Узел соединения агрегата внешней обвязки с корпусом турбомашины

Изобретение относится к области турбомашиностроения, а именно к авиадвигателестроению. Техническим результатом является увеличение жесткости соединения, что приводит к повышению прочности и надежности узла соединения в случае динамической нагруженности, а именно при воздействии вибраций, а также снижение массы узла соединения в целом. Указанный технический эффект достигается тем, что в известном узеле соединения агрегата внешней обвязки с корпусом турбомашины, содержащем кронштейн, жестко соединенный с агрегатом внешней обвязки, причем на кронштейне, зацело с ним, выполнен выступ, жестко соединенный с корпусом, согласно настоящему изобретению выступ жестко зафиксирован в пазу посредством неразъемного соединения, выполненном в свою очередь в силовом элементе корпуса. 4 з.п. ф-лы, 2 ил.

 

Узел соединения агрегата внешней обвязки с корпусом турбомашины.

Изобретение относится к области турбомашиностроения, а именно, авиадвигателестроения, а именно, к системам крепления внешней обвязки на корпусе газотурбинного двигателя.

Известен узел соединения агрегата внешней обвязки с корпусом турбомашины (далее узел соединения), содержащий кронштейн, жестко соединенный с агрегатом внешней обвязки, причем на кронштейне, зацело с ним, выполнен выступ (фланец), соединенный с корпусом турбомашины посредством фланцевого соединения (А.А. Иноземцев, М.А. Нихамкин, В.Л. Сандрацкий, «Газотурбинные двигатели», ОАО «Авиадвигатель», г. Пермь, 2007 г., стр. 896, рис. 13.2.3_1).

Недостатками известного узла соединения агрегата внешней обвязки с корпусом турбомашины является наличие фланцевого соединения кронштейна с корпусом турбомашины, что снижает жесткость соединения и увеличивает массу узла в целом.

Техническим результатом, достигаемом при использовании заявленного изобретения, является увеличение жесткости соединения, что приводит к повышению прочности и надежности узла соединения в случае динамической нагруженности, а именно при воздействии вибраций, а также снижение массы узла соединения в целом.

Указанные технические эффекты достигаются тем, что в известном узле соединения агрегата внешней обвязки с корпусом турбомашины, содержащем кронштейн, жестко соединенный с агрегатом внешней обвязки, причем на кронштейне, зацело с ним, выполнен выступ, жестко соединенный с корпусом, согласно настоящему изобретению выступ жестко зафиксирован в пазу посредством неразъемного соединения, выполненном в свою очередь в силовом элементе корпуса.

Общеизвестно, что снижение массы и увеличение жесткости конструкции увеличивает значения собственных частот колебаний последней. В случае турбомашины, которая ввиду специфики своей работы является очень вибронагруженной, желательно выводить собственные частоты колебаний ее деталей и узлов из рабочего диапазона частот вращения роторов. Это снижает общий уровень вибраций и повышает прочность и надежность турбомашины в целом.

Выполнение узла соединения с жесткой фиксацией выступа в пазу реализуется неразъемным соединением, что по причине отсутствия плоскости разъема увеличивает жесткость соединения, что повышает прочность и надежность узла в целом. Кроме того, при таком соединении происходит замена материала корпуса в пазу материалом кронштейна, а также исключено наличие крепежных элементов, что снижает массу узла соединения в целом.

Выполнение паза в силовом элементе корпуса (фланце, ребре, шпангоуте и т.д.) увеличивает жесткость узла соединения в целом.

В частном случае реализации:

Паз повторяет геометрическую форму выступа по сопрягаемым поверхностям.

Выступ жестко зафиксирован в пазу посредством сварки.

Повторение пазом геометрической формы выступа позволяет реализовать качественное жесткое соединение, например, посредством сварки, что увеличивает жесткость и прочность соединения.

Сопрягаемая поверхность выступа с пазом находится на расстоянии от места перехода кронштейна к выступу большем, чем ширина зоны термического влияния сварного шва.

Зона перехода основного тела кронштейна к выступу является зоной максимальных динамических напряжений, вызванных вибрацией. Поэтому выполнение сопрягаемых поверхностей выступа с пазом на расстоянии от места перехода основного тела кронштейна к выступу большем, чем ширина зоны термического влияния сварного шва, позволяет исключить влияние снижения свойств материала кронштейна в результате сварки в данной области, что повышает прочность и надежность последнего и всего узла соединения в целом. Для сварных соединений данного рода деталей турбомашины зона термического влияния на свойства материала не превышает 10 мм.

Силовой элемент корпуса в области паза имеет локальное усиление, например, возможно увеличение высоты боковых участков силового элемента, прилегающих к пазу (см. фиг. 1). Выполнение локального усиления силового элемента корпуса в области паза увеличивает жесткость и прочность конструкции.

Совокупность описанных признаков позволяет повысить собственные частоты колебаний узла соединения и вывести их выше рабочего диапазона частот вращения роторов турбомашины за счет снижения массы и увеличения жесткости конструкции, что повышает прочность и надежность последней.

На фиг. 1 представлен узел соединения агрегата внешней обвязки с корпусом турбомашины.

На фиг. 2 представлен паз в силовом элементе корпуса турбомашины.

Узел соединения агрегата внешней обвязки с корпусом турбомашины (фиг. 1), содержащий кронштейн 1, жестко соединенный с агрегатом внешней обвязки 2 (например, посредством фланцевого соединения). На кронштейне 1, зацело с ним, выполнен выступ 3, жестко соединенный с корпусом 4, а именно выступ 3 жестко зафиксирован в пазу 5 (фиг. 2) посредством сварки, выполненном в свою очередь в силовом элементе 6 корпуса 4. В частном случае реализации силовой элемент 6 выполнен в виде окружного ребра. Агрегат внешней обвязки 2 соединен с кронштейном 1 посредством болтового соединения.

При сборке узла соединения выступ 3 кронштейна 1 заводят в паз 5, выполненный на силовом элементе 6 корпуса 4, и приваривают один к другому. После чего на кронштейн 1 устанавливают агрегат внешней обвязки 2.

В процессе работы турбомашины узел соединения вместе с агрегатом внешней обвязки 2 (например, топливным насосом, топливным дозатором, трубопроводами и т.д.) испытывает вибрационное воздействие и начинает неким образом колебаться. В случае отсутствия собственных частот колебания в рабочем диапазоне частот вращения роторов значительно снижается вероятность возникновения резонансных эффектов, что обеспечивает низкий уровень динамических напряжений. При этом конструктивное исполнение обеспечивает реализацию максимума динамических напряжений не в области сварного шва. В результате при работе турбомашины материалы деталей узла соединения меньше накапливают усталость.

Реализация узла соединения меньшей массы и большей жесткости позволяет снизить динамические напряжения при колебаниях конструкции за счет вывода собственных частот колебаний последней выше рабочего диапазона частот вращения роторов турбомашины и снижения общего уровня вибраций, что повышает прочность и надежность узла соединения в целом.

1. Узел соединения агрегата внешней обвязки с корпусом турбомашины, содержащий кронштейн, жестко соединенный с агрегатом внешней обвязки, причем на кронштейне, зацело с ним, выполнен выступ, жестко соединенный с корпусом, отличающийся тем, что выступ жестко зафиксирован в пазу посредством неразъемного соединения, выполненном в свою очередь в силовом элементе корпуса.

2. Узел по п. 1, отличающийся тем, что соответствующий паз повторяет геометрическую форму выступа по сопрягаемым поверхностям.

3. Узел по п. 1, отличающийся тем, что выступ жестко зафиксирован в пазу посредством сварки.

4. Узел по п. 3, отличающийся тем, что сопрягаемая поверхность выступа с пазом находится на расстоянии от места перехода кронштейна к выступу большем, чем ширина зоны термического влияния сварного шва.

5. Узел по п. 1, отличающийся тем, что силовой элемент корпуса в области паза имеет локальное усиление.



 

Похожие патенты:

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов низкого давления (РНД) модуля газогенератора и вал ротора модуля силовой турбины.

Система передачи мощности для турбомашины содержит передаточный вал, связанный с валом двигателя с помощью средств соединения и приводящий в действие оборудование или вспомогательные средства.

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора модуля силовой турбины, каждый из которых сообщен через приводы по крутящему моменту со своими агрегатами и датчиками.

Шестеренчатая коробка передач газотурбинного двигателя для приведения в действие его вспомогательного оборудования содержит корпус, кинематическую цепь внутри корпуса, ряд зубчатых передач, а также механизм отбора мощности, предназначенный для зацепления с передаточным валом газотурбинного двигателя.

Коробка приводов для приведения в действие вспомогательного устройства газотурбинного двигателя содержит корпус, кинематическую цепь внутри корпуса, а также элемент отбора мощности, предназначенный для зацепления с передаточным валом газотурбинного двигателя.

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам крутящего момента от турбины высокого давления ЦКП и кинематически соединенные с ней редукторы приводов КДА и КСА.

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку.

Изобретение относится к энергетике. Устройство закупоривания отверстия, выполненное в стенке кожуха шестерёнчатой коробки приводов в газотурбинном двигателе, обеспечивает доступ к вращающемуся валу, с возможностью вхождения с обеспечением герметичности в указанное отверстие и закрепления на стенке крепежными элементами.

Турбореактивный двигатель с передним вентилятором содержит по меньшей мере один контур текучей среды и теплообменник воздух/текучая среда, посредством которого упомянутая текучая среда охлаждается воздухом, наружным относительно турбореактивного двигателя, и разделитель потока.

Изобретение относится к области турбинных двигателей, а более конкретно к устройству (13) и способу временного увеличения мощности по меньшей мере первого турбинного двигателя (5A).

Изобретение относится к способу регулирования охлаждения масла и к устройству охлаждения масла в лопаточной машине. Способ регулирования охлаждения масла внутри устройства и устройство охлаждения масла лопаточной машины содержат первый теплообменник, установленный последовательно со вторым теплообменником.

Изобретение относится к энергетике. Газотурбинная установка, содержащая соединенные по ходу рабочего тела цикла Брайтона компрессор, камеру сгорания и турбину, выходной вал которой соединен с электрогенератором, статорные обмотки которого соединены с энергосистемой, дополнительно снабжена электрическим нагревателем и блоком питания электрического нагревателя, при этом электрический нагреватель расположен последовательно в контуре для нагрева рабочего тела цикла Брайтона, силовые входы электрического нагревателя соединены с силовыми выходами блока питания электрического нагревателя, силовой вход блока питания электрического нагревателя соединен с цепью статорной обмотки электрогенератора.

Изобретение относится к газотурбинным двигателям (ГТД) авиационного и наземного применения, в частности к опорам между роторами высокого и низкого давления. Техническим результатом, на достижение которого направлено изобретение, является повышение надежности работы опоры за счет исключения перекоса колец подшипника и снижение контактных напряжений между роликами и кольцами, следовательно, повышение грузоподъемности подшипника за счет полного контакта роликов с кольцами.

Изобретение относится к авиадвигателестроению, к способам повышения ресурса и основных параметров за счет введения в конструкцию двигателя систем охлаждения турбин.

Изобретение относится к воздушному блокировочному кольцу в сборе и, в частности, к воздушному блокировочному кольцу в сборе, имеющему радиальное крепление. Воздушное блокировочное кольцо (40) в сборе содержит ближний конец и дальний конец, блокировочное кольцо, имеющее выступ, и опору блокировочного кольца, имеющую участок стенки.

Изобретение относится к энергетике. Система содержит смесительный узел, выполненный с возможностью смешивания жидкого топлива и воды с созданием топливной смеси.

Система продувки топлива, предназначенная для турбинного узла, содержит систему подачи топлива. Система подачи топлива содержит источник топлива, предназначенный для подачи топлива к турбинному узлу, управляющий клапан, предназначенный для регулирования потока топлива, делитель потока, предназначенный для селективного распределения топлива к по меньшей мере одной камере сгорания, и клапан камеры сгорания, расположенный выше по потоку от указанной по меньшей мере одной камеры сгорания.

Изобретение относится к цилиндрическому кожуху, который используется в качестве кожуха вентилятора для закрытия лопастей вентилятора реактивного двигателя воздушного судна, и к способу изготовления цилиндрического кожуха.

Изобретение относится к роторам турбомашин, используемых в авиации. Барабан ротора турбомашины, содержащий корпус в форме полого цилиндрического тела вращения вокруг продольной оси и выполненный в нем один и более венец со средствами для крепления хвостовиков лопаток, расположенных по наружной поверхности через равные промежутки в поперечном направлении, при этом корпус содержит металломатричный композит с перекрестной укладкой армирующих волокон, средства для крепления хвостовиков лопатки выполнены в виде корневого элемента под сварку по форме профиля лопатки, а металломатричный композит сформирован по всей наружной поверхности тела вращения слоем толщиной, не превышающей высоту корневого элемента.

Коробка приводов содержит картер, образующий камеру для размещения смазываемых маслом вращающихся элементов, трубчатую муфту, соединяемую с вращающимися элементами и выполненную с возможностью приведения во вращение вала, а также средства сбора масла для смазки вращающихся элементов и доставки масла за счет стекания к шлицам с целью их смазки. Муфта содержит шлицы, выполненные с возможностью взаимодействия с ответными шлицами вала. Коробка приводов выполнена с возможностью обеспечения стекания масла по внутренней маслосборной стенке во время работы газотурбинного двигателя. Средства сбора и доставки содержат направляющий элемент, который проходит внутри муфты, и желоб, выполненный с возможностью доставки масла, стекающего по внутренней маслосборной стенке, к направляющему элементу. Направляющий элемент и желоб установлены на щеке картера или выполнены заодно целое с ней. Щека картера образует внутреннюю маслосборную стенку, служит опорой для подшипника качения муфты и содержит радиальное отверстие, обеспечивающее прохождение масла, стекающего по внутренней маслосборной стенке, к направляющему элементу. Другое изобретение группы относится к газотурбинному двигателю, содержащему указанную выше коробку приводов. Группа изобретений позволяет обеспечить непрерывную смазку шлицов муфты коробки приводов маслом, а также уменьшить размеры последней. 2 н. и 8 з.п. ф-лы, 4 ил.
Наверх