Способ определения степени гидратации цемента

Изобретение относится к области исследования процессов твердения цементов и может быть использовано для контроля качества бетонных и железобетонных изделий. Образец исходного сухого цемента затворяют водой и подвергают твердению в воздушно-влажных условиях. В разные промежутки времени процесса твердения цемента, через 3, 14, 28 суток, регистрируют спектры электронного спинового резонанса и рассчитывают концентрацию спиновых центров. Концентрацию спиновых центров исследуемого образца цемента определяют путем сравнения со спектром предварительно протестированного рубинового стержня. Аналогично исследуемому образцу определяют концентрацию спиновых центров контрольного образца. За контрольный образец принимают исходный сухой цемент. Затем определяют показатель изменения концентрации спиновых центров твердения цемента и показатель изменения степени гидратации. Степень гидратации СГi исследуемого цемента в i-й промежуток времени твердения составляет СГi=ƒМi, где ƒ - золотой коэффициент пропорции, равный 0,618034; Mi - показатель изменения степени гидратации. Достигается возможность определения степени гидратации цемента на любой стадии процесса его твердения. 2 табл.

 

Изобретение относится к области производства строительных материалов, а более конкретно - к способам исследования процессов твердения цементов и определения степени гидратации цемента, и может быть использовано для контроля качества бетонных и железобетонных изделий.

Степень гидратации определяется различными способами: по количеству Са(ОН)2, по тепловыделению, по удельному весу цементного теста, по количеству химически связанной воды, по количеству негидратированного цемента, либо косвенно по изменениям того или иного свойства цемента, связанного со степенью гидратации, например по показателям прочности цементного камня (Справочник по химии цемента / под ред. Б.В. Волконского, Л.Г. Судакаса. - Л.: Стройиздат, 1980. - 221 с. С. 9).

Недостатком вышеуказанных способов является многоэтапность определения степени гидратации в цементном камне и бетоне.

Известен способ определения степени гидратации цемента в бетоне по авторскому свидетельству на изобретение SU 1474548, МПК G01N 33/38, опубл. 23.04.1989, согласно которому образцы цементного камня и образцы бетона, изготовленные на том же цементе, дробят в щековой дробилке, размалывают и высушивают до постоянной массы при 102-104°С. Затем отбирают две партии навесок проб цементного камня. Для первой партии определяют степень гидратации цемента в цементном камне путем сравнения рентгенограмм исходного цемента и цементного камня. Вторую партию навесок прокаливают при 1000°С и определяют относительное количество химически связанной воды в цементном камне. Навески проб бетона тоже прокаливают до постоянной массы и определяют относительное количество химически связанной воды в образце бетона. Степень гидратации цемента в бетоне рассчитывают по формуле, исходя из степени гидратации цемента в цементном камне и относительных количеств химически связанной воды в образце бетона и цементного камня.

Недостатком способа по указанному изобретению является длительность подготовки проб для анализа и сравнительно невысокая точность определения степени гидратации цемента.

Из информационных источников известны способы исследования процессов твердения цементных систем с помощью электронного парамагнитного резонанса (ЭПР). Метод ЭПР, изложенный в статье «Спиновая химия цементных систем», авторы Д.А. Афанасьев, Л.В. Цыро, Ю.С. Саркисов, Ф.Г. Унгер, С.А. Киселев, А.Ф. Унгер. Вестник науки Сибири. 2012. №5 (6), с. 247-259, включает затворение цемента дистиллированной водой в соотношении вода/цемент, равном 0,34, с последующим твердением цемента в воздушно-влажных условиях. Исследуемые образцы цемента помещают в спектрометр и рассчитывают коэффициент, косвенно характеризующий количество спиновых центров (СЦ) в цементах. Для расчета производят анализ формы первой производной линии поглощения ЭПР с последующим интегрированием и расчетом площади под кривой при помощи стандартного прикладного программного обеспечения, поставляемого с прибором. Все вычисления производят относительно показателя концентрации спиновых центров, эталона, в качестве которого использовали рубиновый стержень, жестко зафиксированный в резонаторе спектрометра. Метод направлен на исследование изменений общей концентрации парамагнитной составляющей цементных систем, т.е. количественных изменений всех парамагнитных частиц, характеризующих систему в процессе твердения. Однако до сих пор никто не определял степень гидратации цемента, используя эти данные.

Известен также способ радиоспектроскопии с использованием спиновых меток, с помощью которого изучается кинетика гидратации силикатных материалов («Исследование процесса гидратации вяжущих материалов методом спиновых меток», автор Фанина Е.А., опубл. 01 марта 2009). В исследуемую систему вводят парамагнитные молекулы (свободные радикалы), которые дают характерные сигналы ЭПР. Помещая радикал в цементное тесто с различным содержанием твердой и жидкой фазы, можно регистрировать спектры ЭПР в различные промежутки времени. По снижению концентрации радикалов (изменению сигнала ЭПР) судят о процессе протекания гидратации.

По количеству сходных операций наиболее близкий заявляемому способу является способ исследования цемента, изложенный в статье «Спиновые аспекты в природе процессов твердения цемента», авторы Д.А. Афанасьев, Л.В. Цыро, А.Ф. Унгер, Л.Н. Андреева, С.Я. Александрова, Ф.Г. Унгер. Ползуновский вестник, №3, 2009, с. 82-85. Этот способ принят за прототип. Согласно прототипу цемент предварительно затворяют водопроводной водой (водоцементное отношение 0,4). Отвердение образца производят в воздушно-влажных условиях. Твердый образец подвергают незначительному диспергированию (активации). Затем образец помещают в кварцевую ампулу, которую устанавливают в резонатор спектрометра и с помощью спектрометра регистрируют спектры электронного спинового резонанса (ЭСР). Рассчитывают показатель концентрации спиновых центров исследуемого образца цемента путем сравнения его спектра со спектром эталона, зафиксированного в спектрометре. В качестве эталона используют рубиновый стержень, который предварительно тестируют. Рубиновый стержень тестировали ванадилацетилацетонатом с известным показателем концентрации спиновых центров (CVAA=4,6975⋅1020 спин/см3). Для расчета количества спиновых центров (СЦ) проводят анализ формы первой производной линии поглощения ЭСР по всей ширине поля с последующим интегрированием в компьютерной программе и расчетом площади под кривой ЭСР-поглощения. Затем сравнивают спиновые свойства исходного и затвердевшего цементов. В процессе исследований было выявлено, что показатель концентрации спиновых центров цементных вяжущих в процессе гидратации постоянно снижается. Но способом по прототипу не определяется степень гидратации цемента.

Техническая проблема, решаемая настоящим изобретением, заключается в определении степени гидратации цемента на любой стадии процесса его твердения.

Для решения указанной проблемы образец исследуемого (исходного) сухого цемента, как и в прототипе, затворяют водой и подвергают твердению в воздушно-влажных условиях. В качестве контрольного образца используют сухой (исходный) цемент. Исследуемый и контрольный образцы помещают в кварцевые ампулы. Ампулу с каждым из указанных образцов устанавливают в резонатор спектрометра, с помощью которого регистрируют спектры электронно-спинового резонанса для исследуемого и для контрольного образцов цемента. Затем рассчитывают показатель концентрации спиновых центров указанных образцов цемента путем сравнения их спектров со спектром эталона: предварительно протестированного рубинового стержня, зафиксированного в спектрометре. Для расчета количества спиновых центров образцов цемента и эталона проводят анализ формы первой производной линии поглощения электронного спинового резонанса по всей ширине поля с последующим интегрированием в компьютерной программе и расчетом площади под кривой поглощения спектров электронного спинового резонанса. Спиновые свойства исследуемого образца цемента сравнивают со спиновыми свойствами контрольного образца, определяемыми аналогично, как для исследуемого образца.

В отличие от прототипа регистрацию спектров электронного спинового резонанса и расчет показателей, характеризующих концентрацию спиновых центров каждого исследуемого образца, производят в разные промежутки времени процесса твердения цемента: через 3, 14, 28 суток. На каждом заданном i-м этапе твердения цемента сначала определяют показатель изменения концентрации спиновых центров твердения цемента относительно аналогичного показателя изменения концентрации спиновых центров контрольного образца по формуле

Niik,

где Ni - показатель изменения концентрации спиновых центров;

Кi - концентрация спиновых центров на i-м этапе твердения цемента;

Кk - концентрация спиновых центров контрольного образца.

Затем по показателю изменения концентрации Ni определяют показатель изменения степени гидратации Mi по формуле

Mi=1/Ni,

а степень гидратации цемента СГi на каждом заданном i-м промежутке времени твердения образца цемента определяют по формуле

СГi=ƒ Mi,

где ƒ - коэффициент золотой пропорции, равный 0,618034;

Мi - показатель изменения степени гидратации.

Формула для расчета показателя изменения концентрации спиновых центров твердения цемента относительно концентрации спиновых центров контрольного образца получена исходя из следующего:

Показатели, характеризующие концентрацию спиновых центров исследуемого образца и исходного (контрольного) цемента, определяются по формулам соответственно:

Кiст⋅Si/Sст;

Ккст⋅Sк/Sст.

где Кi - показатель концентрации спиновых центров исследуемого образца;

Кк - показатель концентрации спиновых центров контрольного образца;

Кст - показатель концентрации спиновых центров эталона (рубинового стержня);

Si, Sк и Sст - площади под кривыми поглощения электронного спинового резонанса, полученные путем интегрирования кривых исследуемого, контрольного сигнала и эталона соответственно.

Изменение показателя концентрации спиновых центров в различные сроки твердения по сравнению с аналогичным показателем для сухого (негидратированного) цемента, определяемое как отношение этих величин, косвенно характеризует процесс рекомбинации спиновых центров по мере твердения образцов. Величина, обратная этому отношению, косвенно характеризует изменение степени гидратации цемента со временем. То есть кривая рекомбинации носит убывающий характер, а кривая степени гидратации носит нарастающий характер, причем Niik, где Кi - текущее значение показателя, соответствующее конкретному сроку испытания образца (3, 14, 28 суток), а Кk - текущее значение показателя, соответствующее сухому (негидратированному) цементу.

Коэффициент, характеризующий изменение степени гидратации со временем, обратно пропорционален коэффициенту рекомбинации Mi=1/Ni.

Учитывая стремление любой системы к максимальной устойчивости при данных условиях протекания процесса, целесообразно ввести соответствующий коэффициент золотой пропорции ƒ, который численно 0,618034.

Заявляемый способ определения степени гидратации по отношению показателей косвенно характеризующих концентрацию спиновых центров исследуемого и контрольного образцов явным образом не следует из уровня техники, поскольку, несмотря на свою относительную простоту, не обнаружен в источниках информации.

Реализация способа показана на конкретном примере для исследуемых образцов. В качестве исследуемых образцов были выбраны две марки цементов одного и того же класса: ЦЕМ II/А-Ш 32.5Б; ЦЕМ II/А 42.5Б. При В/Ц - 0,34 формовали образцы-кубики размером 2×2×2⋅10-3 м и оставляли их твердеть в воздушно-влажных условиях. В установленные сроки твердения, а именно через 3, 14, 28 суток, образцы извлекали и испытывали на прочность при сжатии на лабораторном гидравлическом прессе. Количество одновременно испытываемых образцов в одном акте испытания составляло не менее 6. Данные по прочности обрабатывались методами математической статистики. Одновременно, сразу же после испытаний, в полном соответствии со сроками производили регистрацию спектров электронного спинового резонанса на спектрометре Jeol Jes-FA 200. Изменение уровня сигнала учитывали по всей ширине поля с последующим интегрированием в компьютерной программе и расчетом площади под кривой поглощения электронного спинового резонанса. Значения показателей концентрации спиновых центров определяли для контрольного (сухого) образца и для гидратированных образцов цемента в 3, 14 и 28 суток твердения. Аналогично рассчитывали показатели спиновых центров и в активированных образцах цемента ЦЕМ 11/А-Ш 32,5Б в такие же сроки твердения. Активацию проводили в планетарной мельнице типа МП/0,5×4 путем диспергирования указанного исходного цемента (контрольного) до заданной удельной поверхности. Удельная поверхность контрольного (неактивированного) образца цемента составила 3200 см2/г, а активированного - 4800 см2/г. В обоих случаях удельную поверхность определяли прибором ПСХ. При определении показателей концентрации спиновых центров регистрацию сигналов исследуемого и контрольного образцов, равно как неактивированных, так и активированных образцов, проводили в отсутствие насыщения и при одинаковой температуре. Амплитуду модуляции выбирали такой, чтобы получить максимальную величину сигнала, особенно при регистрации слабых сигналов. Условия измерения (положение ампулы или капилляра в резонаторе, материал и размеры ампулы и капилляра) соблюдали одинаковые.

Результаты проведенных испытаний указаны в таблицах 1-2. В таблице 1 в числителе представлены значения показателей концентрации спиновых центров для исследуемого гидратированного образца цемента (Кi), а в знаменателе - для контрольного (сухого) образца цемента (Кk). В таблице 2 приведены коэффициенты (Мi), характеризующие изменение степени гидратации для цементов, приведенных в таблице 1.

Степень гидратации рассчитывали по формуле: СГi=ƒ Mi.

Для ЦЕМ II/А-Ш 32.5Б степень гидратации оказалась равной соответственно: в 3 дня - 0,33 (33%), в 14 дней - 0,51 (51%) и в 28 дней - 0,73 (73%). Для ЦЕМ II/А 42.5Б соответственно - 0,56 (56%), 0,64 (64%) и 0,75 (75%). Степень активации (СА) цемента марки ЦЕМ II/А 42.5Б по отношению к цементу марки ЦЕМ II/А-Ш 32.5Б определяли по формуле СА=СГ1/СГ2, где СГ1 - степень гидратации цемента ЦЕМ II/А 42.5Б, а СГ2 - степень гидратации цемента ЦЕМ II/А-Ш 32.5Б. Расчеты показывают, что СА для этих цементов соответственно равны 1,70, 1,25 и 1,03.

Для одного и того же цемента (одной марки и класса: ЦЕМ II/А-Ш 32.5Б) была выполнена процедура повышения его реакционной способности путем диспергирования до удельной поверхности 4800 см /г. Все коэффициенты, рассчитанные аналогично для исходного неактивированного цемента (ЦЕМ II/А-Ш 32.5Б), показали, что степень гидратации активированного цемента в возрасте 3, 14, 28 суток составило соответственно 0,50, 0,72 0,89, а степень активации СА равна соответственно 1,52, 1,41 и 1,22.

Определение степени гидратации цементов приобретает особый смысл при оценке прироста прочности в цементной системе и определении возможной экономии расхода цемента на 1 м3 за счет соответствующего изменения дозировки.

Способ определения степени гидратации цемента, согласно которому образцы исходного цемента затворяют водой и подвергают их твердению в воздушно-влажных условиях, исследуемый образец помещают в кварцевую ампулу, которую устанавливают в резонатор спектрометра, с помощью которого регистрируют спектры электронного спинового резонанса исследуемого образца цемента, затем рассчитывают показатели концентрации спиновых центров исследуемого образца цемента путем сравнения его спектра со спектром предварительно протестированного рубинового стержня, зафиксированного в спектрометре и принятого за эталон, при этом для расчета количества спиновых центров исследуемого образца цемента и эталона проводят анализ формы первой производной линии поглощения электронного спинового резонанса по всей ширине поля с последующим интегрированием в компьютерной программе и расчетом площади под кривой поглощения электронного спинового резонанса, при этом аналогично исследуемому образцу определяют показатели концентрации спиновых центров исходного сухого образца цемента, принятого за контрольный, затем спиновые свойства исследуемого образца цемента сравнивают со спиновыми свойствами контрольного образца, отличающийся тем, что регистрацию спектров электронного спинового резонанса и расчет показателей, характеризующих концентрацию спиновых центров каждого исследуемого образца, производят через 3, 14, 28 суток твердения цемента, причем на каждом заданном i-м этапе твердения цемента сначала определяют показатель изменения концентрации спиновых центров твердения цемента относительно аналогичного показателя изменения концентрации спиновых центров контрольного образца по формуле

Niik,

где Ni - показатель изменения концентрации спиновых центров;

Кi - концентрация спиновых центров на i-м этапе твердения цемента;

Кk - концентрация спиновых центров контрольного образца,

затем по показателю изменения концентрации Ni определяют показатель изменения степени гидратации Мi по формуле

Mi=1/Ni,

а степень гидратации цемента СГi на каждом заданном i-м промежутке времени твердения образца цемента определяют по формуле

СГi=ƒ Mi,

где ƒ - золотой коэффициент пропорции, равный 0,618034;

Mi - показатель изменения степени гидратации.



 

Похожие патенты:

Изобретение относится к оперативному определению количества содержания цемента в грунтоцементной конструкции, созданной струйной цементацией. При проведении струйной цементации из количества цемента, необходимого для создания подземной строительной конструкции, замешивают цементный раствор с добавлением в него химического элемента, содержание которого в грунте не превышает 0,1% и в количестве, определяемом рентгенофлуоресцентным анализом, производят бурение лидерной скважины до проектной отметки и в процессе обратного хода в буровую колонну под высоким давлением подают цементный раствор для образования в грунте строительной конструкции, при этом из грунта выделяется грунтоцементная пульпа, отбирают пробу цементного раствора и грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, производят замер верхней части возведенной конструкции, вычисляют ее площадь, а затем количество цемента (в сухом состоянии), содержащееся в 1 м3 подземной конструкции, рассчитывают из заданного соотношения.

Изобретение относится к способам оценки состояний теплоизоляции стен зданий и сооружений с учетом степени их увлажнения, которая изменяется в процессе эксплуатации зданий и сооружений.

Изобретение относится к определению механических параметров цементной системы как функции от времени и как функции от тонкости помола цементной системы, давления и/или температуры, являющихся репрезентативными для пластовых условий, имеющих место в стволе скважины.

Изобретение относится к способам экспрессного контроля объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией.

Изобретение относится к испытательной технике и может быть использовано в строительстве при расчете ограждающих конструкций зданий. Способ заключается в том, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру ложковой стороны наружного ряда кирпичей, второй керн отбирают так, чтобы слой раствора находился в центре керна.

Изобретение относится к экспрессному контролю объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией.

Изобретение относится к методам испытаний строительных материалов в условиях лабораторий заводов - изготовителей. Способ заключается в погружении образцов строительных материалов в слабоагрессивную среду.

Изобретение относится к устройству, системе и способу для измерения влажности в конструкциях зданий. Трубчатый корпус (100) может быть внедрен в материал во время его отливки.

Изобретение относится к производству строительных материалов. Способ включает подготовку пресс-порошка, прессование образца, фиксацию изменений деформаций при сжатии, построение компрессионных кривых и проведение испытания, причем прессование осуществляют одностадийно и непрерывно, с переменными значениями давления прессования и формовочной влажности пресс-порошка, при этом требуемое оптимальное соотношение влажности и давления прессования определяют положением оптимальной точки на компрессионной кривой, лежащей на ее пересечении с отрезком, перпендикулярным хорде, соединяющей начальное и конечное значения интервала давления прессования на кривой, и проходящим через точку пересечения касательных к кривой в области заданного интервала давления прессования.

Изобретение относится к изготовлению или получению изделий из стекла или стеклокерамики. Изобретение основано на том, чтобы обеспечить получение изделий из стекла или стеклокерамики, имеющих точно охарактеризованные термомеханические свойства.

Использование: для исследованиях конденсированных материалов и наноструктур методом электронного парамагнитного резонанса (ЭПР) в различных областях науки. Сущность изобретения заключается в том, что спектрометр ЭПР содержит генератор (1) фиксированной частоты, генератор (2), первый делитель (3) мощности, второй делитель (4) мощности, переключатель (5) каналов, первый смеситель (6), второй смеситель (7), низкочастотный усилитель (8), осциллограф (9), циркулятор (10), первый усилитель (11) низкочастотной мощности, первый умножитель (12) частоты, резонатор (13), магнитная система (14), выходной усилитель (15) постоянного тока, систему (16) регистрации, компьютер (17), первую линию (19) задержки, квадратурный детектор (20), вторую линию (21) задержки, второй усилитель (22) низкочастотной мощности, второй умножитель (23) частоты, фильтр (24), усилитель (25) высокочастотной мощности и аттенюатор (26).

Использование: для регистрации сигналов электронного парамагнитного резонанса. Сущность изобретения заключается в том, что спектрометр ЭПР содержит генератор фиксированной частоты, генератор переменной частоты, первый делитель мощности, второй делитель мощности, переключатель каналов, первый смеситель, второй смеситель, низкочастотный усилитель, осциллограф, циркулятор, первый усилитель низкочастотной мощности, первый умножитель частоты, резонатор, магнитную систему, выходной усилитель постоянного тока, систему регистрации, компьютер, первую линию задержки, квадратурный детектор, вторую линии задержки, второй усилитель низкочастотной мощности, второй умножитель частоты, фильтр, усилитель высокочастотной мощности и аттенюатор, первый ключ, второй ключ и формирователь импульсов.

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА).

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, опорный генератор 15, устройство синтеза частот 16, аналого-цифровой преобразователь 17, устройство селекции выборок 18, дециматоры синфазного 19 и квадратурного 20 каналов, цифро-аналоговый преобразователь 21, усилитель переменного тока 22, импульсный демодулятор 23 и трехпозиционный переключатель 24.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, синхронные детекторы 15 и 16, опорный генератор 17, устройство синтеза частот 18, трехпозиционный переключатель 19, импульсный модулятор фазы 20, усилитель переменного тока 21 и импульсный демодулятор 22.

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса содержит устройство суммирования напряжений, генератор модуляции, синхронный детектор, фазовращатель сигнала модуляции и двухпозиционный переключатель, а первый фазовращатель выполнен управляемым, причем один из входов устройства суммирования напряжений соединен с общим контактом первой секции двухполюсного переключателя, второй - с общим контактом двухпозиционного переключателя, а выход - с управляющим частотой электродом сигнального генератора СВЧ, выход генератора модуляции соединен с одним из переключаемых контактов двухпозиционного переключателя и со входом фазовращателя сигнала модуляции, выход которого соединен с опорным входом дополнительного синхронного детектора, сигнальный вход которого соединен с выходом второго синхронного детектора, частота сигнала генератора модуляции меньше граничной частоты полосы пропускания петли ФАПЧ гетеродинного генератора, но больше граничной частоты полосы пропускания петли ФАПЧ сигнального генератора.

Использование: для определения позиций примесей соединений азота в гидроксиапатитах. Сущность изобретения заключается в том, что облучают образец гидроксиапатита рентгеновскими, гамма- или электронными лучами с последующей регистрацией методом ЭПР возникших при облучении парамагнитных центров на сертифицированном ЭПР спектрометре, вычисляют спектральные характеристики наблюдаемого спектра ЭПР (число наблюдаемых линий и их положение) с контролем погрешности измерений и сравнивают полученные спектральные характеристики со спектральными характеристиками азотных радикалов, при этом производят дополнительное сравнение полученных ранее спектральных характеристик со спектральными характеристиками азотных радикалов в различных позициях, замещающих функциональные группы OH и(или) PO4 в структуре гидроксиапатита, в частности, с возможностью определения мест(а) внедрения (замещения) примесей соединений азота в структуру гидроксиапатита.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смесители опорного 4 и сигнального 5 каналов, циркулятор 6 с измерительным резонатором 7, УПЧ 8 опорного и УПЧ 9 сигнального каналов, фазочастотные дискриминаторы 10 и 11, делители частоты 12 и 13, синхронные детекторы 14 и 15, фазовращатели 16 и 17, элемент перестройки резонансной частоты измерительного резонатора 18, делители СВЧ мощности 19 и 20, трехпозиционный переключатель 21 режимов работы, устройство синтеза опорных частот 22, опорный генератор 23.

Использование: для выявления наиболее чистых видов кварцевого сырья. Сущность изобретения заключается в том, что осуществляют выбор мономинеральной пробы кварца, измельчение и отквартовывание трех образцов.
Наверх