Устройство разложения воды на кислород и водород электромагнитными полями



Устройство разложения воды на кислород и водород электромагнитными полями
Устройство разложения воды на кислород и водород электромагнитными полями
Устройство разложения воды на кислород и водород электромагнитными полями
C25B1/04 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2645504:

Багич Геннадий Леонидович (RU)

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Устройство разложения воды на кислород и водород содержит емкость, выполненную из изоляционного материала и имеющую входное и выходное водяные отверстия. К внешним поверхностям противоположных стенок емкости, диэлектрическая проницаемость которых превосходит диэлектрическую проницаемость воды, беззазорно примыкают водородный и кислородный электроды. В емкости имеются отверстия с установленными в них нейтрализационными сетками отрицательного и положительного потенциалов. Внутри емкости установлены термопара и датчик уровня воды. Емкость с электродами вставлена в замкнутый магнитопровод, содержащий полюса, примыкающие с внешней стороны к противоположным стенкам, не занятым электродами, емкости. При этом один полюс содержит первичную катушку, а второй - вторичную катушку, которая через выпрямители и умножители напряжения подает напряжения на электроды и нейтрализационные сетки. Технический результат: увеличение производительности разложения воды. 2 ил.

 

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии.

Известны промышленные способы и устройства разложения воды (см., например, Российские патенты №2506349, 2535304, 2496917, 2521868), у которых происходит замедленная нейтрализация ионов водорода и кислорода.

Целью изобретения является повышение скорости нейтрализации ионов водорода и кислорода, что приводит к увеличению производительности разложения воды.

В Российском патенте №2142905 сказано, что в камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток, с напряжением 6000 В. Энергия разложения при этом определяется суммарной энергией электрического поля и тепловой энергией пара. Предлагается разлагать воду электромагнитным полем, содержащим сумму энергий электрического и магнитного полей. При этом водяной конденсатор содержит диэлектрик, в качестве которого служит разлагаемая вода, при этом конденсаторные пластины изолированы от воды диэлектриком с диэлектрической проницаемостью не ниже диэлектрической проницаемости воды. При разложении холодной воды компенсацию тепловой энергии производит магнитное поле Н, вектора напряженности которого направлены перпендикулярно вектору напряженности электрического поля Е, см. фиг. 2.

На фиг. 1 изображено устройство разложения воды на кислород и водород электромагнитными полями и на фиг. 2 его электрическая схема. Оно содержит емкость 1, выполненную из изоляционного материала, причем стенки, к которым беззазорно примыкают водородный электрод 7 и кислородный электрод 8, выполнены из материала, диэлектрическая проницаемость которого превосходит диэлектрическую проницаемость воды. В емкости установлены термопара 2, датчик уровня воды 14, отверстие 4 с нейтрализационной сеткой отрицательного потенциала и отверстие 5 с нейтрализационной сеткой положительного потенциала. Через клапан 3 происходит подача воды. Через вентиль 6 удаление холодной неразложившейся воды. Емкость 1 с электродами 7 и 8 вставлена в замкнутый магнитопровод 9, имеющий полюса 12, примыкающие к стенкам емкости, первичную катушку 10 и вторичную 11. Первичная катушка мотается изолированным проводом, выполненным из электротехнической стали, а вторичная - изолированным медным проводом. С вторичной катушки снимаются два напряжения, большее из которых через выпрямитель и умножитель напряжения 13 подается на нейтрализационные сетки выходных газовых отверстий. Меньшее напряжение через выпрямитель и умножитель напряжения подается на электроды, причем с целью увеличения энергии электрического поля на выходе выпрямитель зашунтирован конденсатором С.

Работа устройства заключается в том, что при заполнении емкости водой, которое происходит до датчика уровня, который при замыкании контактов водой дает сигнал на отключение насоса подачи воды и включение напряжения питания, происходит распад молекул воды на ионы водорода и кислорода. Известно, что длина полуволны магнитного поля (магнитного потока), создаваемого, например, 50 Гц током, равна 3000 км. Этот положительный импульс за сотую долю секунды пройдет по магнитопроводу, а значит через катушки, столько раз, во сколько длина импульса больше пути, по которому проходит импульс по магнитопроводу. Поэтому, применяя магнитопровод, мы значительно увеличиваем энергию разложения воды. Кроме того электрическое поле ориентирует диполи воды вдоль действия вектора напряженности электрического поля, в то же время вектора магнитных полей, действуя попеременно в разные стороны перпендикулярно ориентации диполей, разрушают атомарные связи в молекуле воды, в результате молекула распадается на ионы водорода и кислорода, при этом тепловая энергия воды, выражающаяся в броуновском движении, содействует в распаде молекул воды. Поэтому температура неразложившейся воды падает, о чем фиксирует термопара. Положительные ионы водорода и отрицательные ионы кислорода, проходя через свои сетки, потенциалы которых значительно превышают потенциалы электродов, нейтрализуются по аналогии с электролизным процессом и атомы газов раздельно по своим каналам поступают по заданному назначению. При достижении заданной температуры, фиксируемой термопарой, напряжение питания отключается, открывается вентиль 6 и происходит откачка холодной воды после чего цикл повторяется.

Для непрерывного производства водорода и кислорода используется два устройства. Когда одно устройство сливает холодную воду и накачивает горячую, другое производит разложение воды. Такая периодическая работа устройств позволяет производить непрерывное разложение воды на кислород и водород.

Предлагаемое устройство может найти самое широкое применение, например в транспортных средствах, в хозяйственной деятельности. Например, в южных солнечных странах для получения водорода можно использовать горячую воду от солнечных коллекторов. На тепловых электростанциях горячую воду сливают на улицу. В средствах водного, железнодорожного транспорта на механическую работу затрачивается не более 27% от всей тепловой энергии сгорания водорода, остальную энергию в виде горячей воды путем нагревания холодной воды выхлопным паром направлять в устройство разложения воды, замыкая тем самым энергетический цикл, что приводит к значительному уменьшению затрат электрической энергии.

Устройство разложения воды на кислород и водород электромагнитными полями, содержащее емкость, выполненную из изоляционного материала и имеющую входное и выходное водяные отверстия, отличающееся тем, что к внешним поверхностям противоположных стенок емкости, диэлектрическая проницаемость которых превосходит диэлектрическую проницаемость воды, беззазорно примыкают водородный и кислородный электроды, причем в емкости имеются отверстия с установленными в них нейтрализационными сетками отрицательного и положительного потенциалов, а внутри емкости установлены термопара, датчик уровня воды, при этом емкость с электродами вставлена в замкнутый магнитопровод, содержащий полюса, примыкающие с внешней стороны к противоположным стенкам, не занятым электродами, емкости, при этом один полюс содержит первичную катушку, а второй - вторичную катушку, которая через выпрямители и умножители напряжения подает напряжения на электроды и нейтрализационные сетки.



 

Похожие патенты:

Изобретение относится к устройству и способу получения обогащенной водородом воды и может быть использовано в медицинском оборудовании для оздоровительно-лечебных процедур и в хозяйственно бытовой деятельности.

Изобретение относится к способу получения раствора хлорноватистой кислоты, включающему подачу исходного раствора хлорида щелочного металла в электролизер, межэлектродное пространство которого разделено на анодную и катодную камеры пористой керамической диафрагмой, электрохимическую обработку исходного раствора и вывод раствора хлорноватистой кислоты из анодной камеры.

Изобретение относится к трем вариантам газогенератора. Один из вариантов содержит: бак для воды, имеющий первую полость, предназначенную для того, чтобы вмещать подвергаемую электролизу воду; и устройство для электролиза, имеющее корпус для электролиза, при этом корпус для электролиза размещен внутри первой полости бака для воды, при этом устройство для электролиза выполнено с возможностью осуществления электролиза подвергаемой электролизу воды для образования газа, содержащего водород, в баке для воды; причем уровень подвергаемой электролизу воды, которой наполнена первая полость бака для воды, составляет более 90% максимального уровня воды бака для воды.

Изобретение относится к устройству для приготовления водного раствора электролита с отрегулированным значением рН, содержащему: регулятор рН, предназначенный для приготовления водного раствора электролита с отрегулированным значением рН; второй узел, находящийся в жидкостном сообщении с регулятором рН и предназначенный для распределения водного раствора электролита с отрегулированным значением рН, при этом упомянутый регулятор рН содержит: электролизную ячейку, включающую в себя анод и катод; упомянутый катод содержит псевдоемкостной материал, при этом при работе регулятора рН псевдоемкостной материал получает электроны от анода и адсорбирует катионы из водного раствора электролита при электрохимической реакции с упомянутыми катионами, ОН- в водном растворе электролита расходуются, теряя электроны, расход Н+ в водном растворе электролита уменьшается, оставляя Н+ в водном растворе электролита; или упомянутый анод содержит псевдоемкостной материал, и при работе регулятора рН псевдоемкостной материал теряет электроны и адсорбирует анионы из водного раствора электролита при электрохимической реакции с упомянутыми анионами, Н+ в водном растворе электролита расходуются на катоде, получая электроны, расход ОН- в водном растворе электролита уменьшается, оставляя ОН- в водном растворе электролита; упомянутый псевдоемкостной материал содержит оксид переходного металла или сопряженные проводящие полимеры; контроллер, предназначенный для управления процессом электролиза в электролизной ячейке.

Изобретение может быть использовано в нефтегазодобывающей, нефтехимической, газоперерабатывающей промышленности и металлургии. Установка для получения элементарной серы из сероводорода включает установленные на основаниях две герметичные емкости с вмонтированными внутри электродами - анодом и катодом, присоединенными к положительному и отрицательному полюсам источника постоянного тока.

Изобретение относится к двум вариантам электролизера, узлу для защиты боковой стенки электролизера и способу защиты боковой стенки электролизера. Электролизер включает в себя: анод; катод в отстоящем от анода положении; расплавленную ванну электролита в жидкостном сообщении с анодом и катодом, причем расплавленная ванна электролита имеет химический состав ванны, включающий по меньшей мере один компонент ванны; корпус электролизера, имеющий: подину и по меньшей мере одну боковую стенку, окружающую подину, причем корпус электролизера выполнен с возможностью удерживать расплавленную ванну электролита, при этом боковая стенка состоит по существу из упомянутого по меньшей мере одного компонента ванны, причем боковая стенка дополнительно включает: первую часть боковой стенки, выполненную с возможностью установки на теплоизоляционную футеровку боковой стенки и удерживания электролита; и вторую часть боковой стенки, выполненную выступающей вверх от подины корпуса электролизера.

Группа изобретений относится к пищеконцентратной промышленности, в частности к способам производства пищевых продуктов, при которых производят обезвоживание пищевых продуктов.

Изобретение относится к способу получения окисленного лигнина путем электрохимического модифицирования гидролизного лигнина в водном кислотном электролите на углеродных электродах при температуре окружающей среды.

Изобретение относится к способу производства газообразного кислорода и газообразного водорода из жидкостного щелочного электролитического раствора в процессе электролиза, включающему в себя этапы: получения электролитической установки с имеющимися в ней первым и вторым разнесенными между собой параллельными дырчатыми электродами, погруженными во впускную камеру, которая окружает первый и второй электроды и в которой имеется по меньшей мере одно впускное отверстие и первое и второе выпускные отверстия; подачи электролитического раствора во впускное отверстие так, чтобы электроды были погружены в электролитический раствор; и подачи напряжения на установку по электродам, погруженным в электролитический раствор, для электролиза раствора между электродами таким образом, чтобы на первом электроде образовывался газообразный кислород, а на втором электроде образовывался газообразный водород, при этом электролитический раствор между электродами разделяется на первый и второй выходные потоки, так что первый выходной поток проходит через первый электрод, тем самым удаляя газообразный кислород из первого электрода, когда первый выходной поток проходит в первое выпускное отверстие, и так что второй выходной поток проходит через второй электрод, тем самым удаляя газообразный водород из второго электрода, когда второй выходной поток проходит во второе выпускное отверстие, и при этом первый и второй электроды расположены в относительно непосредственной близости друг от друга на расстоянии от 1 мм до 6 мм.

Изобретение относится к способу получения диметилдисульфона путем электролиза водного раствора диметилсульфона в кислой среде. Способ характеризуется тем, что электролиз проводят в водных растворах диметилсульфона в щелочной среде в анодном отделении диафрагменного электролизера в пределах плотностей анодного тока 0,1-0,3 А/см2, затем раствор анолита охлаждают до Т=5-8°С до образования кристаллов.
Изобретение относится к нанотехнологии и может быть использовано при изготовлении армирующих добавок для композиционных материалов и функциональных покрытий. Углерод-катализаторный композит измельчают до крупности -44 мкм и репульпируют в воде при соотношении Т : Ж = 1:3 при интенсивном перемешивании со скоростью вращения мешалки 200-1000 об/мин.

Изобретение относится к процессам получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии. Способ получения синтез-газа основан на горении смеси углеводородного сырья с окислителем с внутри одной или нескольких полостей, образованных материалом, проницаемым для смеси углеводородного сырья с окислителем, на внутреннюю поверхность которого нанесен каталитически активный компонент.

Изобретение относится к способу получения синтез-газа посредством параллельного использования риформера с теплообменом и автотермического риформера. Способ включает (i) формирование смешанного потока исходных материалов, содержащего углеводородное сырье и водяной пар, (ii) предварительный нагрев смешанного потока с формированием предварительно нагретого смешанного потока, (iii) разделение предварительно нагретого смешанного потока на первый поток и второй поток, (iv) пропускание первого потока, содержащего углеводороды и водяной пар, в нагреваемые извне заполненные катализатором трубки в риформере с теплообменом, где имеют место реакции парового риформинга с генерированием первой смеси газов после риформинга, (v) пропускание второго потока, содержащего углеводороды и водяной пар, после дополнительной стадии нагрева в автотермический риформер, где его объединяют с газом-окислителем, содержащим свободный кислород, и подвергают воздействию автотермического риформинга с генерированием второй смеси газов после риформинга, (vi) смешивание второй смеси газов после риформинга и первой смеси газов после риформинга с формированием объединенной смеси газов после риформинга и (vii) использование объединенной смеси газов после риформинга для нагрева заполненных катализатором трубок в риформере с теплообменом с формированием частично охлажденной объединенной смеси газов после риформинга.

Изобретение относится к области химии и может быть использовано для производства водорода путем парциального окисления углеводородов с различным химическим составом.

Изобретение может быть использовано в нефтегазодобывающей, нефтехимической, газоперерабатывающей промышленности и металлургии. Установка для получения элементарной серы из сероводорода включает установленные на основаниях две герметичные емкости с вмонтированными внутри электродами - анодом и катодом, присоединенными к положительному и отрицательному полюсам источника постоянного тока.
Изобретение может быть использовано в электронике, электротехнике и машиностроении. Готовят водно-спиртовой раствор сульфата меди, добавляют в него этиловый спирт до концентрации 37,5-42,5 мл/л, подкисляют до рН 1-2 и делят на две части.

Разрядная камера для проведения плазмохимических реакций относится к плазмохимии, к синтезу озона и окислов азота из атмосферного воздуха, смеси кислорода с азотом с помощью барьерного разряда и может найти применение в научных исследованиях и медицине.

Изобретение относится к получению катализаторов на основе соединений меди, цинка, алюминия и хрома для низкотемпературной конверсии оксида углерода водяным паром, катализатор может быть использован для низкотемпературного синтеза метанола, процессов гидрирования нитробензола, дегидрирования циклогексанола в циклогексанон в производстве капролактама.

Изобретение относится к нанотехнологии и может быть использовано в промышленном производстве наномодифицированных композиционных материалов, в биотехнологии, а также в фотонике.

Изобретение относится к нанотехнологиям и может быть использовано для получения наноуглерода. Способ включает подачу в реакционную камеру, выполненную в виде ствола, периодически закрываемого с одного и открытого с другого конца, со стороны закрываемого конца через систему быстродействующих клапанов и смеситель в проточном режиме чистого или с добавкой кислорода ацетилена, а затем легко детонирующей ацетилен-кислородной смеси, инициирование детонации у закрытого конца камеры и после прохождения детонационной волны образование наноуглерода в результате детонационного разложения ацетилена, при этом в конце цикла получения наноуглерода производят продувку ствола газообразным углеводородом с общей формулой CnH2n+2 или CnH2n, реализуют частотное повторение циклов в автоматическом режиме, а полученный наноуглерод собирают в коллекторе.

Изобретение может быть использовано в химической промышленности. Для получения концентрированного раствора гипохлорита щелочного металла в нижнюю часть вертикального резервуара вводят хлор и раствор гидроксида щелочного металла.
Наверх