Способ поверки дифференциально-индуктивного датчика избыточного давления

Изобретение относится к области приборостроения, в частности к способам поверки дифференциально-индуктивных датчиков избыточного давления. Способ поверки предусматривает два варианта применения, в зависимости от того, на каком участке характеристики определяется погрешность измерения: на участке, расположенном ниже действующего рабочего давления контролируемой среды, или на участке характеристики, расположенной выше давления контролируемой среды. В обоих вариантах применения предлагаемого способа поверки поверяемый датчик избыточного давления подключается к испытательному стенду, имеющему образцовое средство измерения унифицированного выходного сигнала, задатчик избыточного давления с образцовым манометром и задатчик остаточного давления с образцовым вакуумметром. Один из вариантов применения предлагаемого способа поверки состоит в следующем. К минусовой камере подключается стендовый задатчик избыточного давления. С повышением давления в минусовой камере разность давлений, воздействующая на диафрагму, снижается и снижается показание поверяемого датчика давления. Погрешность измерения на этом участке характеристики определяют путем сопоставления изменений показаний датчика давления с изменением давления в минусовой камере. Изменение избыточного давления в минусовой камере определяют с помощью стендового образцового манометра, а изменение показаний поверяемого датчика давления определяют с помощью стендового образцового средства измерения унифицированного сигнала. Другой вариант применения предлагаемого способа поверки состоит в следующем. К минусовой камере подключается стендовый задатчик остаточного давления. С повышением разрежения в минусовой камере повышается разность давлений, воздействующая на диафрагму, и повышается показание поверяемого датчика давления. Погрешность измерения на этом участке характеристики определяют путем сопоставления показаний датчика давления с остаточным давлением в минусовой камере. Изменение остаточного давления в минусовой камере определяют с помощью стендового образцового вакуумметра, а изменение показаний поверяемого датчика давления определяют с помощью стендового образцового средства измерения унифицированного сигнала. Технический результат – возможность проведения поверки без демонтажа датчика давления, т.е. при условии, когда в плюсовой камере датчика действует давление контролируемой среды. 1 з.п. ф-лы.

 

Предлагаемое изобретение относится к области приборостроения, в частности к способам поверки и испытаний дифференциально-индуктивных датчиков избыточного давления.

Известны дифференциально-индуктивные датчики избыточного давления, например типа ДИД-7 [1]. Основными измерительными узлами датчиков давления являются:

- чувствительный элемент, непосредственно воспринимающий давление контролируемой среды и преобразующий его в перемещение плунжера;

- дифференциально-индуктивный преобразователь, осуществляющий преобразование перемещения плунжера в напряжение переменного тока;

- электронный преобразователь, осуществляющий преобразование напряжения переменного тока в унифицированные выходные сигналы, кодовый, токовый или какой-либо другой в зависимости от конструкции.

Чувствительный элемент имеет две смежные приемные камеры, разделенные диафрагмой, плюсовую, предназначенную для приема рабочего давления, и минусовую, для приема опорного давления, в данном случае атмосферного.

Дифференциально-индуктивный преобразователь состоит из блока индуктивных катушек и штока с плунжером, причем шток жестко закреплен к диафрагме чувствительного элемента. Блок индуктивных катушек имеет одну первичную катушку и две одинаковые вторичные катушки, включенные между собой последовательно и встречно.

Датчик избыточного давления работает следующим образом. Когда датчик установлен на объекте эксплуатации, в его плюсовой камере создается давление контролируемой среды, а в минусовой камере создается атмосферное давление. Вследствие разности давлений, которое именуется избыточным, происходит деформация диафрагмы и перемещение плунжера, вызывающее изменение взаимоиндуктивности катушек, в результате чего во вторичных катушках появляется переменное напряжение, пропорциональное перемещению плунжера. Затем в электронном преобразователе переменное напряжение преобразуется в унифицированный выходной сигнал.

Поверка датчика избыточного давления во время эксплуатации производится с помощью испытательного стенда, который имеет задатчик избыточного давления, образцовое средство измерения избыточного давления, воспроизводимого задатчиком (образцовый манометр) и образцовое средство измерения унифицированного выходного сигнала.

Известный способ поверки датчика избыточного давления во время эксплуатации состоит в следующем [1]. Датчик избыточного давления демонтируется с объекта эксплуатации и подключается к испытательному стенду. Стендовый задатчик избыточного давления подключается к плюсовой камере поверяемого датчика, а минусовая камера соединяется с атмосферой. С помощью стендового задатчика в плюсовой камере поверяемого датчика создаются различные избыточные давления во всем диапазоне характеристики поверяемого прибора. Избыточное давление, создаваемое в рабочей камере прибора, измеряется стендовым образцовым манометром. Погрешность на заданном участке характеристики датчика давления определяют посредством сопоставления показаний стендового образцового манометра и показаний датчика, причем показания датчика определяются с помощью стендового образцового средства измерений выходного унифицированного сигнала.

Недостатком известного способа поверки является отсутствие возможности осуществлять поверку без демонтажа датчика давления с объекта эксплуатации.

Предлагаемый способ обеспечивает поверку датчика избыточного давления без его демонтажа с объекта эксплуатации.

Поскольку поверка по предполагаемому изобретению производится без демонтажа датчика давления, то во время поверки в его плюсовой камере действует рабочее давление контролируемой среды, которое в настоящее время (т.е. во время рассматриваемой поверки) может быть любым в пределах диапазона характеристики. Предлагаемый способ поверки предусматривает два варианта его применения, в зависимости от того, на каком участке характеристики определяется погрешность измерения: на участке, расположенном ниже рабочего давления контролируемой среды, действующего в настоящее время, или на участке характеристики, расположенной выше действующего давления контролируемой среды. Поверка датчика избыточного давления производится в период, когда рабочее давление контролируемой среды в плюсовой камере стабильно в пределах основной погрешности измерений.

В обоих вариантах применения предлагаемого способа поверки поверяемый датчик избыточного давления подключается к испытательному стенду, имеющему образцовое средство измерения унифицированного выходного сигнала, задатчик избыточного давления с образцовым манометром и задатчик остаточного давления с образцовым вакуумметром.

Один из вариантов применения предлагаемого способа поверки, заключающийся в определении погрешности измерений на участке характеристики, расположенном от нуля до действующего в настоящее время рабочего давления контролируемой среды, состоит в следующем. К минусовой камере подключается стендовый задатчик избыточного давления, причем избыточное давление контролируется образцовым манометром. В минусовой камере с помощью стендового задатчика давления создаются различные давления. С повышением давления в минусовой камере разность давлений, воздействующая на диафрагму, снижается и снижается показание поверяемого датчика давления. Причем максимальное давление в минусовой камере не должно превышать давления контролируемой среды, действующее в плюсовой камере. Таким образом, с помощью изменения давления в минусовой камере можно изменять показания датчика давления от нуля до действующего в настоящее время рабочего давления контролируемой среды. Погрешность измерения на этом участке характеристики определяют путем сопоставления изменений показаний датчика давления с изменением давления в минусовой камере, создаваемого задатчиком избыточного давления. Изменение избыточного давления в минусовой камере определяют с помощью стендового образцового манометра, а изменение показаний поверяемого датчика давления определяют с помощью стендового образцового средства измерения унифицированного сигнала.

Другой вариант применения предлагаемого способа поверки, заключающийся в определении погрешности измерений на участке характеристики, расположенном между действующим в настоящее время рабочим давлением контролируемой среды и его максимальным допустимым значением, состоит в следующем. К минусовой камере подключается стендовый задатчик остаточного давления. При этом остаточное давление измеряется образцовым вакуумметром. С помощью стендового задатчика остаточного давления в минусовой камере могут создаваться различные разрежения. С повышением разрежения в минусовой камере повышается разность давлений, воздействующих на диафрагму, и повышается показание поверяемого датчика давления. Причем максимальное разрежение в минусовой камере не должно вызывать показаний датчика давления, превышающих максимально допустимого значения. Таким образом, с помощью изменения остаточного давления (разрежения) в минусовой камере можно изменять показания датчика давления от действующего в настоящее время рабочего давления контролируемой среды до максимального допустимого значения. Погрешность измерения на этом участке характеристики определяют путем сопоставления изменений показаний датчика давления с изменением остаточного давления в минусовой камере. Изменение остаточного давления в минусовой камере определяют с помощью стендового образцового вакуумметра, а изменение показаний поверяемого датчика давления определяют с помощью стендового образцового средства измерения унифицированного сигнала.

Положительный технический результат от применения предлагаемого изобретения состоит в возможности осуществления поверки датчика избыточного давления без его демонтажа с объекта эксплуатации.

ИСТОЧНИК ИНФОРМАЦИИ

1. Датчик абсолютного давления ДАД-7 и датчик избыточного давления ДИД-7, техническое описание и инструкция по эксплуатации, Министерство приборостроения, средств автоматизации и систем управления, 1977 г.

1. Способ поверки дифференциально-индуктивного датчика избыточного давления, чувствительный элемент которого имеет две смежные приемные камеры, разделенные диафрагмой, плюсовую, предназначенную для приема рабочего давления, и минусовую, для приема опорного (атмосферного) давления, заключающийся в том, что в обеих камерах создаются давления, причем погрешность измерения на заданном участке характеристики определяется путем сопоставления показаний датчика давления с давлением в одной из приемных камер, отличающийся тем, что поверка производится во время действующего рабочего давления контролируемой среды в плюсовой камере, причем при определении погрешности измерений на участке характеристики, расположенной ниже действующего в настоящее время рабочего давления, в минусовой камере создается избыточное давление, т.е. превышающее атмосферное, а при определении погрешности измерений на участке характеристики, расположенной выше действующего в настоящее время рабочего давления, в минусовой камере создается остаточное давление, т.е. менее атмосферного.

2. Способ по п. 1, отличающийся тем, что поверка датчика избыточного давления производится в период, когда рабочее давление контролируемой среды в плюсовой камере стабильно в пределах основной погрешности измерений.



 

Похожие патенты:

Изобретение относится к ультразвуковому расходомеру для измерения скорости потока и/или расхода текучей среды. Ультразвуковой расходомер содержит: измерительный преобразователь, имеющий соединительные фланцы для присоединения трубопроводов текучей среды и среднюю часть, выполненную с возможностью пропускания текучей среды, по меньшей мере два помещенных в среднюю часть ультразвуковых преобразователя, которые образуют пару ультразвуковых преобразователей и между которыми установлена измерительная цепь, проходящая через поток, датчик давления, удерживаемый в средней части в гнезде датчика давления и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, калибровочный вывод, удерживаемый в средней части в гнезде калибровочного вывода и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, причем поршень в гнезде поршня выполнен с возможностью приведения в два положения, при этом в первом положении датчик давления имеет сообщение по текучей среде с внутренностью средней части, а во втором положении датчик давления через гнездо поршня имеет сообщение по текучей среде с калибровочным выводом.

Группа изобретений относится к арматуростроению, в частности к арматуре, имеющей функцию балансировки, предназначенной для системы распределения текучей среды. Запорный элемент арматуры может перемещаться между закрытым положением и полностью открытым положением.

Заявленное изобретение относится к метрологическому оборудованию обеспечения приборов давления и может применяться для формирования переменного или пульсирующего давления в ограниченном объеме с целью обеспечения заданного технологического процесса, например для исследования динамических характеристик приборов измерения и контроля давления.

Использование: для калибровки или поверки средств контроля и измерения давления. Сущность изобретения заключается в том, что цилиндрическое сопло цилиндра заканчивается в верхней части расширяющимся кверху диффузором параболической формы, вогнутой внутрь, поршень выполнен цилиндрическим с усеченной параболической частью, вогнутой внутрь и сужающейся книзу, а вставка размещена в сопле с зазором между ней и внутренней поверхностью сопла, образуя кольцевое отверстие для подачи воздуха/газа.

Изобретение относится к измерительной технике, в частности к средствам для измерения давления рабочей жидкости. В настоящем изобретении представлен способ проверки состояния монокристаллического датчика давления, а также система измерения давления рабочей жидкости, реализующая указанный способ.

Изобретение относится к области цифровой обработки сигнала в датчиках давления и может быть использовано для создания цифровых датчиков давления высокого класса точности.

Настоящее изобретение относится к системам контроля и управления промышленными процессами. Преобразователь содержит пьезоэлектрический преобразователь, содержащий первую клемму и вторую клемму; схему нормального режима работы для эксплуатации пьезоэлектрического преобразователя при нормальном режиме работы; схему самопроверки для подачи зарядного тока на пьезоэлектрический преобразователь при диагностическом режиме самопроверки и образования контрольного сигнала как функции от напряжения на пьезоэлектрическом преобразователе, обусловленного зарядным током.

Изобретение относится к измерительной технике и может быть использовано для прецизионного измерения давления на основе тензомостового интегрального преобразователя давления в широком диапазоне рабочих температур.

Изобретение относится к области измерения давления. Сущность изобретения заключается в том, что манометр абсолютного давления содержит электронные силоизмерительные и силокомпенсирующие устройства, поршневую пару, образованную структурно-сопряженными магнетиками, разъединяющую объемы вакуумной (сравнительной) камеры от объема измерительной камеры, пневмолинии которых могут селективно подключаться к пневмомагистралям технических средств создания вакуума, давления или нормализованного воздуха атмосферы путем программного переключения э/м клапанов распределительного коммутатора, при этом супермагнетик («магнитная жидкость) в ССМ покрыт тонким слоем галинстана - жидкого металлического сплава галлия, индия и олова, магнитопровод ССМ выполнен из магнитострикционного материала (МСМ) или, если он таковым не являлся, дополнен включением МСМ в его структуру, используется как ультразвуковой магнитостриктор путем размещения на нем катушки возбуждения, соединенной с ВЧ генератором гармонических колебаний, оболочка вакуумной камеры, при большом объеме, покрыта с внешней стороны резистивной проводящей пленкой, кратковременно подключаемой в режиме создания в ней вакуума к источнику электропитания; при малых объемах оболочки она подвергается кратковременному прогреву внешними источниками интенсивного оптического излучения.

Изобретение относится к области приборостроения и может быть использовано для калибровки средств измерительной техники. Техническим результатом изобретения является расширение метрологических возможностей за счет повышения на порядок уровня калиброванного (образцового) по амплитуде скачка давления до атмосферного давления (105 Па), повышения точности калибровки датчиков динамического давления и сокращения времени на проведение градуировочных испытаний.
Наверх