Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа. Изобретение позволяет определять максимальную дальность разлета осколков при разгерметизации цилиндрического сосуда с газом и зону безопасного пребывания человека. Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа, заключается в том, что определяют принадлежность аварийного объекта газотранспортной системы к подземному трубопроводу или наземному сосуду со сжатым газом; для наземного сосуда со сжатым газом определяют его Моб - массу оболочки сосуда (кг), ρоб - плотность материала (кг/м3) оболочки сосуда и V0 - объем (м3) сосуда; для подземного трубопровода определяют D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована; определяют начальную скорость первичных осколков U0=U(t=0) (м/с) при авариях на объектах газотранспортной системы; определяют безразмерный коэффициент W, являющийся параметром инварианта движения и описывающий разлет осколков при аварии в предположении равновероятной их ориентации по направлению вектора скорости:

где Scp - площадь миделя (м2); m - масса осколка (кг); Сх - коэффициент сопротивления осколка;

ρ0 - плотность воздуха (кг/м3);g - ускорение силы тяжести (м/с2); по полученному значению безразмерного коэффициента W определяют максимальную дальность полета осколков (м):определяют вероятность поражения человека (Рчел) отдельным осколком, учитывая, что человека моделируют цилиндром с радиусом r (м) и высотой l (м), который находится на максимальном расстоянии ΔRmax (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно; строят график зависимости вероятности поражения человека (Рчел) осколком или осколками аварийного объекта от расстояния ΔR, на котором находится человек, по указанному графику определяют зону безопасного пребывания человека. Технический результат - расширение функциональных возможностей, позволяющих установить пространственное распределение параметров осколочного поражения, образующегося при взрывной разгерметизации трубопроводов и сосудов, содержащих природный газ под высоким начальным давлением, и обеспечить возможность предупреждения поражения человека осколочным воздействием. 2 ил.

 

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа.

Из уровня техники известен способ определения параметров воздушной ударной волны (ВУВ) при разгерметизации сосудов со сжатым газом (патент РФ №2541696 С1 на изобретение, кл. G01M 7/08, 20.02.2015). В известном способе предварительно определяют атмосферное давление и характеристики сосуда со сжатым газом, такие как исходное давление в сосуде, объем сосуда, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва, полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей, а по параметрам сосуда и окружающей среды, а именно по значениям исходного давления в сосуде, атмосферного давления и объема сосуда, определяют радиус круговой зоны разрушения промышленного здания. Известный способ позволяет установить пространственную картину распределения параметров ВУВ, образующейся при аварийной разгерметизации сосудов, содержащих природный газ, метан, под высоким начальным давлением, и обеспечить защиту материальных ценностей и здоровья человека от воздействия ударной волны. Однако известный способ не позволяет при разгерметизации оборудования со сжатым газом, например при разгерметизации наземного сосуда или подземного трубопровода, спрогнозировать возможные разрушения и поражения человека осколками аварийного объекта.

Наиболее близким техническим решением к предлагаемому способу является способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом (патент РФ №2551262, кл. G01M 7/08 (2006.01), опубл. 20.05.2015). В известном способе предварительно определяют атмосферное давление, характеристики трубопровода со сжатым газом и расстояние от места разрыва до ближайшего места завершения трубопровода. Затем определяют коэффициент эффективности ВУВ, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва. Полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей. По параметрам трубопровода и окружающей среды определяют радиус круговой зоны разрушения (м) промышленного здания. Известный способ позволяет устанавливать пространственные картины распределения параметров ВУВ, образующейся при аварийной разгерметизации трубопроводов, содержащих природный газ, метан, под высоким начальным давлением, и обеспечить возможности защиты материальных ценностей и здоровья человека от воздействия ударной волны. Известный способ не позволяет спрогнозировать возможные разрушения и поражения человека осколками аварийного объекта.

Задача, на решение которой направлено предлагаемое изобретение, заключается в создании способа определения параметров осколочного поражения (дальности разлета фрагментов разрушаемого оборудования и их поражающей возможности) при разгерметизации объектов со сжатым газом, позволяющего установить пространственное распределение параметров осколочного воздействия от разгерметизации трубопроводов и сосудов со сжатым газом.

Технический результат изобретения, достигаемый предлагаемым изобретением, заключается в расширении функциональных возможностей, позволяющих установить пространственное распределение параметров осколочного поражения, образующегося при взрывной разгерметизации трубопроводов и сосудов, содержащих природный газ под высоким начальным давлением, и обеспечить возможность предупреждения поражения человека осколочным воздействием.

Сущность предлагаемого способа определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа, заключается в следующем:

- определяют принадлежность аварийного объекта газотранспортной системы к подземному трубопроводу или наземному сосуду со сжатым газом;

- для наземного сосуда со сжатым газом определяют его Mоб - массу оболочки сосуда (кг), ρоб - плотность материала (кг/м3) оболочки сосуда и V0 - объем (м3) сосуда;

- для подземного трубопровода определяют D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована;

- определяют начальную скорость первичных осколков U0=U(t=0) (м/с) при авариях на объектах газотранспортной системы;

- определяют безразмерный коэффициент W, являющийся параметром инварианта движения и описывающий разлет осколков при аварии в предположении равновероятной их ориентации по направлению вектора скорости:

,

где Sср - площадь миделя (м2);

m - масса осколка (кг);

Сх - коэффициент сопротивления осколка;

ρ0 - плотность воздуха (кг/м3);

g - ускорение силы тяжести (м/с2);

- по полученному значению безразмерного коэффициента W определяют максимальную дальность полета осколков (м):

,

- определяют вероятность поражения человека (Pчел) отдельным осколком, учитывая, что человека моделируют цилиндром с радиусом r (м) и высотой l (м), который находится на максимальном расстоянии ΔRmax (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно;

- строят график зависимости вероятности поражения человека (Pчел) осколком или осколками аварийного объекта от расстояния ΔR, на котором находится человек, по указанному графику определяют зону безопасного пребывания человека.

Взрывная разгерметизация объектов газотранспортной системы (ГТС) сопровождается образованием и разлетом фрагментов аварийного оборудования с дальнейшим поражением реципиентов (людей, зданий, сооружений, оборудования) осколочным воздействием. Предлагаемый способ позволяет определять параметры поражения от осколочного воздействия при взрывной разгерметизации трубопроводов, сферических и цилиндрических сосудов с обращением сжатого газа.

Основными определяемыми параметрами осколочного поражения являются: дальность разлета фрагментов разрушаемого объекта со сжатым газом и их поражающая возможность. Данные параметры определяют зоны возможных разрушений оборудования, зданий и сооружений и поражений человека осколками при авариях.

Согласно предлагаемому способу определения параметров осколочного поражения при взрывной разгерметизации сначала определяют тип аварийного объекта, является ли аварийный объект подземным трубопроводом или надземным сферическим или цилиндрическим сосудом со сжатым газом. Также определяют P0 - избыточное давление в аварийном объекте до аварии (атм).

В зависимости от типа аварийного объекта со сжатым газом определяют следующие характеристики аварийного объекта:

- для наземного аварийного сосуда (Моб - массу оболочки сосуда (кг), ρоб - плотность материала (кг/м3) оболочки сосуда, V0 - объем (м3) сосуда);

- для подземного трубопровода (D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована).

По перечисленным характеристикам определяют значение начальной скорости первичных осколков U0=U(t=0)(м/с).

В зависимости от аварийного элемента: трубопровода, цилиндрического сосуда или сферического сосуда скорость первичных осколков определяют следующим образом:

- для наземного цилиндрического сосуда:

- для наземного сферического сосуда:

- для подземного трубопровода:

Решая аналитическими методами систему уравнений, описывающих движение осколка, определяют безразмерный коэффициент W, являющийся параметром инварианта движения, который позволяет описать разлет осколков при аварии в предположении равновероятной ориентации осколка по направлению вектора скорости:

где Sср - площадь миделя (м);

m - масса осколка (кг);

Сх - коэффициент сопротивления осколка;

ρ0 - плотность воздуха (кг/м3);

g - ускорение силы тяжести (м/с2).

При известном значении безразмерного коэффициента W пространственное распределение параметров осколочного воздействия, таких как максимальная дальность полета осколков (м) и вероятность поражения человека (Pчел) отдельным осколком, описывается соотношениями (5), (6).

Максимальную дальность полета осколков предлагается определять по формуле:

Предлагаемое изобретение поясняется графическими материалами, представленными на фиг. 1 и 2. На фиг. 1 представлен график, отражающий зависимость вероятности осколочного поражения человека от расстояния ΔR аварийного объекта - подземного трубопровода. На фиг. 2 представлен график, отражающий зависимость вероятности осколочного поражения человека от расстояния ΔR аварийного объекта - наземного цилиндрического сосуда.

Вероятность поражения человека отдельным осколком, движение которого описывается безразмерным коэффициентом W, в предположении, что человек моделируется цилиндром с радиусом r (м) и высотой l (м), находящимся на расстоянии ΔR (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно, предлагается определять следующим образом:

где введены следующие обозначения:

,

,

,

при этом посредством вычислительного эксперимента определено, что распределение дальности полета осколков аппроксимируется с достаточной точностью бета-распределением, где плотность распределения задается соотношением:

,

где , Г(a), Г(b), Г(a+b) - гамма-функции, a=1,5, b=0,6 - параметры бета-распределения.

Вероятность поражения человека при образовании n осколков, каждый из которых характеризуется коэффициентом Wi, определяется на основании законов теории вероятности и может быть выражена следующим образом:

Осуществление изобретения может быть подтверждено проведенными экспериментальными исследованиями.

В качестве примера осуществления изобретения рассмотрим сценарий аварии - «Взрывная разгерметизация подземного газопровода с образованием воздушной ударной волны, разлетом осколков трубы и фрагментов грунта, последующим истечением газа из газопровода в виде колонного низкоскоростного шлейфа и рассеиванием истекающего газа без воспламенения».

При определении параметров учитываем, что газопровод находится под землей. Исходные параметры газопровода преобразуем к виду, удобному для расчета:

P0=60 атм - избыточное давление в аварийном объекте до аварии;

D=0,325 м - диаметр трубопровода;

h=0,8 м - заглубление трубопровода (по нижней образующей);

ψ=22° - половина ожидаемого угла раствора котлована;

m=8 кг - масса одного осколка;

g=9.81 м/с2; ρ0=1.225 кг/м3; ρоб=7800 кг/м3; r=0.15 м и l=1.8 м, n=1.

Значение начальной скорости осколка определяем по формуле (3):

Далее определяют безразмерный коэффициент W:

Для определения безразмерного коэффициента W принимается коэффициент сопротивления осколка Cx=2; площадь миделя осколка (м2) Sср=(m/ρоб)2/3 - учитывается как среднее геометрическое значение.

Максимальная дальность полета осколков (м) составляет:

Значение параметра максимальная дальность полета осколков разрушенного объекта, содержащего сжатый газ, используется для определения зон потенциального поражения оборудования, зданий, объектов инфраструктуры, находящихся вблизи разрушенного объекта.

Для определения вероятности поражения осколком человека воспользуемся поясняющим графиком (фиг. 1) зависимости вероятности осколочного поражения человека от расстояния ΔR от аварийного объекта - подземного газопровода.

Результаты проведенного эксперимента, взятые для сравнения, показали, что максимальная дальность полета фрагментов оболочки составила ΔRmax=84 метра (масса фрагмента 8 кг); скорость первичных осколков U0 не превышала 31 м/с.

В качестве другого примера рассмотрим сценарий аварии - «Разгерметизация газового баллона объемом 50 л с образованием воздушной ударной волны, разлетом фрагментов баллона» при следующих условиях.

P0=16 атм - избыточное давление в аварийном объекте до аварии;

V0=0.05 м3 - объем сосуда;

ρоб=7800 кг/м3 - плотность материала оболочки;

M0=22 кг - масса оболочки;

m=11 кг - масса одного осколка;

g=9.81 м/с2; ρ0=1.225 кг/м3; количество осколков n=2.

Значение начальной скорости осколка в соответствии с (1) составляет:

Для определения безразмерного коэффициента W:

принимается коэффициент сопротивления осколка Сx=2; площадь миделя осколка (м2) Sср=(m/ρоб)2/3 - учитывается как среднее геометрическое значение.

Максимальная дальность полета осколков (м):

Для определения вероятности поражения человека воспользуемся графиком, отражающим зависимость вероятности осколочного поражения человека от расстояния ΔR аварийного объекта, газового баллона, представленным на фиг. 2.

Результаты проведенного эксперимента, взятые для сравнения, показали, что максимальная дальность полета фрагментов баллона может составлять до 300 м.

Таким образом, предложенное изобретение позволяет определять вероятность поражения человека (Pчел) при образовании по меньшей мере одного осколка аварийного объекта, при нахождении человека на расстоянии ΔR, обеспечивая тем самым возможность предупреждения поражения человека.

Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа, заключающийся в том, что

- определяют принадлежность аварийного объекта газотранспортной системы к подземному трубопроводу или наземному сосуду со сжатым газом;

- для наземного сосуда со сжатым газом определяют его Моб - массу оболочки сосуда (кг), ρоб - плотность материала (кг/м3) оболочки сосуда и V0 - объем (м3) сосуда;

- для подземного трубопровода определяют D - диаметр (м) трубопровода; h - заглубление (м) трубопровода (по нижней образующей); 2ψ - ожидаемый угол (град) раствора котлована;

- определяют начальную скорость первичных осколков U0=U(t=0) (м/с) при авариях на объектах газотранспортной системы;

- определяют безразмерный коэффициент W, являющийся параметром инварианта движения и описывающий разлет осколков при аварии в предположении равновероятной их ориентации по направлению вектора скорости:

где Scp - площадь миделя (м2);

m - масса осколка (кг);

Сх - коэффициент сопротивления осколка;

ρ0 - плотность воздуха (кг/м3);

g - ускорение силы тяжести (м/с2);

- по полученному значению безразмерного коэффициента W определяют максимальную дальность полета осколков (м):

- определяют вероятность поражения человека (Рчел) отдельным осколком, учитывая, что человека моделируют цилиндром с радиусом r (м) и высотой l (м), который находится на максимальном расстоянии ΔRmax (м) от аварийного объекта, с учетом того, что попадание любого осколка - смертельно;

- строят график зависимости вероятности поражения человека (Рчел) осколком или осколками аварийного объекта от расстояния ΔR, на котором находится человек, по указанному графику определяют зону безопасного пребывания человека.



 

Похожие патенты:

Изобретение относится к области неразрушающего контроля и касается способа обнаружения ударных повреждений конструкции. Способ включает в себя нанесение на поверхность конструкции люминесцентного покрытия люминесцирующего в видимой области спектра под воздействием УФ-излучения, просмотр покрытия при облучении конструкции УФ-излучением и обнаружение ударных повреждений за счет цветовых различий.

Изобретение относится к области испытаний и может быть использовано для испытания строительных конструкций при сверхнормативном ударном воздействии. Испытуемую конструкцию подвергают сверхнормативному ударному воздействию.

Изобретение относится к способам определения травмобезопасности средств индивидуальной бронезащиты, преимущественно шлемов для головы. Способ заключается в выполнении следующих операций: наносят удары с известной энергией по защищенному штатным средством – бронешлемом - имитатору объекта защиты и аналогичные удары по защищенному проектируемым средством – бронешлемом - имитатору.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами и регистрирующая аппаратура.

Изобретение относится к испытательному оборудованию. Стенд для исследования систем виброизоляции содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами и регистрирующая аппаратура, на основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата, при этом один компрессор установлен на штатных резиновых виброизоляторах, а другой компрессор установлен на исследуемой двухмассовой системе виброизоляции, включающей в себя резиновые виброизоляторы и упругодемпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана, которые так же как и штатные резиновые виброизоляторы компрессора установлены на жесткой переборке, которая через вибродемпфирующую прокладку установлена на основании, а на жесткой переборке, между компрессорами, закреплен вибродатчик, сигнал с которого поступает на усилитель и регистрирующую аппаратуру, например октавный спектрометр, работающий в полосе частот (Гц): 2; 4; 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000, а затем сравнивают полученные амплитудно-частотные характеристики от работы каждого из компрессоров и делают выводы об эффективости виброизоляции каждой системы, на которой они установлены.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующая аппаратура, на основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата.

Изобретение относится к испытательному оборудованию и может быть использовано для испытания систем виброизоляции. Способ заключается в том, что на основании располагают дополнительные плиты с закрепленными на них виброизолируемыми объектами, и настраивают регистрирующую аппаратуру, а на основании устанавливают два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата.

Изобретение относится к методам определения чувствительности взрывчатых веществ (ВВ) к механическим воздействиям. Способ включает помещение образца ВВ на наковальню, в центре которой выполнена выемка круглого сечения, проведение ударных испытаний с использованием груза с центральным бойком, характеризующегося переменными параметрами и установленного с возможностью совершения возвратно-поступательных перемещений по вертикальным направляющим, регистрацию и анализ результатов измерений.

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия различных приборов и оборудования. Стенд состоит из силового каркаса в виде прямоугольной рамы на ножках с продольными направляющими для установки через амортизаторы подпружиненной платформы, выполненной в виде резонансной плиты, поперечная собственная частота которой соответствует частоте перехода на требуемом ударном спектре ускорений, и рамы для крепления маятника с бойком, состоящим из стержня с профилированным торцом и резьбой, для установки и фиксации дополнительных грузов.

Изобретение относится к испытательной технике и может быть использовано в строительстве при расчете ограждающих конструкций зданий. Способ заключается в том, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру ложковой стороны наружного ряда кирпичей, второй керн отбирают так, чтобы слой раствора находился в центре керна.

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Сущность: на основании закрепляют жесткую переборку с датчиком уровня вибрации, на которую устанавливают два одинаковых бортовых компрессора на различных системах их виброизоляции и проводят измерения их амплитудно-частотных характеристик. Один компрессор устанавливают на штатных резиновых виброизоляторах, а другой компрессор устанавливают на исследуемой двухмассовой системе виброизоляции. На жесткой переборке закрепляют датчик уровня вибрации, который соединяют с усилителем и спектрометром, затем включают первый компрессор и снимают амплитудно-частотные характеристики системы, после чего выключают первый компрессор и включают второй компрессор, который установлен на исследуемой двухмассовой системе виброизоляции. Снимают амплитудно-частотные характеристики, после чего сравнивают полученные характеристики от работы каждого из компрессоров и делают выводы об эффективности виброизоляции каждой системы, на которой они установлены. Для определения собственных частот каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок на каждую из систем с помощью диагностического ударного устройства, содержащего корпус, пьезоэлектрический динамометр, ударный элемент и дополнительную массу. Дополнительную массу диагностического ударного устройства выполняют в виде цилиндра и располагают над основной массой, которая содержит полость, заполненную жесткими шариками, которые при определении собственных частот каждой из исследуемых систем виброизоляции выполняют функцию случайного стохастического воздействия, накладываемого на ударную нагрузку. Технический результат: расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 6 ил.

Изобретение относится к способам определения защитных свойств средств индивидуальной бронезащиты, преимущественно шлемов для головы. Способ, при котором наносят удар телом с нормированной энергией по незащищенному макету объекта, заполненному жидкостью, и удар телом с определенной энергией по защищенному средством индивидуальной защиты макету объекта. Регистрируют давление в жидкости, обусловленное ударом. Сравнивают полученные результаты. При этом, по незащищенному макету объекта удар наносят пулей патрона травматического оружия с известной статистикой вероятности нанесения травмы с установленной степенью тяжести вреда здоровью пострадавшего. По защищенному объекту - пулей патрона штатного образца стрелкового оружия или имитатором осколка. Рассчитывают и строят нормированные по установленной степени тяжести зависимости максимального из среднедействующих значений критерия внутриполостного давления для заданных интервалов времени оценки и зависимости максимального из среднедействующих значений критерия внутриполостного давления для заданных интервалов времени оценки при условии непробития средства индивидуальной бронезащиты пулей штатного патрона образца стрелкового оружия или имитатора осколка, которые и используют для сравнения. Обеспечивается повышение достоверности и совместимости результатов испытаний бронешлемов на имитаторе головы с обоснованием ожидаемой вероятности тяжести зашлемной травмы. 2 з.п. ф-лы, 3 ил.

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Сущность: на основании через вибродемпфирующую прокладку закрепляют жесткую переборку, на которой устанавливают два одинаковых исследуемых объекта, при этом один объект устанавливают на штатных виброизоляторах, а другой – на исследуемой многомассовой системе виброизоляции, включающей в себя виброизоляторы и упругодемпфирующую промежуточную плиту. На жесткой переборке закрепляют датчик уровня вибрации, который соединяют с усилителем и спектрометром для регистрации амплитудно-частотных характеристик исследуемой системы виброизоляции, а для определения собственных частот каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок. Записывают осциллограммы свободных колебаний и определяют логарифмический коэффициент затухания δ1 колебательной системы по следующей зависимости: где c1 и m1 - соответственно жесткость упругих элементов плиты и ее масса; h1 - абсолютная величина вязкого демпфирования в системе виброизоляции. Для исследования демпфирующей способности многомассовых систем виброизоляции основание стенда размещают на вибродемпфирующей платформе посредством, по крайней мере трех, демпфирующих элементов. Технический результат: расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 6 ил.

Группа изобретений относится к пороховым баллистическим установкам (ПБУ), используемым в качестве разгонных устройств в стендах для испытаний конструкций на воздействие интенсивных механических нагрузок. Управление газоприходом в ПБУ включает инициирование порохового заряда, установленного в зарядной камере, с последующим началом газоприхода в зарядной камере, разгон метаемого объекта (МО) в стволе под действием продуктов сгорания порохового заряда. Зарядную камеру ПБУ снабжают дополнительной камерой с пороховым зарядом, сообщающейся через обратный клапан с зарядной камерой. Производят инициирование порохового заряда в дополнительной камере, продуктами сгорания которого производят инициирование порохового заряда в зарядной камере. В ходе разгона МО осуществляют разобщение камер. После превышения давления в дополнительной камере над давлением в зарядной камере осуществляют сообщение камер и перетекание продуктов сгорания из дополнительной камеры в зарядную камеру. Техническим результатом группы изобретений является снижение длительности фронта нарастания давления в зарядной камере при сохранении наполненности диаграммы давления. 2 н.п. ф-лы, 2 ил.
Наверх