Способ реабилитации функциональных нарушений опорно-двигательного аппарата

Изобретение относится к медицине, а именно к травматологии, ортопедии и неврологии, и может быть использовано при реабилитации функциональных нарушений опорно-двигательного аппарата. Проводят синхронную с фазами двигательного акта электростимуляцию мышц больной ноги пациента в фазах их естественного возбуждения и сокращения. Для электростимуляции используют электроды, установленные на больной ноге. Синхронизацию электростимуляции мышц больной ноги с фазами двигательного акта осуществляют в соответствии с системным движением по заданной траектории. В качестве системного движения по заданной траектории принимают траекторию движения здоровой ноги, фиксируемую размещенными на ней угловыми датчиками движения. Движение больной ноги по заданной траектории корректируют на каждом шаге пациента с учетом фиксируемого пространственного положения больной ноги с помощью установленных на ней датчиков движения. Способ обеспечивает повышение эффективности реабилитации, сокращение ее сроков за счет использования шага здоровой ноги в качестве эталонного паттерна для шага больной ноги. 2 ил.

 

Изобретение относится к медицине и может быть использовано в травматологии, ортопедии и неврологии при реабилитации больных после травм и поражений опорно-двигательного аппарата различного генезиса.

Известен способ реабилитации функциональных нарушений опорно-двигательного аппарата [Руководство по протезированию. Под редакцией Н.И. Кондрашина. М.: Медицина, 1988, с. 277-308], заключающийся в том, что при наличии способности у пациента к самостоятельному двигательному акту проводится электростимуляция мышц одновременно с совершением пациентом двигательного акта. Для проведения электростимуляции мышц применяют электроды, а именно пару электродов; самостоятельным двигательным актом, совершаемым пациентом при электростимуляции мышц, является ходьба; амплитуда стимулирующего импульса составляет до 60 В, длительность стимулирующих импульсов варьируется от 20 мкс до 200 мкс, а частота следования стимулирующих импульсов 40-80 Гц.

К недостаткам относится отсутствие системности локомоторного цикла, что не способствует выработке правильных двигательных стереотипов, к этому же приводит и ограничение в количестве движений. В результате удлиняются сроки реабилитации, снижается ее эффективность, не всегда достигается положительный результат. До появления способности у пациента самостоятельно совершать двигательный акт, т.е. ходить, могут развиться контрактуры различного характера (мышечные, суставные), ограничивающие дальнейшую реабилитацию или делающие ее практически невозможной.

Известен также способ лечения заболеваний и последствий повреждений опорно-двигательного аппарата [RU 2098149 C1, A61N 1/32, 6 А61В 17/56, 10.12.1997], заключающийся в многоканальной электрической стимуляции мышц при ходьбе путем наложения пары электродов (активного и индифферентного) на группы мышц и задания параметров электростимуляции с фазами шага с помощью датчиков углов, расположенных в области коленного или тазобедренного сустава. При этом электроды накладывают на основную и вспомогательную группы мышц, длительность электростимуляции на первом сеансе составляет 20 мин, а с 5-6 сеанса его продолжительность доводят до 60 мин, затем увеличивают амплитуду напряжения с 30 до 60 В длительность импульсов с 20 до 200 мкс и частоту следования от 30 до 60 Гц. Электростимуляцию осуществляют путем подачи электрического импульса в фазах естественного возбуждения и ретракции мышц, при этом размер электрода выбирают равным поперечнику стимулируемой мышцы или группы мышц, а сам электрод располагают перпендикулярно ходу мышечных волокон.

Данный способ обладает следующими недостатками: необходимо наличие способности пациента стоять и ходить, что сразу ограничивает круг реабилитируемых, так как часто эта способность появляется достаточно поздно от начала заболевания или совсем не появляется, в связи с чем, реальное эффективное время для физиологического восстановления будет упущено. Более того, за этот промежуток времени, до появления способности у пациента самостоятельно совершать двигательный акт, могут развиться контрактуры различного характера, исключающие возможность реабилитации практически для всех категорий больных с патологиями опорно-двигательного аппарата.

К недостаткам также относится отсутствие системности локомоторного цикла, ограничение в количестве движений, что мешает качественной и интенсивной наработке правильных двигательных стереотипов.

Кроме того, известен способ реабилитации функциональных нарушений опорно-двигательного аппарата [RU 2126276 С1, A61N 1/18, 20.02.1999], заключающийся в электростимуляции мышц при ходьбе за счет установки пары электродов, причем в нем электростимуляцию мышц проводят в фазах естественного возбуждения и сокращения мышц, осуществляя синхронизацию электростимуляции мышц с фазами шага. Дополнительно осуществляют корригирующее, разгружающее, фиксирующее, повышающее опороспособность воздействие на пораженный отдел опорно-двигательного аппарата путем установки на пациента жесткого ортеза.

Этому способу присущи те же недостатки. Необходимо наличие способности пациента стоять и ходить, что сразу ограничивает круг реабилитируемых, так как в большинстве случаев эта способность может появиться очень поздно или совсем не появиться, в связи с чем реальное эффективное время для физиологического восстановления будет упущено. Более того, за этот промежуток времени, до появления способности у пациента самостоятельно совершать двигательный акт, могут развиться контрактуры различного характера, ограничивающие дальнейшую реабилитацию или делающие ее практически невозможной. К недостаткам также относится отсутствие системности локомоторного цикла, ограничение в количестве движений, что мешает качественной и интенсивной наработке правильных двигательных стереотипов.

Наиболее близким по технической сущности к предложенному является способ реабилитации функциональных нарушений опорно-двигательного аппарата [RU 2235566 С2, A61N 1/16, 10.09.2004]. Он заключается в том, что при наличии способности у пациента к самостоятельному двигательному акту, проводится электростимуляция мышц одновременно с совершением пациентом двигательного акта. Электростимуляцию мышц проводят в фазах естественного возбуждения и сокращения мышц, при этом осуществляют синхронизацию электростимуляции мышц с фазами двигательного акта, совершаемого пациентом. Синхронизацию осуществляют с помощью угловых датчиков, для проведения электростимуляции мышц применяют электроды, а двигательным актом, совершаемым пациентом при электростимуляции мышц, служит многократно повторяемое системное движение по заданной траектории.

Особенностью наиболее близкого технического решения является то, что в качестве источника многократно повторяемого системного движения по заданной траектории используют тренажер. По мере формирования двигательных стереотипов и восстановления нервно-мышечного аппарата осуществляют повышение объема физической нагрузки увеличением количества повторяемых системных движений по траектории, заданной тренажером. При более продолжительном сеансе электростимуляции, в качестве тренажера используют или велотренажер, или имитатор ходьбы с эллипсоидной характеристикой движения опорных педалей, или имитатор ходьбы по лестнице. Кроме того, угловые датчики устанавливают на осях вращения элементов тренажера. Применяют от одной до нескольких пар электродов, соответствующих поперечному размеру стимулируемой мышцы и располагаемых перпендикулярно ходу мышечных волокон, которые накладывают на определенные группы мышц в зависимости от характера поражения. В начале цикла реабилитации продолжительность сеанса электростимуляции мышц составляет 30-40 мин, а затем продолжительность сеанса электростимуляции мышц доводят до 60-90 мин. При состояниях пациента, не сопровождающихся нарушением нервно-мышечной проводимости, амплитуда стимулирующего импульса составляет 30-80 В, длительность стимулирующих импульсов 20-200 мкс, частота следования стимулирующих импульсов 25-150 Гц, а при состояниях пациента, сопровождающихся нарушением нервно-мышечной проводимости, амплитуда стимулирующего импульса составляет 30-80 В, длительность стимулирующих импульсов варьируется от 20-200 мкс, частота следования стимулирующих импульсов составляет 25-150 Гц.

Недостатком наиболее близкого технического решения является относительно низкая эффективность реабилитации, вызванная тем, что в большом числе случаев у пациента одна из конечностей (например, нога) является здоровой, но для реабилитации второй конечности используется не информация о движении здоровой ноги, а многократно повторяемое системное движение по заданной траектории, источником которого является тренажер. Это снижает эффективность реабилитации и увеличивает ее сроки.

Задачей, которая решается в предложенном изобретении, является создание способа, позволяющего более эффективно проводить реабилитацию и сокращать ее сроки.

Требуемый технический результат заключается в повышении эффективности и сокращение сроков реабилитации.

Поставленная задача решается, а требуемый технический результат достигается тем, что в способе, основанном на том, что проводят синхронную с фазами двигательного акта электростимуляцию мышц больной ноги пациента в фазах их естественного возбуждения и сокращения, для которой используют электроды, установленные на больной ноге, а синхронизацию электростимуляции мышц больной ноги с фазами двигательного акта осуществляют в соответствии с системным движением по заданной траектории, согласно изобретению в качестве системного движения по заданной траектории принимают траекторию движения здоровой ноги, фиксируемую размещенными на ней угловыми датчиками движения, при этом движение по заданной траектории корректируют на каждом шаге пациента с учетом фиксируемого пространственного положения больной ноги с помощью установленных на ней датчиков пространственного положения больной ноги.

На чертеже представлены:

на фиг. 1 - структурная схема системы, которая может быть использована для реализации предложенного способа реабилитации функциональных нарушений опорно-двигательного аппарата;

на фиг. 2 - пример размещения автономного устройства на поясе пациента, на теле которого установлены датчики и электроды.

Система содержит блок 1 управления движением и миостимуляцией, модуль 2 контроля положения больной ноги, модуль 3 контроля положения здоровой ноги, модуль 4 вычисления рассогласований, модуль 5 формирования сигналов коррекции параметров миостимуляции, модуль 6 выработки импульсов миостимуляции, набор 7 датчиков движения, устанавливаемых на здоровую ногу, набор 8 датчиков движения, устанавливаемых на больную ногу, также набор 9 электродов для миостимуляции, устанавливаемых на больную ногу.

В системе блок 1 управления движением и миостимуляцией, модуль 2 контроля положения больной ноги, модуль 3 контроля положения здоровой ноги, модуль 4 вычисления рассогласований, модуль 5 формирования сигналов коррекции параметров миостимуляции и модуль 6 выработки импульсов миостимуляции могут быть выполнены в виде автономного устройства 10, размещаемого, например, на поясе пациента и использоваться пациентом для тренировок вне лечебного учреждения. Т.е. пациент может ходить по улице, проходить отмеренные дистанции и т.п. с использованием реального рельефа местности. Связь с датчиками и электродами может производится по проводам или радиоканалам.

Система может транслировать сигналы лечащему врачу удаленно, что обеспечивает наблюдение за ходом тренировок и, при необходимости, корректировку тренировочного задания.

Предложенный способ реабилитации функциональных нарушений опорно-двигательного аппарата реализуется следующим образом.

Разберем его реализацию на примере работы описанной системы реабилитации ноги, утратившей функцию нормального движения.

Нулевое положение системы отсчитывается от момента, когда пациент стоит и обе его ноги расположены рядом в вертикальном положении.

Работа системы начинается в момент первого шага здоровой ноги. При этом датчики движения 7 фиксируют изменение положения скелетных звеньев ноги (стопа, голень, бедро, таз). Измеренные положения по проводам (на схеме не показаны), либо путем беспроводной передачи поступают в модуль 3 контроля положения здоровой ноги, преобразуются в удобный для дальнейшей обработки вид и сохраняются.

После фиксации системой удара стопы здоровой ноги о землю заканчивается «передний шаг» здоровой ноги, модуль 6 выработки импульсов миостимуляции направляет серию электрических импульсов по проводам (на схеме не показаны) на электроды 9. Для первого шага используется последовательность импульсов, заранее записанных в системе. В результате действия электрических импульсов на мышцы происходит несколько актов их сокращения и расслабления, что выражается в сгибании и разгибании скелетных звеньев больной ноги, которая совершает первый «одиночный шаг».

В течение времени первого шага датчики 7 и 8 движения фиксируют положение скелетных звеньев как здоровой, так и больной ноги. Результаты этих измерений записываются блоком 1 управления движением и миостимуляцией. В этих записях программное обеспечение блока вычленяет отрезки, соответствующие полному циклу «одиночного шага» каждой ноги.

Количество измеренных значений внутри каждого «одиночного шага» равно частоте измерений датчиков движения.

В момент появления в системе первых полных данных о положении скелетных звеньев обеих ног в течение «одиночного шага» каждой из ног, эти данные передаются в модуль 4 вычисления рассогласований.

Первоначально оба графика измерения положений скелетных звеньев синхронизируются. Это означает, что начало «одиночного шага» одной и другой ног совмещается, при этом исключается смещение во времени, обусловленное разностью фаз их движения.

Затем вычисляется рассогласование величин перемещения скелетных звеньев больной ноги по отношению к здоровой в одинаковые моменты синхронизированных графиков движения. При этом количество положений, для которых вычисляется рассогласование, не обязательно совпадает с количеством точек измерения датчиками движения, а, как правило, усредняется по нескольким смежным точкам. В результате получаются графики рассогласования перемещений для каждого скелетного звена, на котором установлен датчик перемещений.

По мере получения данных о рассогласовании перемещений, они передаются в модуль 5 формирования сигнала коррекции параметров миостимуляции. В нем производится перерасчет величин и времени выработки электрических импульсов, которые должны быть направлены на электроды системы. Это изменение производятся в направлении получения таких параметров миостимуляции, которые бы обеспечили уменьшение рассогласования в положении скелетных звеньев больной и здоровой ног.

Сформированные в модуле 5 сигналы коррекции передаются в модуль 6 выработки импульсов миостимуляции. где вырабатываются соответствующие импульсы миостимуляции. но уже с измененным режимом, по сравнению с предыдущим шагом.

Электрические импульсы достигают мышц, что приводит к их сокращениям и расслаблениям в новом ритме и с изменившимися усилиями и амплитудами. Эти процессы в мышцах приводят к сгибанию и разгибанию скелетных звеньев, приводящих к следующему шагу больной ногой.

При этом непрерывно ведется регистрация изменений положения скелетных звеньев, соответствующие данные непрерывно передаются в блок 1 управления миостимуляцией.

Таким образом, каждый шаг здоровой ноги является эталоном (паттерном) для совершения следующего шага больной ногой, причем система миостимуляции воздействует на больную ногу таким образом, чтобы ее движения максимально приближались к движениям здоровой.

Может быть задана точность соответствия движений больной и здоровой ног. Когда рассогласование будет укладываться в этот допустимый диапазон, изменение параметров миостимуляции прекратится. В это время система будет воспроизводить достигнутый паттерн ходьбы до тех пор, пока рассогласование снова не выйдет за допустимые пределы.

Особенностью примененного метода является его физиологичность: в случае если предписанный врачом темп ходьбы оказался для больного чрезмерным, либо он устал, либо рельеф местности стал повышаться и пр., больной снижает темп передвижения или, например, уменьшает длину шага здоровой ноги, что немедленно отражается на движениях больной ноги, т.е. на всем режиме ходьбы.

В конце тренировки параметры миостимуляции шага больной ноги сохраняются в системе и служат параметрами первого шага больной ногой на следующей тренировке.

Таким образом, благодаря использованию предложенного способа обеспечивается достижение требуемого технического результата, который заключается в повышении эффективности и сокращении сроков реабилитации, поскольку каждый шаг здоровой ноги является эталоном (паттерном) для совершения следующего шага больной ногой, причем обеспечивается воздействие на больную ногу таким образом, чтобы ее движения максимально приближались к движениям здоровой.

Кроме того, если в силу сложности заболевания восстановление функции самостоятельной ходьбы, управляемой мозгом, не происходит, то предложенный способ система все равно будет позволять пациенту производить ходьбу. В этом случае больная нога будет выполнять функции биопротеза, оставаясь собственной конечностью пациента.

Способ реабилитации функциональных нарушений опорно-двигательного аппарата, основанный на том, что проводят синхронную с фазами двигательного акта электростимуляцию мышц больной ноги пациента в фазах их естественного возбуждения и сокращения, для которой используют электроды, установленные на больной ноге, а синхронизацию электростимуляции мышц больной ноги с фазами двигательного акта осуществляют в соответствии с системным движением по заданной траектории, отличающийся тем, что в качестве системного движения по заданной траектории принимают траекторию движения здоровой ноги, фиксируемую размещенными на ней угловыми датчиками движения, при этом движение больной ноги по заданной траектории корректируют на каждом шаге пациента с учетом фиксируемого пространственного положения больной ноги с помощью установленных на ней датчиков движения.



 

Похожие патенты:

Группа изобретений относится к физиотерапии, а именно к способам электроимпульсного воздействия на живой организм. Способ адаптивного электровоздействия включает установку электродов на ткани биологического объекта и пропускание через них пачек электрических стимулов, формируемых при помощи индуктивного накопителя в виде катушки индуктивности, или трансформатора, или автотрансформатора, управление длительностью воздействия и/или параметрами стимулов в зависимости от параметров свободных колебаний, возникающих в колебательном контуре, образованном индуктивностью накопителя и импедансом межэлектродных тканей, при этом в первом варианте выполнения способа измеряют параметры свободных колебаний во время воздействия текущей пачки стимулов и в соответствии с результатами этих измерений управляют параметрами стимулов в этой же пачке и/или в любых последующих пачках стимулов, в том числе управляют моментом начала очередного стимула в пачке в зависимости от фазы свободных колебаний предыдущего стимула.

Изобретение относится к медицине, а именно к кардиологии, и может быть использовано для оценки эндокардиальной радиочастотной изоляции легочных вен. Измеряют тканевую деформацию устьев легочных вен до и после радиочастотного воздействия.
Изобретение относится к медицине, в частности к лечебной физкультуре, физиотерапии, и может быть использовано при лечении больных с диабетической ангиопатией нижних конечностей и дистальной диабетической сенсомоторной нейропатией.

Изобретение относится к ветеринарной медицине и может быть использовано для профилактики технологического стресса у овец при стрижке. Для этого до стрижки осуществляют транскраниальную электростимуляцию (ТЭС).
Изобретение относится к медицине, неврологии и реабилитации. Реабилитация больных с постинсультными нарушениями в раннем восстановительном периоде включает тренинг на стабилометрической платформе с биоуправлением с обратной связью (БОС) по опорной реакции (ОР).
Изобретение относится к медицине, а именно к оториноларингологии и физиотерапии, и может быть использовано для лечения обонятельной дисфункции у больных острым риносинуситом.

Изобретение относится к области медицины, а именно к неврологии. Для физиотерапевтического лечения и купирования головокружений проводят микротоковое воздействие электродами сначала на одну половину области головы, теменно-затылочную и шейно-воротниковую области, затем на их другую половину с последовательным использованием, по меньшей мере, трех режимов с длительностью каждого из них от 1 до 2 минут.

Изобретение относится к медицине, нейрофизиологии, нейротравматологии, нейрохирургии и микрохирургии. Для воздействия на репаративно-регенеративные процессы при повреждении периферического нерва при выполнении его нейрорафии выполняют установку трех проволочных электродов: двух - в зону проведения нейрорафии выше и ниже нее на расстоянии 5-6 мм друг от друга и одного 4-контактного - в эпидуральное пространство позвоночника, имплантируя его над сегментами, участвующими в формировании поврежденного периферического нерва, продвигая его таким образом, чтобы его контактные поверхности охватывали все эти соответствующие сегменты спинного мозга.

Изобретение относится к системам тестирования сердечных дефибрилляторов. Система содержит панель дистанционного контроля, к выходу которой подключен блок формирования и отсылки электронных уведомлений, а также парк автоматизированных внешних дефибрилляторов (АВД), в состав каждого из которых входят многоканальный микроконтроллер, связанный с ним многоканальный блок самодиагностики и высоковольтный блок формирования дефибрилляционных импульсов, к управляющим входам которого подключены управляющие выходы многоканального микроконтроллера, к высоковольтным выходам подсоединены дефибрилляционные электроды, а к контрольным выходам - информационные входы блока самодиагностики, а также WiFi-модем, вход которого соединен с первым коммуникационным выходом многоканального микроконтроллера, пульт внешнего тестирования, в котором размещены панель дистанционного контроля с блоком формирования и отсылки электронных уведомлений и приемник узкополосного канала мегагерцового диапазона, выход которого подключен через интерфейс к входу панели дистанционного контроля, а в каждом АВД установлен передатчик узкополосного канала мегагерцового диапазона, работающий в нелицензируемых полосах частот, при этом многоканальный микроконтроллер выполнен со вторым коммуникационным выходом, к которому подключен вход передатчика узкополосного канала мегагерцового диапазона.

Изобретение относится к области медицины, а именно к хирургии. Для лечения хронической ишемии нижних конечностей проводят поясничную химическую десимпатизацию путем введения раствора этилового спирта.

Изобретение относится к медицине, в частности к физиотерапии, и может быть использовано для электровоздействия на живой организм. Устанавливают электроды на кожные покровы и пропускают через электроды электрические импульсы с индуктивного накопителя энергии. Используют высокоамплитудные импульсы, вызывающие вибрацию подэлектродных тканей. Как минимум, один из электродов переставляют, отрывая от кожи, либо передвигают, не отрывая от кожи, в момент прекращения роста подэлектродной емкости и/или прекращения вибрации подэлектродных тканей. При этом, как минимум, этот электрод используют сухим. Способ обеспечивает повышение эффективности терапии за счет максимального использования физических процессов, возникающих при взаимодействии электрод-кожа и сочетанного электроимпульсного и механического воздействия. 1 з.п. ф-лы, 5 ил.

Группа изобретений относится к медицине. Способ улучшения циркуляции крови в нижней конечности пациента осуществляют с помощью набора для улучшения циркуляции крови в нижней конечности пациента. При этом осуществляют по существу иммобилизацию сустава нижней конечности пациента с помощью устройства для иммобилизации сустава нижней конечности пациента и предоставляют в противоположные мышцы ног пациента электрический стимул, достаточный для того, чтобы вызывать изометрическое сокращение мышц. Электрический стимул предоставляют с помощью устройства, содержащего по меньшей мере один электрод для введения электрического стимула в противоположные мышцы ног пациента, источник питания, соединяемый с электродом, и средство управления для активации электрода. Достигается улучшение микроциркуляции крови в нижней конечности при ограничении подвижности конечности. 3 н. и 8 з.п. ф-лы, 6 ил., 1 табл.
Изобретение относится к области медицины, а именно к хирургии и физиотерапии, и может быть использовано для восстановления моторно-эвакуаторной функции ЖКТ при его парезе. Осуществляют воздействие, используя индивидуально-коррегируемую резонансную электростимуляцию. Регистрируют собственную перистальтическую активность каждого отдела ЖКТ пациента. На все отделы ЖКТ последовательно осуществляют электроимпульсное воздействие секцией из 45-ти импульсных синусоидальных колебаний, принимая их за нормативные показатели стандартных частот воздействия. На желудок приходится 5 импульсов, на дуоденум - 20 импульсов, на тонкий кишечник -12 импульсов, на толстый кишечник - 8 импульсов. Сила тока до 10-12 мА. Через 5-10 минут стимуляции, не прекращая ее, начинают измерять амплитуду колебаний каждого из перечисленных отделов ЖКТ. Сравнивают ее значения с соответствующими значениями до стимуляции. При выявлении прироста амплитуды менее 20-25% в каком-либо из этих отделов считают этот отдел ЖКТ паретичным. Продолжают стимуляцию всех отделов ЖКТ, при этом постепенно увеличивают амплитуду воздействия на паретичный отдел таким образом, чтобы величина амплитуды его колебаний составляла 40-60% от исходных показателей амплитуды колебаний данного отдела. Для этого увеличивают частоту посылаемых импульсов в 25% от нормативных показателей стандартных частот воздействия на протяжении 3-4 периодов стимуляции от желудка до толстого кишечника. При достижении предела увеличения амплитуды продолжают воздействие в этом же режиме до достижения синхронности сокращения всех отделов ЖКТ - одинакового процента увеличения амплитуды их колебаний. Продолжают воздействие не менее 10-15 мин и при появлении синхронного эффекта угасания активности ответа отделов ЖКТ сеанс заканчивают. Сеансы повторяют до достижения клинических эффектов разрешения пареза ЖКТ. Способ позволяет достичь синхронизации работы всех отделов ЖКТ в процессе одного сеанса за счет прицельного воздействия на паретичный отдел пищеварительного тракта и индивидуального моделирования колебаний в непрерывном режиме с возможностью ежеминутной коррекции. 3 пр.

Изобретение относится к области медицины, а именно сердечно-сосудистой хирургии. Выполняют имплантацию желудочкового и предсердного электрода. Определяют пороги стимуляции с помощью наружного кардиостимулятора с выявлением значений острого порога эндокарда. Предварительно вводят временный эндокардиальный электрод в правый желудочек, а имплантацию желудочкового и предсердного электродов осуществляют в левые камеры сердца через овальное окно или ямку межпредсердной перегородки. Затем последовательно извлекают стилеты электродов, придают стилету желудочкового электрода в нижней трети спиралевидную форму, а предсердному стилету придают изогнутую или волнообразную форму с последующим их введением в соответствующий электрод. Выявляют на эндокарде острый порог, равный или меньший чем 0,2 мА, фиксируют головки электродов в этих областях, при этом временный эндокардиальный электрод активируют до момента установки желудочкового и предсердного электродов. Способ позволяет повысить эффективность лечения в результате нормализации выводного тракта левого желудочка, снижения градиента, улучшения сократительной функции и кровоснабжения миокарда, что улучшает качество и продолжительность их жизни данной категории больных. 1 пр., 5 ил.

Изобретение относится к медицинской технике. Электростимулятор содержит подключенный к источнику питания генератор регулируемых по частоте и длительности управляющих импульсов, транзисторный ключ, управляющий вход которого подключен к выходу генератора управляющих импульсов, и стимулирующие электроды. Электростимулятор также снабжен стабилитроном, токоограничивающим и переменным резисторами. Стабилитрон включен между базой транзистора и минусовым выводом источника питания и вместе с токоограничивающим резистором образует делитель напряжения. Источник питания выполнен в виде источника постоянного напряжения. Эмиттер транзистора подключен через переменный резистор к плюсовому выводу источника питания. Коллектор транзистора через стимулирующие электроды связан с минусовым выводом источника питания. Достигается повышение эффективности лечения и удобства в эксплуатации электростимулятора за счет автоматического поддержания выбранного режима стимуляции. 1 з.п. ф-лы, 1 ил.
Изобретение относится к медицинской технике. Устройство для электростимуляции дополнительной двигательной зоны, премоторной зоны и/или субталамического ядра через ушные мышцы содержит электроды, которые посылают и принимают электрические сигналы, блок управления, заземляющий электрод. Блок управления формирует стимулирующие сигналы с частотой 2-200 Гц для снижения активности покоя, такой как тремор. Электроды выполнены с возможностью прикрепления к внутренним ушным мышцам, таким как большая мышца завитка, малая мышца завитка, козелковая мышца, противокозелковая мышца, для обеспечения стимулирующего контакта, чтобы стимулировать дополнительную двигательную зону, премоторную зону и/или субталамическое ядро. Устройство дополнительно содержит сенсорный блок для приема данных от пациента. Сенсорный блок использует электроды для приема сигналов, проходящих по мышцам, к которым эти электроды прикреплены, чтобы определять интенсивность сигналов возмущения посредством измерения сигналов, проходящих по мышцам во время периода покоя. Сигнал стимуляции корректируется после измерения уровней сигналов возмущения так, чтобы он мог компенсировать указанные сигналы возмущения. Достигается изменение интенсивности электростимуляции вместе с интенсивностью тремора. 21 з.п. ф-лы, 2 ил.
Изобретение относится к медицинской технике. Устройство для электростимуляции дополнительной двигательной зоны, премоторной зоны и/или субталамического ядра через ушные мышцы содержит электроды, которые посылают и принимают электрические сигналы, блок управления, заземляющий электрод. Блок управления формирует стимулирующие сигналы с частотой 2-200 Гц для снижения активности покоя, такой как тремор. Электроды выполнены с возможностью прикрепления к внутренним ушным мышцам, таким как большая мышца завитка, малая мышца завитка, козелковая мышца, противокозелковая мышца, для обеспечения стимулирующего контакта, чтобы стимулировать дополнительную двигательную зону, премоторную зону и/или субталамическое ядро. Устройство дополнительно содержит сенсорный блок для приема данных от пациента. Сенсорный блок использует электроды для приема сигналов, проходящих по мышцам, к которым эти электроды прикреплены, чтобы определять интенсивность сигналов возмущения посредством измерения сигналов, проходящих по мышцам во время периода покоя. Сигнал стимуляции корректируется после измерения уровней сигналов возмущения так, чтобы он мог компенсировать указанные сигналы возмущения. Достигается изменение интенсивности электростимуляции вместе с интенсивностью тремора. 21 з.п. ф-лы, 2 ил.
Изобретение относится к медицине, а именно к урологии и физиотерапии, и может быть использовано для профилактики рубцово-склеротических осложнений после оперативного лечения на верхних мочевых путях. Для этого проводят дренирование верхних мочевых путей путём чрескожной пункционной нефростомии, антибиотикопрофилактику. Внутримышечно вводят Лонгидазу 3000 ME 1 раз в 3 дня курсом 10 инъекций. Начиная со следующих суток после установки нефростомического дренажа осуществляют наружную магнитно-лазерную терапию в количестве 10 процедур. На 7 сутки после установки нефростомического дренажа проводят курс многоканальной электростимуляции (МЭС) в областях трапециевидной и широчайших мышц спины, прямой и косых мышц живота биполярно-импульсными токами с трапециевидной огибающей частотой 1-150 Гц, посылкой и паузой по 2 с, временем воздействия 15-20 минут. МЭС сочетают с ультрафонофорезом Лонгидазы 3000 ME в проекции пораженного мочеточника с интенсивностью 0,2 Вт/см2 в непрерывном режиме лабильно. Курс лечения составляет 10-12 сочетанных процедур, проводимых ежедневно. Параллельно с вышеуказанным курсом лечения проводят процедуры гипербарической оксигенации (ГБО) в общей барокамере с парциальным давлением кислорода, равным 1,25 кгс/см2 в режиме изопрессии. Данной величины давления достигают способом ступенчатой компрессии со скоростью 0,06-0,08 кгс/(см2*мин), останавливаясь на каждой ступени компрессии на 3-4 минуты и проверяя реакцию больного на процедуру. При отсутствии явлений кислородной интоксикации продолжительность процедуры в режиме изопрессии 25-35 минут, из которых в течение 6-8 минут проводят декомпрессию. Курс лечения ГБО составляет 8-10 процедур, проводимых ежедневно. Способ обеспечивает максимально быстрое восстановление проходимости и перистальтики мочеточника и улучшение пассажа мочи, уменьшение уродинамических нарушений почки, улучшение морфологических изменений стенки мочеточника и внутриорганных нервных элементов в результате комплексного патогенетического воздействия, оказывающего, в том числе дефиброзирующее, разволокняющее и деполимеризирующее действие на соединительнотканные структуры. 1 пр.
Наверх