, включающему в себя этапы: получения электролитической установки с имеющимися в ней первым и вторым разнесенными между собой параллельными дырчатыми электродами, погруженными во впускную камеру, которая окружает первый и второй электроды и в которой имеется по меньшей мере одно впускное отверстие и первое и второе выпускные отверстия; подачи электролитического раствора во впускное отверстие так, чтобы электроды были погружены в электролитический раствор; и подачи напряжения на установку по электродам, погруженным в электролитический раствор, для электролиза раствора между электродами таким образом, чтобы на первом электроде образовывался газообразный кислород, а на втором электроде образовывался газообразный водород, при этом электролитический раствор между электродами разделяется на первый и второй выходные потоки, так что первый выходной поток проходит через первый электрод, тем самым удаляя газообразный кислород из первого электрода, когда первый выходной поток проходит в первое выпускное отверстие, и так что второй выходной поток проходит через второй электрод, тем самым удаляя газообразный водород из второго электрода, когда второй выходной поток проходит во второе выпускное отверстие, и при этом первый и второй электроды расположены в относительно непосредственной близости друг от друга на расстоянии от 1 мм до 6 мм.

Изобретение относится к способу получения диметилдисульфона путем электролиза водного раствора диметилсульфона в кислой среде. Способ характеризуется тем, что электролиз проводят в водных растворах диметилсульфона в щелочной среде в анодном отделении диафрагменного электролизера в пределах плотностей анодного тока 0,1-0,3 А/см2, затем раствор анолита охлаждают до Т=5-8°С до образования кристаллов.

Изобретение относится к способу и системе управления электрическим током (ЕСМ) в по меньшей мере одном электролизере, имеющем по меньшей мере два электрода, находящихся в контакте с электролитической средой, множество сенсорных средств для измерения тока, проходящего через один или более электродов, при этом указанные сенсорные средства расположены внутри по меньшей мере одной панели ЕСМ, установленной в одном или более работающих электролизерах.

Изобретение относится к способу утилизации регенерационных растворов и может быть использовано в водоподготовке для уменьшения стоков натрий-катионитных фильтров в энергетике, пищевой, химической и металлургической промышленности.

Изобретение относится к очистке сточных вод. Установка включает флотокамеру 1 с нерастворимыми электродами 2, плавающую фильтрующую загрузку 3, плавающую сорбционно-активную загрузку, растворимый электрод 4.
Изобретение относится к устройствам для комплексной очистки жидкостей от механических нерастворимых примесей, преимущественно песка, нефтепродуктов, тяжелых металлов и болезнетворных микробов в непрерывном цикле с большой производительностью, и может быть использовано при очистке скважинных вод, смесей нефть-вода, сточных вод, жидких промышленных и канализационных стоков до параметров чистой питьевой воды.

Изобретение относится к системам по очистке и обеззараживанию балластных вод от биологических загрязнений на нефтегазовых морских платформах, судах, нефтяных танкерах и может найти применение в нефтедобывающей промышленности при освоении нефтяных месторождений, расположенных на морском шельфе.

Изобретение относится к очистке промышленных сточных вод от органических веществ и может быть использовано для очистки фенолсодержащих сточных вод производства целлюлозных материалов.

Изобретение может быть использовано в газо- и нефтедобывающей промышленности для попутного извлечения йод-сырца из бедных по его содержанию подземных напорных вод.

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств.

Изобретение относится к вариантам способа разрушения коллоидной системы посредством электрохимического разложения эмульсий, а также к установкам для их реализации.

Изобретение относится к области переработки дистиллерной жидкости, образующейся в производстве кальцинированной соды по аммиачному методу. .

Изобретение относится к способам обработки промышленных сточных вод. .

Изобретение может быть использовано в водоочистке. Станция очистки сточных вод включает три функциональных блока: предварительной очистки, коагуляции-флотации, доочистки и обеззараживания.
Наверх