Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в расчете условия термопрочности материала при воздействии лазерного импульса треугольной временной формы и, при его невыполнении, предварительном нагреве материала до температуры, определяемой по соотношению, связывающему свойства материала и длительность лазерного импульса. Далее обработку материалов осуществляют путем воздействия импульса лазерного излучения с плотностью энергии, достаточной для достижения поверхностью материала температуры отжига (плавления). Способ применяется для предотвращения откольного разрушения материалов в процессе обработки и повышения выхода годной продукции. 1 ил.

 

Изобретение относится к области технологических процессов и может быть использовано для отжига или легирования пластин из полупроводниковых, керамических и стеклообразных материалов.

Известен способ обработки неметаллических материалов, применяемый для аморфизации кремния и заключающийся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, достаточной для достижения поверхностью температуры плавления материала [Боязитов P.M. и др. Аморфизация и кристаллизация кремния субнаносекундными лазерными импульсами. Тезисы докладов VIII Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с. 24].

Известен также способ обработки неметаллических материалов, применяемый для отжига ионно-легированного кремния, заключающийся в облучении пластины импульсом лазерного излучения с плотностью энергии, достаточной для достижения поверхностью пластины температуры отжига [Кузменченко Т.А. и др. Лазерный отжиг ионно-легированного кремния излучением с длиной волны 2,94 мкм. Тезисы докладов VIII Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград, 11-18 марта 1988 г., с. 29].

Известен также способ обработки неметаллических материалов, заключающийся в облучении их поверхности одиночным лазерным импульсом прямоугольной формы [Бакеев А.А., Соболев А.П., Яковлев В.И. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ, - 1982. - №6 - с. 92-98] - аналог. Обрабатываемые материалы обладают, как правило, объемным поглощением на длине волны воздействующего лазерного излучения. Недостатком указанных способов является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Известен также способ обработки неметаллических материалов [Атаманюк В.М., Коваленко А.Ф., Левун И.В., Федичев А.В. Способ обработки неметаллических материалов. Патент RU 2211753 С2, МПК В23К 26/00, опубл. 10.09.2003, бюл. №25], заключающийся в облучении их поверхности импульсом лазерного излучения, временная форма которого описывается соотношением

где q(t) - плотность мощности лазерного излучения, Вт/м2;

b1 и b2 - константы, характеризующие фронт и спад лазерного импульса и определяемые из условия

qmax - максимальное значение плотности мощности лазерного излучения в импульсе, Вт/м2;

е - основание натурального логарифма;

- плотность энергии лазерного излучения, Дж/м2;

τ - длительность лазерного импульса, с;

t - текущее время от начала воздействия, с.

Аналог. При этом плотность энергии в импульсе должна быть достаточной для достижения поверхностью материала температуры отжига и рассчитывается по уравнению

где Tƒ - температура отжига материала, К;

Т0 - начальная температура материала, К;

с - удельная теплоемкость материала, Дж/(кг К);

ρ - плотность материала, кг/м3;

R - коэффициент отражения материала на длине волны лазерного излучения;

χ - показатель поглощения материала на длине волны лазерного излучения, м-1.

В аналоге показано, что при воздействии импульса лазерного излучения, описываемого соотношением (1), в неметаллических материалах возникают наименьшие, по сравнению с другими временными формами импульсов, максимальные растягивающие напряжения и существует минимальная область в плоскости параметров, характеризующих лазерный импульс и свойства материала, в которой возможно откольное разрушение материала со стороны облучаемой поверхности. Недостатком указанного способа является то, что возникающие в материале термоупругие напряжения могут привести к разрушению материала вследствие откола со стороны облучаемой поверхности.

Известен также способ обработки неметаллических материалов, заключающийся в облучении их поверхности импульсом лазерного излучения, временная форма которого описывается уравнением (1) с плотностью энергии, определяемой уравнением (2), и предварительном нагреве материала до температуры, определяемой по соотношению

где σВР - предел прочности материала на растяжение, Па;

с0 - скорость звука в материале, м/с;

К - модуль всестороннего сжатия, Па;

αT - коэффициент линейного расширения материала, К-1.

[Патент РФ №2583870, МПК H01L 21/42, 10.05.2016, бюл. №13] - прототип.

Недостатком прототипа является то, что при воздействии лазерных импульсов других временных форм с плотностью энергии, определяемой по уравнению (2), на материал с начальной температурой, определяемой по соотношению (3), материал будет разрушен термоупругими напряжениями вследствие откола со стороны облучаемой поверхности. Лазерный импульс, описываемый уравнением (1), создает минимальные термоупругие напряжения в поглощающем слое материала. Лазерные импульсы других временных форм будут создавать в поглощающем слое материала большие термоупругие напряжения [Коваленко А.Ф. Экспериментальная установка для исследования влияния параметров лазерного импульса на разрушение неметаллических материалов. Приборы и техника эксперимента. - 2004. №4. - С. 119-124]. Лазерный импульс, описываемый уравнением (1), формируется при реализации схемы задающий генератор-многокаскадный усилитель. Задающий генератор должен работать в режиме модулированной добротности. Причем последний каскад усилителя должен работать в режиме, близком к насыщению. Если каскадов усиления не более двух-трех, то выходной лазерный импульс будет иметь временную форму, близкую к треугольной форме [Коваленко А.Ф. Экспериментальная установка для исследования влияния параметров лазерного импульса на разрушение неметаллических материалов. Приборы и техника эксперимента. - 2004. №4. - С. 119-124], описываемой уравнением:

где q(t) - плотность мощности лазерного излучения Вт/см2;

qm - максимальное значение плотности мощности лазерного излучения Вт/см2;

t - текущее время от начала воздействия, с;

τ - длительность лазерного импульса, с.

Техническим результатом предполагаемого изобретения является исключение откольного разрушения материалов со стороны облучаемой поверхности и повышение выхода годных изделий в технологическом процессе обработки.

Технический результат достигается тем, что в способе лазерной обработки неметаллических материалов, включающем предварительный нагрев материала до определенной начальной температуры и облучение поверхности импульсом лазерного излучения, температуру предварительного подогрева материала определяют из условия термопрочности

где σВР - предел прочности материала на растяжение, Па;

К - модуль всестороннего сжатия материала, Па;

αT - коэффициент линейного расширения материала, К-1;

е - основание натурального логарифма;

а=χc0τ;

χ - показатель поглощения материала на длине волны лазерного излучения, м-1;

с0 - скорость звука в материале, м/с;

τ - длительность лазерного импульса, с,

при этом облучение осуществляют лазерным импульсом с плотностью энергии, определяемой по соотношению

где Тƒ - температура отжига материала, К;

Т0 - начальная температура материала после предварительного подогрева, К;

с - удельная теплоемкость материала, Дж/(кг⋅К);

ρ - плотность материала, кг/м3;

R - коэффициент отражения материала на длине волны лазерного излучения,

и временной формой лазерного импульса, которая описывается соотношением

где q(t) - плотность мощности лазерного излучения Вт/см2;

qm - амплитуда плотности мощности лазерного излучения Вт/см2;

t - текущее время от начала воздействия, с.

Ниже приводится более подробное описание способа лазерной обработки неметаллических материалов со ссылкой на фиг. 1.

Сущность способа лазерной обработки неметаллических материалов состоит в следующем.

Перед осуществлением лазерного отжига неметаллических материалов измеряют длительность лазерного импульса и контролируют его временную форму с использованием, например, запоминающего осциллографа С8-12 и фотоэлемента ФК-19. Если временная форма лазерного импульса близка к форме, описываемой уравнением (7), рассчитывают условие термопрочности материала по соотношению (5). Если условие (5) термопрочности материала для измеренной длительности лазерного импульса и конкретного материала выполняется, осуществляют лазерный отжиг путем воздействия на поверхность материала лазерного импульса с плотностью энергии, определяемой по уравнению (6). Если условие (5) не выполняется, пластину из неметаллического материала предварительно нагревают, например, в муфельной печи до температуры Т0, определяемой из уравнения (5). Затем воздействуют на пластину одиночным импульсом лазерного излучения с плотностью энергии, рассчитываемой по уравнению (6), с учетом нового значения начальной температуры. При легировании материалов в формуле (6) для определения требуемой плотности энергии лазерного импульса вместо значения температуры отжига необходимо подставлять значение температуры плавления материала.

В работе [Бакеев А.А., Соболев А.П., Яковлев В.И. Исследования термоупругих напряжений, возникающих в поглощающем слое вещества под действием лазерного импульса. ПМТФ, - 1982. - №6 - с. 92-98] показано, что максимальные растягивающие напряжения, возникающие в материале, описываются уравнением

где x - координата, отсчитываемая от поверхности материала вглубь, м.

В работе [Коваленко А.Ф. Экспериментальная установка для исследования влияния параметров лазерного импульса на разрушение неметаллических материалов. Приборы и техника эксперимента. - 2004. №4. - С. 119-124] показано, что максимальные растягивающие напряжения, возникающие при воздействии лазерного импульса, описываемого уравнением (5), имеют значение

Учитывая, что для временной формы лазерного импульса, описываемой уравнением (7), уравнение (9) примет вид:

Если максимальные растягивающие напряжения превысят предел прочности материала на растяжение, произойдет откольное разрушение материала со стороны облучаемой поверхности. Анализ уравнения (10) показывает, что минимальная плотность энергии, приводящая к отколу материала, имеет место тогда, когда e-2χx стремится к 0. Из (10) найдем минимальную плотность энергии в лазерном импульсе, приводящую к разрушению материала термоупругими напряжениями

Разделив (11) на (2) и поставив условие WT/Wf≥1, после несложных математических преобразований получим условие термопрочности материала при лазерном отжиге лазерным импульсом с временной формой, описываемой уравнением (7):

или

где а=χc0τ - безразмерный параметр.

Проведем анализ неравенства (12). Левая часть неравенства является константой, характеризующей свойства материала и показывающей отношение предела прочности материала на разрыв к максимальным растягивающим напряжениям. Правая часть неравенства - функция безразмерного параметра а, зависящая от временной формы лазерного импульса. Например, для временной формы лазерного импульса, описываемой уравнением (1), условие термопрочности имеет вид

Если неравенство выполняется, то температура отжига (плавления) материала достигается при меньшей плотности энергии, чем разрушения материала термоупругими напряжениями. В противном случае разрушение материала термоупругими напряжениями произойдет при меньшей плотности энергии, чем требуется для достижения поверхностью материала температуры отжига (плавления).

Анализ неравенства (12) показывает, что уменьшение разности (Tf0) приводит к увеличению левой части неравенства. Из соотношения (12) найдем значение температуры Т0, до которой необходимо нагреть материал для выполнения условия термопрочности

На фиг. 1 представлено графическое решение неравенств (12) и (13) для цветного оптического стекла СЗС21, для которого σВР=6⋅107 Па, К=4⋅1010 Па, αT=7,6⋅10-6 К-1, Tƒ=770 К, Т0=300 К, с=710 Дж/(кг⋅К), ρ=2520 кг/м3, R=0,04, χ=21 см-1 для длины волны лазера 1,06 мкм, с0=5,7⋅103 м/с. Левая часть неравенств (12) и (13) равна 0,28. Видно, что для временной формы лазерного импульса, описываемой уравнением (1), условие термопрочности выполняется при а≥1,25, для временной формы лазерного импульса, описываемой уравнением (4) условие термопрочности выполняется при а≥2.

Пример реализации способа.

Необходимо произвести лазерный отжиг поверхности оптического цветного стекла излучением лазера на длине волны 1,06 мкм. Длительность импульса составляет 1,2⋅10-7 с, временная форма лазерного импульса описывается уравнением (4). Безразмерный параметр а=1,43, ƒ1(1,43)>0,28. Условие термопрочности (12) не выполняется. Wƒ=41,7 Дж/см2. WT=28,5 Дж/см2. Расчеты выполнены по уравнениям (3) и (11) соответственно. Лазерный отжиг невозможен, так как материал будет разрушен термоупругими напряжениями. Для предотвращения разрушения материала произведем его предварительный нагрев до температуры не менее 488 К (то есть начальную температуру материала надо увеличить на 188 К). Расчет произведен по соотношению (14). Пусть материал будет нагрет до температуры 490 К. Теперь для нового значения начальной температуры Т0=490К, Wƒ=24,9 Дж/см2. Видно, что Wƒ меньше WT. Лазерный отжиг импульсом с временной формой, описываемой уравнением (4), возможен.

Таким образом, вышеописанные отличия заявляемого способа лазерной обработки неметаллических материалов от прототипа позволяют исключить их разрушение термоупругими напряжениями при отжиге лазерным импульсом с временной формой, описываемой уравнением (4), и повысить выход годной продукции. Если требуется произвести легирование неметаллических материалов, то в приведенные формулы для определения неразрушающего режима обработки вместо температуры отжига следует подставлять температуру плавления материала.

Способ лазерной обработки неметаллических материалов, включающий предварительный нагрев материала до определенной начальной температуры и облучение поверхности импульсом лазерного излучения, отличающийся тем, что температуру предварительного подогрева материала определяют из условия термопрочности

где σВР - предел прочности материала на растяжение, Па;

К - модуль всестороннего сжатия материала, Па;

αT - коэффициент линейного расширения материала, К-1;

е - основание натурального логарифма;

а=χc0τ;

χ - показатель поглощения материала на длине волны лазерного излучения, м-1;

с0 - скорость звука в материале, м/с;

τ - длительность лазерного импульса, с,

при этом облучение осуществляют лазерным импульсом с плотностью энергии, определяемой по соотношению

где Tƒ - температура отжига материала, К;

Т0 - начальная температура материала после предварительного подогрева, К;

с - удельная теплоемкость материала, Дж/(кг⋅К);

ρ - плотность материала, кг/м3;

R - коэффициент отражения материала на длине волны лазерного излучения,

и временной формой лазерного импульса, которая описывается соотношением

где q(t) - плотность мощности лазерного излучения Вт/см2;

qm - амплитуда плотности мощности лазерного излучения Вт/см2;

t - текущее время от начала воздействия, с.



 

Похожие патенты:

Изобретение относится к области внешних деталей для часовых изделий. Система для получения внешней детали часового изделия содержит крепежное устройство с барабаном, установленным с возможностью вращения вдоль первой оси, и предназначенным для установки в нем по меньшей мере одной заготовкой детали, устройство для механической обработки, содержащее абразивные средства, установленные с возможностью вращения вдоль второй оси и предназначенные для механической обработки указанной по меньшей мере одной заготовки с формированием первой кривизны ее поверхности.

Изобретение относится к способу и устройству лазерной резки хрупких неметаллических материалов, в частности стеклянных изделий, и может быть использовано в любой отрасли народного хозяйства для резки крупногабаритных плоских изделий и изделий сложной 3D-формы.

Изобретение относится к области стекольной, строительной, мебельной и автомобильной промышленности и может быть использовано в машинах, предназначенных для раскроя силикатного стекла и зеркал.

Изобретение относится к стекольной промышленности и может быть использовано на заводах технического стекла в производстве гнутого многослойного остекления транспортных средств.

Изобретение относится к устройствам для резки листового стекла заданной формы в процессе эксплуатации приборов, механизмов . .

Изобретение относится к стекольной промышленности и может быть использовано при обработке листового стекла в поточных механизированных линиях для резки и обработки кромки фигурного стекла.

Изобретение относится к промышленности стройматериалов, к алмазно-абразивной обработке и предназначено для сверления отверстий в стекле и других подобных материалов.

Изобретение относится к промышленности строительных материалов, в частности к стекольной промышленности, может быть использовано на заводах технического стекла з производстве автомобильного остекления и позволяет расширить технологические возможности.

Изобретение относится к стекольной промышленности, и может быть использовано на заводах технического стекла в процессах, связанных с вырезанием фигурных стекол и позволяет повысить точность управления.

Изобретение относится к системе печати для формирования трехмерного объекта (варианты) и способу формирования трехмерного объекта. Лазерный источник света генерирует когерентный пучок видимого света посредством стимулированного рамановского рассеяния.

Изобретение относится к области обработки материалов лазерным лучом, а именно к лазерной оптической головке. Лазерная оптическая головка содержит наружный неподвижный корпус (1) и внутренний подвижный корпус (3) с соплом (4).

Изобретение относится к способу лазерного упрочнения полой металлической заготовки. Посредством локального переплава, механической и химической обработкой подготавливают заготовку необходимых размеров в диапазоне (длина×радиус×толщина) от 100×10×2 мм до 1000×1000×12 мм из перлитных, бейнитных или мартенситных закаливающихся сталей марок 30ХГСА, 35ХГСА и пр.

Изобретение относится к сварочному производству и может быть применимо для производства труб с использованием технологии лазерной сварки. Способ подготовки стыка кромок трубной заготовки под лазерную сварку включает подготовку разделки кромок листа, сборку трубной заготовки, размещение между кромками присадочного металлического материала в качестве вставки.

Изобретение относится к лазерному плазмотрону для осаждения композитных алмазных покрытий и может быть использовано в машиностроении, в химической и электронной промышленности, в атомной энергетике.

Изобретение относится к способам сварки продольных швов труб большого диаметра, применяемых преимущественно для строительства магистральных нефтепроводов и газопроводов, а также водоканалов и тепловых сетей.

Изобретение относится к способу гибридной лазерно-дуговой сварки. Формируют сварочную ванну одновременно электрической дугой и лазерным лучом путем расплавления металла присадочного материала в защитной среде, состоящей из инертного и активного компонентов.

Изобретение относится к способу двухлучевой лазерной сварки алюминиевых сплавов и конструкционных сталей и может найти применение в различных отраслях машиностроения, в частности при сварке изделий в камере сварки с инертным газом.

Изобретение относится к способу и оборудованию для наплавки металлической детали (202) турбореактивного двигателя летательного аппарата, содержащей множество подлежащих наплавке металлических частей (203, 204).

Изобретение относится к области изготовления стального профиля посредством лазерной сварки. С помощью устройства для лазерной сварки приваривают боковые края стеночного элемента (4) к двум полочным элементам (2, 3), при этом стеночный элемент удерживают роликовым устройством (30), которое содержит множество роликов (31) первой поверхности, которые вращаются вдоль одной поверхности стеночного материала и расположены с интервалами в направлении транспортировки, и множество роликов (32) второй поверхности, которые вращаются вдоль другой поверхности стеночного материала и расположены с интервалами в направлении транспортировки.

Изобретение относится к области машиностроения и может быть использовано для упрочнения поверхностей металлических деталей, например пар трения. Способ эрозионно-лучевого упрочнения поверхности металлической детали включает одновременное электроэрозионное нанесение с помощью электрода-инструмента на поверхность детали гранул износостойкого сплава, нанесение микропорошка вязкого материала слоем, толщина которого не превышает размеров упомянутых гранул, и оплавление микропорошка путем лучевого нагрева. Положение осей перемещаемых электрода-инструмента и луча совмещают в зоне оплавления микропорошка, в которой измеряют температуру окончания оплавления, причем количество подаваемого микропорошка регулируют давлением подающего его газа, формирующего лучевой нагрев, а излишки микропорошка направляют в сборник микропорошка. Устройство содержит корпус, выполненный с возможностью перемещения и имеющий узлы поворота для настройки осей установленных на нем сопла для подачи микропорошка в зону упрочнения, электрода-инструмента для электроэрозионного упрочнения и дифференциального датчика измерения температуры в зоне оплавления микропорошка, и регулятор для измерения скорости перемещения корпуса с соплом, электродом-инструментом и дифференциальным датчиком, причем электрод-инструмент подключен к генератору импульсов, а к соплу подключен источник лучевой энергии, при этом на выходе из зоны упрочнения детали под углом к вектору подачи микропорошка с возможностью поворота установлен отражатель, обеспечивающий перемещение излишнего микропорошка в сборник для его подачи в зону упрочнения через датчик расхода микропорошка регулятора давления газа в сопле. Отражатель выполнен из вязкого материала и углублен в сборник микропорошка для исключения потерь микропорошка. Техническим результатом является повышение износостойкости поверхностей металлических деталей, снижение трудоемкости и энергозатрат процесса упрочнения. 2 н.п. ф-лы, 2 ил., 1 пр.
Наверх