Адаптивная система с эталонной моделью для управления летательным аппаратом

Адаптивная система с эталонной моделью для управления летательным аппаратом, содержащая два сумматора, три блока умножения, три интегратора, корректирующее звено, блок сравнения, блок алгоритмов самонастройки, эталонную модель, датчики угла поворота, угловой скорости и линейного ускорения, рулевой привод, соединенные определенным образом. Обеспечивается расширение функциональных возможностей системы управления летательным аппаратом за счет введения контура адаптации к изменению аэродинамического демпфирования, улучшение качества полета при изменении условий полета. 1 ил.

 

Изобретение относится к бортовым системам автоматического управления летательными аппаратами, которые применяются в широком диапазоне условий полета.

Известны адаптивные системы управления летательными аппаратами (ЛА), содержащие задатчик пробного сигнала, датчик угла, датчик угловой скорости и суммирующий усилитель, формирующий по задающим воздействиям и сигналам датчиков состояния, управляющие воздействия на рулевые приводы летательного аппарата, а также эталонную модель (ЭМ) с желаемыми динамическими характеристиками, блок формирования разностного сигнала между выходными сигналами ЛА и ЭМ и блок алгоритмов самонастройки [1].

Наиболее близким к предлагаемому техническому решению является «Самонастраивающийся автопилот» (Авторское свидетельство на изобретение №536646 от 28.07.1976, дата подачи заявки 30.05.1975) [2], содержащий последовательно соединенные сумматор, на первый вход которого подается сигнал управления летательным аппаратом, первый блок умножения, реализующий переменное передаточное число по позиционному и демпфирующему сигналам, рулевой привод и летательный аппарат с датчиком угла, датчиком угловой скорости, выходы которых подключены соответственно к первому и второму входам корректирующего звена, соединенного со вторым входом сумматора, и датчиком линейного ускорения, цепь из последовательно соединенных эталонной модели, блока сравнения, блока алгоритмов самонастройки и первого интегратора, подключенную между первым входом сумматора и вторым входом первого блока умножения, причем выход сумматора подключен также ко второму входу блока алгоритмов самонастройки, третий вход которого соединен с выходом датчика линейного ускорения, при этом второй и третий входы блока сравнения соединены с выходами датчика угла и датчика угловой скорости соответственно, а также последовательно соединенные второй интегратор и второй блок умножения, подключенные между вторым выходом блока алгоритмов самонастройки и вторым входом рулевого привода, при этом выход датчика угловой скорости соединен также с входом однокоординатного корректирующего звена, которое подключено выходом к третьему входу рулевого привода и реализует постоянное передаточное число по обводному сигналу демпфирования, а выход датчика линейного ускорения соединен со вторым входом второго блока умножения, реализующего переменное передаточное число по сигналу линейного ускорения.

Существенными признаками прототипа, совпадающими с существенными признаками предлагаемого технического решения, являются следующие: устройство содержит последовательно соединенные сумматор, на первый вход которого подается сигнал управления летательным аппаратом, и первый блок умножения, реализующий переменное передаточное число по позиционному и демпфирующему сигналам, а также рулевой привод и летательный аппарат с датчиком угла, датчиком угловой скорости, выходы которых подключены соответственно к первому и второму входам корректирующего звена, соединенного со вторым входом сумматора, и датчиком линейного ускорения, цепь из последовательно соединенных эталонной модели, блока сравнения, блока алгоритмов самонастройки и первого интегратора, подключенную между первым входом сумматора и вторым входом первого блока умножения, причем выход сумматора подключен также ко второму входу блока алгоритмов самонастройки, третий вход которого соединен с выходом датчика линейного ускорения, при этом второй и третий входы блока сравнения соединены с выходами датчика угла и датчика угловой скорости соответственно, а также последовательно соединенные второй интегратор, подключенный входом ко второму выходу блока алгоритмов самонастройки, и второй блок умножения, реализующий переменное передаточное число по сигналу линейного ускорения, при этом выход датчика линейного ускорения соединен со вторым входом второго блока умножения.

Недостатком известного устройства является снижение функциональных возможностей системы управления из-за отсутствия средств адаптации передаточных чисел к изменению аэродинамического демпфирования ЛА в обводном канале по сигналу демпфирования, т.к. стоящее в этой цепи корректирующее звено реализует постоянное передаточное число. Это приводит к снижению качества адаптации и по двум другим - перестраиваемым - передаточным числам системы, а также к снижению качества управления летательным аппаратом при изменении условий полета, например при изменении скорости и (или) высоты полета ЛА.

Решаемой в предложенном устройстве технической задачей является расширение его функциональных возможностей за счет введения контура адаптации к изменению аэродинамического демпфирования ЛА также и в обводном канале по сигналу демпфирования.

Указанный технический результат достигается тем, что в известное устройство - самонастраивающийся автопилот с эталонной моделью, содержащее последовательно соединенные сумматор, на первый вход которого подается сигнал управления летательным аппаратом, и первый блок умножения, реализующий переменное передаточное число по позиционному и демпфирующему сигналам, а также рулевой привод и летательный аппарат с датчиком угла, датчиком угловой скорости, выходы которых подключены соответственно к первому и второму входам корректирующего звена, соединенного со вторым входом сумматора, и датчиком линейного ускорения, цепь из последовательно соединенных эталонной модели, блока сравнения, блока алгоритмов самонастройки и первого интегратора, подключенную между первым входом сумматора и вторым входом первого блока умножения, причем выход сумматора подключен также ко второму входу блока алгоритмов самонастройки, третий вход которого соединен с выходом датчика линейного ускорения, при этом второй и третий входы блока сравнения соединены с выходами датчика угла и датчика угловой скорости соответственно, а также последовательно соединенные второй интегратор, подключенный входом ко второму выходу блока алгоритмов самонастройки, и второй блок умножения, реализующий переменное передаточное число по сигналу линейного ускорения, при этом выход датчика линейного ускорения соединен со вторым входом второго блока умножения, дополнительно введены последовательно соединенные третий интегратор и третий блок умножения, реализующий переменное передаточное число по сигналу демпфирования в обводном канале, подключенные между третьим выходом блока алгоритмов самонастройки и третьим входом рулевого привода, при этом выход датчика угловой скорости соединен также со вторым входом третьего блока умножения.

Отличительными признаками предлагаемого технического решения является то, что адаптивная система с эталонной моделью для управления летательным аппаратом дополнительно содержит последовательно соединенные третий интегратор и третий блок умножения, причем вход третьего интегратора подключен к третьему выходу блока алгоритмов самонастройки, а также второй сумматор, первый, второй и третий входы которого соединены с выходами первого, второго и третьего блоков умножения соответственно, а выход - со входом рулевого привода, причем ко второму входу третьего блока умножения подключен выход датчика угловой скорости.

Предлагаемое техническое решение поясняется примером структурной схемы адаптивной системы с эталонной моделью для управления летательным аппаратом в канале курса (фиг. 1).

Эта система представляет собой четыре взаимосвязанных контура:

I - прямой контур управления - содержит последовательно соединенные первый сумматор 1 (1й Σ), на первый вход которого подается сигнал управления летательным аппаратом, первый блок умножения 2 (1й БУ), второй сумматор 3 (2й Σ), рулевой привод 4 (РП) и летательный аппарат с датчиком угла 5 (СГ), датчиком угловой скорости 6 (ДУС), выходы которых подключены соответственно к первому и второму входам корректирующего звена 7 (КЗ), подключенного выходом ко второму входу первого сумматора 1;

II - обводной контур по сигналу датчика линейного ускорения - содержит этот датчик 8 (ДЛУ), второй блок умножения 14 (2й БУ), второй сумматор 3, рулевой привод 4 и летательный аппарат;

III - обводной контур по сигналу датчика угловой скорости - содержит этот датчик 6, третий блок умножения 16 (3й БУ), второй сумматор 3, рулевой привод 4 и летательный аппарат;

IV - контур адаптации - содержит датчики угла 5 и угловой скорости 6, цепь из последовательно соединенных эталонной модели 9 (ЭМ), блока сравнения 10 (БС), блока алгоритмов самонастройки 11 (БАС) и первого интегратора 12 (1й И), подключенную между первым входом первого сумматора 1 и вторым входом первого блока умножения 2, причем выход первого сумматора 1 подключен также ко второму входу блока алгоритмов самонастройки 11, третий вход которого соединен с выходом датчика линейного ускорения 8, при этом второй и третий входы блока сравнения 10 соединены с выходами датчика угла 5 и датчика угловой скорости 6 соответственно, а также цепь из последовательно соединенных второго интегратора 13 (2й И) и второго блока умножения 14, подключенную между вторым выходом блока алгоритмов самонастройки 11 и вторым входом второго сумматора 3, при этом выход датчика линейного ускорения 8 соединен со вторым входом второго блока умножения 14, и третий интегратор 15 (3й И), вход которого подключен к третьему выходу блока алгоритмов самонастройки 11, а выход - ко второму входу третьего блока умножения 16.

Летательный аппарат (ЛА) на фиг. 1 показан условно.

На схеме (фиг. 1) введены обозначения:

g(t) - сигнал управления летательным аппаратом;

σΣ - выходной сигнал первого сумматора;

σ1, σ2, σ3 - выходные сигналы первого, второго и третьего блоков умножения;

σψ - сигнал управления каналом курса летательного аппарата;

δH - угол отклонения руля направления;

ψ, , w - сигналы угла курса, угловой скорости по курсу и линейного ускорения в канале курса;

σСТ - сигнал стабилизации канала курса;

λ1, λ2, λ3 - выходные сигналы блока алгоритмов самонастройки на входах первого, второго и третьего интеграторов;

, - векторы выходных параметров эталонной модели и блока сравнения;

k1, k2, k3 - перестраиваемые коэффициенты передачи адаптивной системы.

Адаптивная система с эталонной моделью для управления летательным аппаратом работает следующим образом.

Как известно, уравнения движения ЛА в канале курса представляются уравнениями вида [3, с. 34]:

которые здесь записаны, для простоты, для идеальных передаточных функций датчиков угла, угловой скорости, линейного ускорения и рулевого привода; предполагается также, что датчик линейного ускорения расположен в центре масс ЛА.

В уравнениях (1) β, ψ, ϕ, δн - соответственно углы скольжения, рыскания, курсовой угол и угол отклонения руля направления;

w - линейное ускорение вдоль боковой оси oz1 связанной системы координат;

V - скорость полета ЛА;

b1…b5 - динамические коэффициенты, определяемые по формулам

; ; ; ; ;

iн, ρн - постоянные коэффициенты передачи, определяющие соотношение сигналов свободного и демпфирующего гироскопов в контуре угловой стабилизации ЛА по курсу;

k1, k2, k3 - коэффициенты передачи САУ, перестраиваемые контуром самонастройки;

, , , , - аэродинамические коэффициенты ЛА в канале курса, остальные обозначения общеприняты.

Управляющий сигнал g(t) подается одновременно на входы первого сумматора 1 и эталонной модели 9. Воздействие этого сигнала через цепь, состоящую из первого сумматора 1, первого блока умножения 2 и второго сумматора 3, отрабатывается рулевым приводом 4, отклоняющим руль направления на угол δH, и затем летательным аппаратом.

На второй вход сумматора 1 подается сигнал стабилизации канала курса - выходной сигнал корректирующего звена 7, сформированный по закону

,

На первый вход второго сумматора 3 подается выходной сигнал сумматора σΣ, умноженный в первом блоке умножения 2 на перестраиваемый коэффициент передачи k1; При этом σΣ=g+σСТ.

На второй и третий входы второго сумматора 3 подаются также выходной сигнал w датчика линейных ускорений 8, умноженный во втором блоке умножения 14 на перестраиваемый коэффициент передачи k2, и сигнал угловой скорости ЛА с выхода датчика 6, умноженный в третьем блоке умножения 16 на перестраиваемый коэффициент передачи k3 обводного контура демпфирования. Таким образом, рулевой привод отрабатывает сигнал управления каналом курса

Векторный выходной сигнал эталонной модели 9, в которой заложены желаемые динамические характеристики, содержит компоненты, аналогичные углу и угловой скорости ЛА. В блоке сравнения 10 этот сигнал сравнивается с сигналами ψ свободного гироскопа 5 и - датчика угловых скоростей 6.

Выходной векторный сигнал блока сравнения 10 , содержащий ошибки сравнения сигналов эталонной модели и ЛА по углу и по угловой скорости, вместе с сигналами сумматора 1 σΣ и датчика линейных ускорений 8 w поступают на вход блока алгоритмов самонастройки 11. Блок 11 формирует сигналы для перестройки коэффициентов передачи k1, k2 и k3.

Алгоритмы формирования коэффициентов передачи k1, k2 и k3 в зависимости от изменения динамических характеристик ЛА для адаптивной системы рассматриваемой структуры изложены, например, в [3, с. 122]:

где χ1, χ2 - выбираемые настроечные параметры, задающие желаемое качество переходных процессов эталонной модели.

При этом передаточная функция летательного аппарата, охваченного контурами САУ, как показано в [3, с. 121…124], становится независимой от динамических параметров самого ЛА:

Алгоритмы самонастройки, реализуемые в блоках 9, 10, 11, представлены, например, в [3, с. 124], [4, с. 108…118], алгоритмы настройки коэффициентов k1, k2, k3 могут иметь вид

где ε1, ε2 - ошибки сравнения сигналов с эталонной модели и объекта управления.

Компоненты сигнала на выходе блока алгоритмов самонастройки 11 подаются: компонента λ1 - на первый интегратор 12, компонента λ2 - на второй интегратор 13, а компонента λ3 - на третий интегратор 15. Выходной сигнал первого интегратора и есть параметрическое воздействие (перестраиваемый коэффициент передачи) k1, которое поступает на первый блок умножения 2, выходной сигнал второго интегратора - это параметрическое воздействие (перестраиваемый коэффициент передачи) k2, поступающее на второй блок умножения 14, а выходной сигнал третьего интегратора - параметрическое воздействие (перестраиваемый коэффициент передачи) k3, поступающее на третий блок умножения 16. В результате сигнал управляющего воздействия g(t) отрабатывается летательным аппаратом с желаемым качеством динамического переходного процесса.

Таким образом, адаптивная система с эталонной моделью для управления летательным аппаратом отличается тем, что с целью обеспечения параметрической инвариантности динамических характеристик замкнутой системы САУ - ЛА в широком диапазоне изменения параметров ЛА, в том числе и собственного аэродинамического демпфирования ЛА, в нее введены

- второй сумматор,

- третий интегратор и третий блок умножения.

Проведенные многочисленные исследования, проведенные методами математического и полунатурного моделирования, подтвердили существенное улучшение динамических характеристик системы САУ - ЛА при применении представленной здесь системы. Особо следует отметить способность предложенной САУ поддерживать требуемые параметры системы в достаточно широком диапазоне изменения собственной устойчивости ЛА за счет изменения его центровки.

Источники информации

1. Блейклок Дж.Г. Автоматическое управление самолетами и ракетами. М., «Машиностроение», 1969, с. 222.

2. Петров Б.Н., Рутковский В.Ю., Абадеев Э.М., Пучков A.M. и др. Самонастраивающийся автопилот. Авторское свидетельство на изобретение №536646. 1976 (прототип).

3. Абадеев Э.М, Балыко Ю.П., Ляпунов В.В., Обносов Б.В., Трусов В.Н. Основы формирования облика систем управления авиационного ракетного вооружения. М.: «Дашков и К°». 2012.

4. Петров Б.Н., Рутковский В.Ю. и др. Принципы построения и проектирования самонастраивающихся систем управления. М.: Машиностроение. 1973.

Адаптивная система с эталонной моделью для управления летательным аппаратом, содержащая последовательно соединенные первый сумматор, на первый вход которого подается сигнал управления летательным аппаратом, и первый блок умножения, а также рулевой привод, датчик угла, датчик угловой скорости, выходы которых подключены соответственно к первому и второму входам корректирующего звена, а выход корректирующего звена соединен с вторым входом первого сумматора, датчик линейного ускорения, цепь из последовательно соединенных эталонной модели, блока сравнения, блока алгоритмов самонастройки и первого интегратора, подключенную между первым входом первого сумматора и вторым входом первого блока умножения, при этом выход первого сумматора подключен также ко второму входу блока алгоритмов самонастройки, третий вход блока алгоритмов самонастройки соединен с выходом датчика линейного ускорения, второй и третий входы блока сравнения соединены с выходами датчика угла и датчика угловой скорости соответственно, и последовательно соединенные второй интегратор, подключенный входом ко второму выходу блока алгоритмов самонастройки, и второй блок умножения, причем выход датчика линейного ускорения соединен со вторым входом второго блока умножения, отличающаяся тем, что она содержит последовательно соединенные третий интегратор и третий блок умножения, причем вход третьего интегратора подключен к третьему выходу блока алгоритмов самонастройки, и второй сумматор, первый, второй и третий входы которого соединены с выходами первого, второго и третьего блоков умножения соответственно, а выход - с входом рулевого привода, при этом ко второму входу третьего блока умножения подключен выход датчика угловой скорости.



 

Похожие патенты:

Изобретение относится к способу автоматизированного контроля и управления беспилотными авиационными системами (БАС), при котором осуществляют радиосвязь с наземными станциями управления, каждой из которых присваивается свой идентификационный номер.

Группа изобретений относится к области автоматического управления, в частности, к способам управления двухколесной тележкой с противовесом. Для управления двухколесной тележкой с противовесом выявляют тип препятствия впереди любого из колес.

Изобретение относится к способу контроля остойчивости судна в условиях экстремального волнения. Для контроля остойчивости судна измеряют период бортовой качки, рассчитывают метацентрическую высоту определенным образом, рассчитывают характеристики ударного воздействия разрушающихся волн на основе анализа частотного спектра волнения, скорости ветра и течения, определяют фактические показатели динамики взаимодействия судна с внешней средой и возможность опрокидывания судна в момент удара экстремальной волны и при развитии стремительного дрейфа от ее удара.

Изобретение относится к информационно-измерительной технике и может найти применение в составе бортовых систем управления общесамолетным или вертолетным оборудованием.

Дистанционная резервированная система автоматизированного модального управления в продольном канале маневренных пилотируемых и беспилотных летательных аппаратов содержит ручку пилота/задатчик тангажа, вычислитель автопилота угла тангажа, сервопривод, датчик угла тангажа, ограничитель предельных режимов, датчик угловой скорости тангажа, блок балансировки, вычислитель алгоритма модального управления (ВАМУ), систему воздушных сигналов, датчик линейных ускорений, идентификатор угла атаки, соединенные определенным образом.

Изобретение относится к устройству определения неправильного распознавания в группе параметров движения транспортного средства, используемых для управления вождением транспортного средства.

Система автоматизированного модального управления в продольном канале летательного аппарата (ЛА) содержит ручку пилота/задатчик тангажа, вычислитель автопилота угла тангажа, сервопривод, датчик угла тангажа, ограничитель предельных режимов, датчик угловой скорости тангажа, блок балансировки, вычислитель алгоритма модального управления (ВАМУ), система воздушных сигналов, соединенных определенным образом.

Система управления в продольном канале пилотируемых и беспилотных летательных аппаратов содержит радиовысотомер малых высот, систему воздушных сигналов, бесплатформенную инерциальную навигационную систему в составе датчика нормальной перегрузки, датчика угловой скорости тангажа и датчика положения ручки летчика, цифровую систему траекторного управления и модальную систему дистанционного управления, электрогидравлический привод.

Изобретение относится к управлению технологическим процессом. Полевое устройство для мониторинга технологического параметра текучей среды промышленного процесса содержит технологический компонент, который представляет относительное движение в зависимости от технологического параметра, устройство захвата изображения, которое изменяется вследствие относительного движения технологического компонента, и процессор обработки изображения, соединенный с устройством захвата изображения.

Группа изобретений относится к способу и системе управления для управления аэродинамическими средствами летательного аппарата и летательному аппарату, содержащему такую систему.

Изобретение относится к области авиации. Крыло с аэродинамической шторой содержит основную часть, аэродинамическую штору и систему управления.

Дистанционная резервированная система автоматизированного модального управления в продольном канале маневренных пилотируемых и беспилотных летательных аппаратов содержит ручку пилота/задатчик тангажа, вычислитель автопилота угла тангажа, сервопривод, датчик угла тангажа, ограничитель предельных режимов, датчик угловой скорости тангажа, блок балансировки, вычислитель алгоритма модального управления (ВАМУ), систему воздушных сигналов, датчик линейных ускорений, идентификатор угла атаки, соединенные определенным образом.

Система автоматизированного модального управления в продольном канале летательного аппарата (ЛА) содержит ручку пилота/задатчик тангажа, вычислитель автопилота угла тангажа, сервопривод, датчик угла тангажа, ограничитель предельных режимов, датчик угловой скорости тангажа, блок балансировки, вычислитель алгоритма модального управления (ВАМУ), система воздушных сигналов, соединенных определенным образом.

Комплекс бортового оборудования вертолетов и самолетов авиации общего назначения (АОН) содержит многофункциональный индикатор (МФИ), основной пилотажный прибор (ОПП), комбинированную курсовертикаль (КВ), приемники воздушных давлений, приемник температуры торможений, блок преобразования сигналов, интегрированную систему радиосвязи (ИСР), систему табло аварийной и уведомляющей сигнализации, комплект внутреннего светотехнического и светосигнального оборудования, устройство беспроводной загрузки пользовательских данных, ответчик системы управления воздушным движением, аварийно-спасательный радиомаяк, малогабаритный бортовой регистратор, радиовысотомер, автоматический радиокомпас, транспондер автоматического зависимого наблюдения, комплект аппаратуры ближней навигации и посадки VOR/ILS/маркерного приемника/автоматического радиокомпаса, автопилот, соединенные определенным образом с помощью канала информационного обмена.

Группа изобретений относится к способу и устройству для конфигурирования системы управления тревожным сигналом для летательного аппарата, системе управления тревожным сигналом.

Группа изобретений относится к способу и устройству для формирования многофункционального сигнала стабилизации углового положения летательного аппарата (ЛА). Для формирования сигнала стабилизации задают сигнал углового отклонения положения ЛА, измеряют сигналы углового положения и угловой скорости ЛА, измеряют сигнал скоростного напора, формируют сигнал рассогласования между ограниченным определенным образом сигналом заданного углового отклонения и ограниченным сигналом запаздывания и преобразуют его в аналоговый сигнал, формируют суммарный сигнал на основе аналогового сигнала, ограничивают суммарный сигнал определенным образом для воздействия на рулевой привод.

Изобретение относится к авиационной технике. Летательный аппарат (ЛА) аэродинамической схемы «флюгерная утка» содержит механизированное крыло и флюгерное переднее горизонтальное оперение (ФПГО) (10) с серворулем (3), которые шарнирно размещены на оси вращения ОО1.

Изобретение относится к области авиации, в частности к конструкциям винтокрылых летательных аппаратов, и к способам минимизации шума хвостового винта. Винтокрылый летательный аппарат (1) расположен вдоль первой передне-задней плоскости (Р1), отделяющей первую сторону (6) от второй стороны (7) винтокрылого летательного аппарата (1).

Группа изобретений относится к области авиации, а именно к системам управления подвижными поверхностями летательного аппарата. Система (100) с приводом от электродвигателей для перемещения подвижного элемента (200) содержит по меньшей мере два привода (1, 2), каждый из которых оснащен узлом для соединения с подвижным элементом и каждый рассчитан на то, чтобы перемещать подвижный элемент самостоятельно, и центральный блок (3) управления.

Изобретение относится к системам автоматического управления обеспечения большой подъемной силы самолета с помощью пред-/закрылок (21, 22), которые выполнены с возможностью установки в различные конфигурации: для крейсерского полета, полета в зоне ожидания, взлета или посадки.

Группа изобретений относится к способу и устройству определения потребности для системы автоматического пилотирования (АП) летательного аппарата. Для осуществления способа вводят поведенческие параметры АП , проверяют соответствие вводимых параметров языку предметной области, генерируют файлы определения потребности, сохраняют генерированные файлы определения потребности. Устройство определения потребности содержит модуль ввода поведенческих параметров, модуль проверки, модуль генерирования, модуль хранения. Обеспечивается полнота и точность определения потребности для разработки системы АП. 2 н. и 8 з.п. ф-лы, 5 ил.
Наверх