Способ исследования теплозащитных свойств высокотемпературных покрытий и устройство для его осуществления

Изобретение относится к области технической физики, а именно к способам исследования теплозащитных свойств высокотемпературных покрытий и устройствам для их осуществления, и может быть использовано при испытаниях высокотемпературных покрытий деталей преимущественно газотурбинных двигателей (ГТД). Сущность изобретения состоит в том, что образец, выполненный в виде двух симметричных относительно продольной линии половин, на одну из которых нанесено исследуемое теплозащитное покрытие, предварительно жестко соединяют при помощи перемычек, устанавливают в захватах устройства, выполненных в виде подпружиненных губок с равномерно распределенными на их внутренних поверхностях керамическими вкладышами и кольцевым буртом на торце нижнего захвата. Образец нагревают при помощи горелки, установленной на основании с возможностью перемещения относительно продольной оси образца и в плоскости основания при помощи микрометрических винтов, оси которых взаимно перпендикулярны. Расстояние между торцом образца и горелкой и диаметр последней определяют расчетным путем по соответствующим формулам. В процессе испытания регистрируют изменение температуры на поверхности образца, по разности значений которой делают вывод о теплоизолирующих свойствах покрытия. Технический результат - повышение достоверности результатов испытаний. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к области технической физики, а именно к способам исследования теплозащитных свойств высокотемпературных покрытий и устройствам для их осуществления, и может быть использовано при испытаниях высокотемпературных покрытий деталей преимущественно газотурбинных двигателей (ГТД).

Теплозащитные покрытия (ТЗП), состоящие из соединительного металлического подслоя и внешнего керамического слоя, являются неотъемлемой частью системы защиты от высоких температур деталей горячего тракта газотурбинных двигателей.

Важнейшей характеристикой ТЗП является эффективность тепловой защиты, характеризующаяся величиной снижения температуры основного материала изделия после нанесения покрытия, которая необходима на стадии проектирования для выбора оптимальных характеристик ТЗП (состава, толщины, технологии и режимов нанесения) и проведения тепловых и прочностных расчетов деталей с покрытиями.

Наиболее распространенным критерием оценки эффективности тепловой защиты является коэффициент теплопроводности керамического слоя, рассчитываемый на основе данных температуропроводности, плотности и теплоемкости. Такая косвенная оценка теплозащитных свойств ТЗП с использованием расчетов содержит значительные погрешности, в связи с чем наиболее целесообразно оценивать характеристики покрытий в ходе прямого эксперимента.

Известен способ исследования теплозащитных свойств высокотемпературных покрытий, заключающийся в том, что трубчатый образец, выполненный из двух симметричных относительно продольной оси половин, на наружную поверхность одной из которых предварительно нанесено исследуемое теплозащитное покрытие, размещают в источнике теплового потока, осуществляют одновременный равномерный нагрев наружных поверхностей образца с покрытием и без него и измеряют температуры поверхностей, по которым судят о теплозащитных свойствах покрытия (патент RU №2424506, 2011 г.).

Из этого документа известно устройство для осуществления известного способа, содержащее источник теплового потока и средства измерения температуры. В известном техническом решении источник теплового потока выполнен в виде муфельной печи. Крепление образца должно обеспечивать равномерный нагрев его поверхностей, а также размещение средств измерения температуры и средства подачи охлаждающей среды от соответствующего источника.

Таким образом, недостатком известного технического решения является сложность реализации способа в связи с расположением источника тепла снаружи образца.

Известно устройство для определения характеристик теплоизоляционных материалов, реализующее способ, заключающийся в том, что внутри полого цилиндрического образца с определенным заданным соотношением длины к диаметру размещают источник тепла, осуществляют нагрев образца и измеряют его температуру, по которой судят о теплозащитных свойствах материала (патент RU №145491, 2014 г.). Устройство содержит средства крепления образца, источник тепла и средства измерения температуры.

Недостатком известного технического решения является ограниченная возможность его применения, поскольку способ и устройство предназначены для определения теплоизоляционных характеристик материалов в температурном интервале от 25°С до 600°С.

Наиболее близким по совокупности существенных признаков к заявляемому техническому решению является известный способ, заключающийся в том, что трубчатый образец, выполненный из двух симметричных относительно продольной оси половин, на одну из которых нанесено исследуемое теплозащитное покрытие, фиксируют в средствах крепления с осевым продольным зазором между частями образца. Вдоль оси образца размещают источник теплового потока в виде факела пламени. Проводят одновременный нагрев поверхностей образца с покрытием и без него и измеряют температуры поверхностей. По температурам поверхностей с покрытием и без покрытия судят о теплозащитных свойствах покрытия. Из данного документа известно устройство для реализации способа, содержащее средство крепления захватов трубчатого образца, источник теплового потока, выполненный в виде горелки, и средства измерения температуры (патент RU №2284514, 2006 г.). В связи с малой толщиной покрытий (менее 200 мкм) отклонения факела пламени относительно оси образца приводят к значительным погрешностям в результатах исследований.

Общим существенным недостатком известных технических решений, препятствующим их использованию, является низкая точность определения характеристик теплозащитного покрытия, обусловленная сложностью соосного позиционирования образца и горелки.

Техническая проблема, решение которой обеспечивается при осуществлении технического решения, заключается в повышении достоверности результатов испытаний.

Технический результат, достигаемый при осуществлении предлагаемого технического решения, заключается в создании ламинарного потока от факела пламени теплового источника при требуемой интенсивности разогрева путем соосного позиционирования образца и горелки.

Указанный технический результат достигается тем, что в способе исследования теплозащитных свойств высокотемпературных покрытий трубчатый образец, выполненный из двух симметричных относительно продольной оси половин, на одну из которых нанесено исследуемое теплозащитное покрытие, фиксируют в средствах крепления с осевым продольным зазором между частями образца, размещают вдоль оси образца источник теплового потока в виде факела пламени, проводят одновременный нагрев поверхностей образца с покрытием и без него и измеряют температуры поверхностей, по которым судят о теплозащитных свойствах покрытия, а устройство для реализации способа содержит средство крепления захватов трубчатого образца, источник теплового потока, выполненный в виде горелки, и средства измерения температуры. Согласно изобретению предварительно жестко соединяют половины образца между собой при помощи перемычек, источник теплового потока размещают на расстоянии «L» от торца образца, определяемом по формуле:

L=0,5(Lфо),

где Lф - длина факела пламени;

Нo - длина трубчатого образца,

с возможностью изменения его положения вдоль оси образца и в плоскости, перпендикулярной оси последнего, а диаметр «dк» канала горелки выбирают из соотношения:

dк=(0,1÷0,11)dвн,

где dвн - внутренний диаметр образца.

Технический результат, обеспечиваемый заявленным изобретением, достигается также тем, что устройство для осуществления способа содержит средство крепления захватов трубчатого образца, источник теплового потока, выполненный в виде горелки, и средства измерения температуры. Согласно изобретению в устройстве для осуществления способа средство крепления выполнено в виде основания с закрепленной на ней вертикальной стойкой, захваты выполнены в виде установленных на стойке разрезных подпружиненных губок, на внутренней поверхности которых закреплены термостойкие керамические вставки, выполненные в виде цилиндров, расположенных равномерно по окружности губок, на торце нижнего захвата, обращенном к основанию выполнен кольцевой бурт, ширина которого не превышает толщины стенок трубчатого образца, горелка установлена на основании с возможностью перемещения относительно продольной оси образца, а устройство снабжено приводом перемещения горелки в плоскости основания, выполненным в виде микрометрических винтов, оси которых взаимно перпендикулярны.

Указанные существенные признаки обеспечивают решение поставленной задачи с достижением заявленного технического результата в части способа, так как:

- жесткое соединение половинок образца между собой при помощи перемычек, размещение источника теплового потока на расстоянии от торца образца, определяемом заданной формулой, с возможностью изменения его положения вдоль оси образца в плоскости, перпендикулярной оси последнего, и выбор диаметра канала горелки в соответствии с заданной формулой обеспечивает повышение достоверности результатов испытаний за счет равномерного нагрева образца при условии создания ламинарного потока от факела пламени теплового источника при требуемой интенсивности разогрева.

Указанные существенные признаки обеспечивают решение поставленной задачи с достижением заявленного технического результата в части устройства для реализации способа, так как выполнение средства крепления в виде основания с закрепленной на нем вертикальной стойкой, выполнение захватов в виде установленных на стойке разрезных подпружиненных губок, на внутренней поверхности которых закреплены термостойкие керамические вставки, выполненные в виде цилиндров, расположенных равномерно по окружности губок, выполнение на торце нижнего захвата, обращенном к основанию кольцевого бурта, ширина которого не превышает толщины стенок трубчатого образца, установка горелки на основании с возможностью перемещения относительно продольной оси образца и снабжение устройства приводом перемещения горелки, выполненным в виде микрометрических винтов, оси которых взаимно перпендикулярны в плоскости основания, обеспечивает повышение достоверности результатов испытаний за счет обеспечения возможности фиксации и позиционирования факела пламени источника теплового потока относительно оси исследуемого образца при требуемой интенсивности разогрева.

Предложенные технические решения поясняются далее со ссылкой на иллюстрации, представленные на чертежах, где

на фиг. 1 изображена схема предложенного корпуса;

на фиг. 2 изображена схема выполнения губок;

на фиг. 3 изображен испытуемый образец.

Устройство для реализации способа содержит основание 1 с закрепленной на нем вертикальной стойкой 2 (см. фиг. 1), на которой установлены захваты, выполненные в виде губок 3 и 4, каждая из которых содержит подпружиненную подвижную и неподвижную части и предназначенных для крепления исследуемого трубчатого образца, на внутренней поверхности которых равномерно по окружности закреплены цилиндрические керамические вставки 5, а на торце нижних губок 4, обращенных к основанию 1, выполнен кольцевой бурт 6, ширина которого не превышает толщины стенок трубчатого образца (см. фиг. 2). Последний выполнен из двух симметричных относительно продольной оси половин 7 и 8, разделенных зазором 9, предназначенным для размещения теплоизоляторов (не показаны), и жестко связанных между собой перемычками 10, которые выполнены из тонкой фольги из нержавеющей стали и закреплены на соответствующих половинах образца методом точечной сварки (см. фиг. 3). При этом на одну из половин образца наносится исследуемое теплозащитное покрытие 11, а вторую половинку оставляют без покрытия. Источник теплового потока выполнен в виде горелки 12 с пламегасителем 13, установленной на основании 1 с возможностью перемещения относительно оси трубчатого образца и кинематически связанной с приводом (не показан) осевого перемещения и приводами перемещения горелки 12 в плоскости основания 1. Последние выполнены в виде микрометрических винтов 14, оси которых взаимно перпендикулярны. На внешней поверхности трубчатого образца размещаются средства измерения температуры, выполненные в виде закрепленных на половинах 7 и 8 образца термопар (не показаны).

Способ исследования теплозащитных свойств высокотемпературных покрытий осуществляется следующим образом.

Половины 7 и 8 трубчатого образца, жестко связанные между собой перемычками 10, размещают в губках 3 и 4 таким образом, что нижний торец трубчатого образца опирается на кольцевой бурт 6, при этом подпружиненные подвижные части губок 3 и 4 обеспечивают безлюфтовое центрирование и крепление образца.

Параметры, воспроизведение которых необходимо обеспечить при проведении испытаний, следующие:

- максимальная температура «Тобр» образца 1200°С;

- температура «Тг» источника тепла (факела) в диапазоне от 1750°С до 2000°С, для достижения этой температуры используется кислородно-водородная смесь, которая пропускается через пламегаситель 13, наполненный керосином, пары которого горят на воздухе при температуре 800°С;

- необходимая скорость «V» разогрева образца 80…100°С/с.

Нагрев образца необходимо осуществлять вдоль оси образца, характеризующегося следующими параметрами: внутренний диаметр «dвн» образца, длина «L» образца, толщина «δ» стенки образца.

При установке образца необходимо соблюдать строгую вертикальность устройства с применением высокоточных водяных уровней, при этом допускается отклонение от вертикального расположения не более 0,5 градуса. Если отклонение от вертикального расположения превышает указанную величину, то разогрев по высоте будет неравномерным, что скажется на достоверности. Отклонение зоны максимального разогрева от центра образца, где закреплены термопары, может привести к перегреву этого участка образца, сколу покрытия и к приведению образца в негодность.

Геометрические параметры факела: диаметр «dф» факела, длина «Lф» факела, диаметр «dк» канала горелки, скорость «U» истечения газа из сопла.

Зависимость искомых технологических параметров от переменных:

Тобр=f(dвн,dф, Тг);

V=f(dвн,dф,δ).

Зависимость функциональных параметров:

dф=f(dк);

Lф=f(U,dк).

Толщина δ стенки образца выбирается в пределах 0,8…1,5 мм, что соответствует толщинам стенок «горячих» деталей ГТД.

Горелку 12 при помощи привода размещают на расстоянии «L» от торца образца, определяемом по формуле:

L=0,5(Lфо),

где Lф - длина факела пламени;

Нo - длина трубчатого образца.

Включают горелку 12, диаметр «dк» канала которой выбирают из соотношения:

dк=(0,1÷0,11)dвн,

где dвн - внутренний диаметр образца,

и при помощи микрометрических винтов 14 производят регулировку положения факела пламени горелки 12 относительно образца и осуществляют процесс нагрева образца, регистрируя изменение температуры поверхности последнего. При этом керамические вставки 5, зазоры 9 и перемычки 10 исключают возможность теплообмена и теплопередачи между половинами 7, 8, влияние губок 3 и 4 на процесс нагрева и обеспечивают заданное положение образца в процессе испытания. По разнице показаний термопар делают вывод о теплозащитных свойствах покрытия.

Для проведения испытаний необходимо обеспечить ламинарное течение струи. Оптимальные характеристики факела пламени достигаются при указанном соотношении, связывающем внутренние диаметры образца и канала горелки. Если это значение меньше 0,1, то скорость разогрева падает, и снижается достоверность получаемых результатов (несоответствие двигательным скоростям разогрева). Если значение более 0,11, то диаметр факела может оказаться близким или превысить внутренний диаметр образца, что приведет к его неравномерному разогреву (происходит нагрев нижнего торца образца), что недопустимо по условиям испытаний.

Внутренний диаметр «dвн» образца определяется значениями наружного диаметра образца и толщиной его стенки, а также возможностью равномерного нанесения покрытия на внутреннюю поверхность образца.

При ламинарном течении струи длина факела разделяется на две зоны - ядро факела и зону догорания. Максимальная температура достигается на переходном участке (между этими двумя зонами), а при испытаниях самый интенсивный разогрев образца происходит в зоне максимального прилегания пламени к его стенкам.

Если L=0,5(Lфo), длина «Lф» факела определяется из стандартного соотношения:

Lф=(13,5…14)КU0,8dк0,83,

где К - коэффициент, зависящий от природы газа.

Таким образом, предложенное техническое решение обеспечивает создание ламинарного потока от факела пламени теплового источника при требуемой интенсивности разогрева путем соосного позиционирования образца и горелки, что позволяет повысить достоверность результатов испытаний.

1. Способ исследования теплозащитных свойств высокотемпературных покрытий, заключающийся в том, что трубчатый образец, выполненный из двух симметричных относительно продольной оси половин, на одну из которых нанесено исследуемое теплозащитное покрытие, фиксируют в средствах крепления с осевым продольным зазором между частями образца, размещают вдоль оси образца источник теплового потока в виде факела пламени, проводят одновременный нагрев поверхностей образца с покрытием и без него и измеряют температуры поверхностей, по которым судят о теплозащитных свойствах покрытия, отличающийся тем, что предварительно жестко соединяют половины образца между собой при помощи перемычек, источник теплового потока размещают на расстоянии «L» от торца образца, определяемом по формуле:

L=0,5(Lфо),

где Lф - длина факела пламени;

Ho - длина трубчатого образца,

с возможностью изменения его положения вдоль оси образца и в плоскости, перпендикулярной оси последнего, а диаметр «dк» канала горелки выбирают из соотношения:

dк=(0,1÷0,11)dвн,

где dвн - внутренний диаметр образца.

2. Устройство для исследования теплозащитных свойств высокотемпературных покрытий, содержащее средство крепления захватов трубчатого образца, источник теплового потока, выполненный в виде горелки, и средства измерения температуры, отличающееся тем, что средство крепления выполнено в виде основания с закрепленной на ней вертикальной стойкой, захваты выполнены в виде установленных на стойке разрезных подпружиненных губок, на внутренней поверхности которых закреплены термостойкие керамические вставки, выполненные в виде цилиндров, расположенных равномерно по окружности губок, на торце нижнего захвата, обращенном к основанию, выполнен кольцевой бурт, ширина которого не превышает толщины стенок трубчатого образца, горелка установлена на основании с возможностью перемещения относительно продольной оси образца, а устройство снабжено приводом перемещения горелки в плоскости основания, выполненным в виде микрометрических винтов, оси которых взаимно перпендикулярны.



 

Похожие патенты:

Изобретение относится к строительной области, включая дорожное строительство, а также к смежным областям и непосредственно касается методов и устройств, используемых для определения устойчивости покрытий, применяемых в условиях воздействия климатических перепадов температур и воздействия противогололедных материалов.

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля вращающихся элементов авиационного двигателя. Объектами изобретения являются система и способ обнаружения дефектов на объекте, содержащий этапы, на которых: формируют изображение (13), характеризующее указанный объект (11), на основании сигналов (9), связанных с объектом, разбивают указанное изображение на участки (15) в соответствии с самоадаптирующимися разрешениями и вычисляют расхождения между различными участками для обнаружения аномального участка, указывающего на возможность повреждения.

Изобретение относится к области измерительной техники и может быть использовано для оценки стабильности технологии изготовления сложных пространственных конструкций из полимерных композиционных материалов (ПКМ).

Изобретение относится к электронной промышленности, в частности к средствам и методам тестирования электронных компонентов, в том числе при их производстве. Предложен способ тестирования электронных компонентов, включающий следующие этапы: осуществляют размещение по меньшей мере одного тестируемого электронного компонента на заданной позиции в емкости для тестирования; осуществляют опускание термогруппы, смонтированной над контактной поверхностью с контактными прессорами, расположенными в соответствии с расположением электронных компонентов, и содержащей по меньшей мере один элемент Пельтье, на указанный по меньшей мере один электронный компонент, причем прессоры соприкасаются с электронными компонентами без зазора; осуществляют управление питанием указанной термогруппы для достижения заданной температуры по меньшей мере одним указанным элементом Пельтье и по меньшей мере одним электронным компонентом, при этом изменение температуры при помощи прессоров происходит за счет теплопроводности; осуществляют тестирование параметров по меньшей мере одного электронного компонента при заданной температуре; прекращают тестирование электронных компонентов с последующим подъемом термогруппы и извлечением по меньшей мере одного электронного компонента из емкости для тестирования.

Группа изобретений относится к диагностике систем управления и контроля в промышленных процессах. Способ проведения диагностики с помощью полевого устройства и идентификации в ответ на это диагностируемого состояния в промышленном процессе, содержит этапы, на которых: измеряют инфракрасные излучения из места в промышленном процессе с помощью матрицы инфракрасных датчиков, содержащей множество инфракрасных датчиков; сравнивают выходной сигнал с первого участка матрицы датчиков с выходным сигналом со второго участка матрицы датчиков; в ответ на сравнение предоставляют выходной сигнал, указывающий диагностируемое состояние, на основе соотношения между выходным сигналом от первого участка матрицы датчиков и выходным сигналом от второго участка матрицы датчиков, определенного на этапе сравнения.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для технической диагностики качества неоднородных конструкций, например зданий и сооружений, по сопротивлению теплопроводности в условиях нестационарных внешних воздействий.

Изобретение относится к области устройств, моделирующих курение табачных сигарет. Сборку и качество электронной сигареты ("e-Cig") можно тестировать и проверить с использованием технологий формирования изображения.

Изобретение относится к области управления работой двигателя внутреннего сгорания, в частности к диагностике неисправности датчиков влажности. Способ диагностики для емкостного датчика влажности, содержащего нагреватель и элемент считывания емкости, который по отдельности идентифицирует ухудшение характеристик нагревателя, элемента считывания температуры или элемента считывания емкости.

Группа изобретений относится к измерительной технике и может быть использована для оценки надежности сложных пространственных конструкций из композитных материалов.

Изобретение относится к испытательной технике. Способ тепловых испытаний обтекателей ракет из неметаллических материалов включает нагрев наружной поверхности обтекателя за счет пропускания электрического тока через нагреватели, расположенные к наружной поверхности обтекателя с зазором, и измерение температуры.

Группа изобретений относится к области измерительной техники, а именно к способу контроля качества композитных броневых преград из ткани и устройству для его осуществления. Способ включает установку композитной броневой преграды перед пластиной из пластичного материала, направление с заданной скоростью поражающего элемента на броневую преграду и определение энергии поглощения поражающего элемента. С момента взаимодействия броневой преграды и поражающего элемента регистрируют одновременно два пространственных поля на поверхности броневой преграды: температурное поле поверхности броневой преграды и поле видеоизображения поверхности. Накладывают контур видеоизображения на температурное поле, формируют новое измеренное температурное поле, а энергию поглощения композитной броневой преградой определяют на основе анализа нового температурного поля. Раскрыто устройство контроля качества композитных броневых преград из ткани для осуществления способа. Достигается повышение информативности и достоверности результатов контроля. 2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения являются исключение разрушения пластин термоупругими напряжениями в процессе обработки и повышение выхода годных. Технический результат достигается тем, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности непрерывным лазерным излучением с плотностью энергии, достаточной для достижения поверхностью пластины температуры отжига, предварительно рассчитывают условие термопрочности пластины по уравнению, связывающему механические свойства материала и функцию от критерия Фурье, и, при его невыполнении, предварительно нагревают пластину до температуры, определяемой из условия термопрочности. 1 ил.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения является исключение разрушения пластин термоупругими напряжениями в процессе обработки и повышение выхода годных. Технический результат достигается тем, что в способе лазерной обработки неметаллических пластин, имеющих свободную поверхность, заключающемся в облучении их поверхности непрерывным лазерным излучением с плотностью энергии, достаточной для достижения поверхностью пластины температуры отжига, предварительно рассчитывают условие термопрочности пластины по уравнению, связывающему механические свойства материала и функцию от критерия Фурье, и, при его невыполнении, предварительно нагревают пластину до температуры, определяемой из условия термопрочности. 2 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Предложен способ тепловых испытаний металлических шпангоутов керамических обтекателей, включающий нагрев шпангоута и контроль температуры. На наружной поверхности испытуемого шпангоута, монтируют керамическую скобу с продольным разрезом, вырезанную из юбки керамической оболочки обтекателя. На внутреннюю поверхность скобы нанесен слой герметика, воспроизводящий клеевой слой в узле соединения керамической оболочки и металлического шпангоута. Монтаж шпангоута в керамической скобе проводят за счет расширения продольного разреза клином. Нагрев шпангоута проводят с его внутренней стороны с синхронной регистрацией изменения ширины продольного разреза скобы. Среднее радиальное расширение рассчитывают по формуле: ,где Δ - перемещение, измеренное в сечении, проходящей через ось штока датчика перемещений; R0 - исходный радиус испытуемого шпангоута; ΔС - толщина скобы; ΔH - высота площадки для установки датчика перемещений относительно наружной поверхности скобы; Δh - расстояние оси штока до основания датчика перемещений. Технический результат - снижение вероятности появления дефектных обтекателей в процессе их производства. 2 ил.

Изобретение относится к области неразрушающего контроля материалов и изделий методом теплового контроля и может быть использовано для повышения надежности диагностики при ручном и автоматизированном активном тепловом контроле изделий из полимерных композиционных материалов. Способ включает проведение тепловизионной съемки поверхности изделия под внешней стимуляцией, измерение интенсивности излучения изделия в инфракрасном спектре, получение массива термограмм. Термограммы преобразуют в числовые матрицы, элементами которых являются значения яркости каждого из пикселей, получают трехмерный числовой массив введением номера термограммы в качестве третьего измерения, применяют робастный метод оценки, основанный на вычислении медианы всевозможных частных углов наклона, получают матрицы скоростей нагрева, затем генерируют искусственную термограмму скоростей нагрева. Технический результат - обеспечение достоверной интерпретации результатов контроля, повышение температурного сигнала дефекта и удаление ложных дефектных областей. 3 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Способ тепловых испытаний керамических оболочек заключается в том, что керамическая оболочка монтируется на контрольном шпангоуте, на котором нанесен слой герметика, воспроизводящий клеевой слой в узле соединения данного типа обтекателя. Силовое нагружение создается за счет локального нагрева внутренней поверхности контрольного шпангоута по определенному закону, при этом синхронно измеряются перемещения наружной поверхности оболочки в одном поперечном сечении таким образом, чтобы датчики перемещений находились попарно, напротив друг друга, в одной продольной плоскости, проходящей через ось вращения оболочки. После окончания нагрева показания этих датчиков суммируются для того, чтобы выявить изменение диаметральных перемещений в данной продольной плоскости в процессе теплового нагружения. Технический результат - минимизация риска допуска дефектной керамической оболочки до сборки со шпангоутом. 2 з.п. ф-лы, 1 ил.
Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплозащитных свойств по результатам испытаний в натурных условиях. Заявлен способ определения изменений термического сопротивления и коэффициента теплопроводности по толщине наружного стенового ограждения по результатам теплофизических испытаний в натурных условиях, включающий измерение температур на внутренней и наружной поверхности, а также по всей толщине конструкции путем размещения датчиков в толще ограждения, поступающая информация с которых направляется в банк данных компьютера, где проходит обработку и систематизацию в виде графиков, с использованием которых на поперечном разрезе исследуемого наружного ограждения, построенного в выбранном масштабе и предварительно разбитом на слои в местах размещения датчиков, строится график распределения температур по слоям. Для построения графика распределения температур по слоям, в произвольном масштабе изображается толщина стенки исследуемого образца, разбитая на слои в местах установления термопар. Параллельно поверхности стенки проводится вертикальная шкала температур, с которой на выделенные слои переносятся точки соответствующих температур, взятых из графика, полученного из банка данных компьютера. Параллельно с первым разрезом строится второй разрез, где эта же стенка исследуемого образца строится в масштабе термического сопротивления. Далее переносим точки графика температур на наружную и внутреннюю поверхности с первого разреза на второй разрез и соединяем прямой линией. Переносим остальные точки первого разреза на наклонный график в виде прямой линии на втором разрезе и проектируем точки вниз на горизонтальную линию. Полученные отрезки на горизонтальной линии численно выражают значения термических сопротивлений слоев ограждения. Зная толщину слоя и полученные значения термических сопротивлений, определяется значение коэффициента теплопроводности каждого слоя по формуле ,где λ - коэффициент теплопроводности, Вт/м K;δ - толщина слоя стены, м;R - термическое сопротивление стены, м2 K/Вт;определяется значение коэффициента теплопроводности каждого слоя. Технический результат – повышение информативности получаемых данных. 2 ил.
Наверх