Способ измерения электрической емкости

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости основан на регистрации времени заряда t1 измеряемого конденсатора с момента подачи на него через резистор R постоянного напряжения Е до момента достижения на измеряемом конденсаторе СХ заранее принятого порогового значения напряжения U0. Заменив измеряемый конденсатор СХ образцовым конденсатором СО с известной емкостью, измеряют время заряда образцового конденсатора t2, не меняя при этом значения сопротивления резистора R, напряжения зарядного источника Е и заранее принятого порогового значения напряжения U0 на конденсаторе. Измеряемую емкость вычисляют по формуле:

где СО - емкость образцового конденсатора; t1 - время заряда конденсатора с измеряемой емкостью СХ до заранее принятого порогового значения напряжения на его обкладках; t2 - время заряда конденсатора СО до заранее принятого порогового значения напряжения на его обкладках. Технический результат заключается в повышении точности измерения электрической емкости. 1 табл., 3 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.).

Уровень техники

Известно много способов измерения электрической емкости, среди которых можно отметить:

- способы, использующие резонансные свойства колебательного контура, содержащего катушку индуктивности и конденсатор с измеряемой емкостью СХ (Полулях К.С. Резонансные методы измерений. - М.: Энергия, 1980. - 120 с.);

- способы измерения параметров RC-генератора, содержащего во времязадающей цепи измеряемый конденсатор СХ (Датчики: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С. Полищука. М.: Техносфера, 2012. - 624 с.);

- мостовые методы, основанные на сравнении измеряемой емкости с образцовой (Шарапов В.М. Емкостные датчики. В.М. Шарапов, И.Г. Минаев и др. Под ред. В.М. Шарапова. - Черкассы: Брама-Украина, 2010. - 152 с.).

Недостаток перечисленных способов заключается в необходимости использования и обработки высокочастотных сигналов, что усложняет их техническую реализацию.

Наиболее близким по технической сущности и достигаемому положительному эффекту и принятым авторами за прототип является известный способ измерения электрической емкости на постоянном токе, основанный на измерении параметров переходного процесса в пассивном линейном четырехполюснике, содержащем конденсатор с измеряемой емкостью СХ и активное сопротивление R в цепи его зарядки от источника постоянного тока с напряжением Е (Датчики: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С. Полищука. М.: Техносфера, 2012. - С. 165-166).

Известно, что переходная характеристика такого четырехполюсника, т.е. его реакция на ступенчатый входной сигнал Е, графически представленная изменением напряжения U(t) на конденсаторе, имеет вид экспоненты

где: U(t) - мгновенное значение напряжения на конденсаторе с измеряемой емкостью СХ; t - время отсчета с момента поступления ступенчатого сигнала; Т - постоянная времени: Т=R⋅CX.

Известный способ измерения емкости основан на измерении мгновенного значения напряжения U(t) в соответствующий момент времени t, что позволяет, используя свойства экспоненты, определить постоянную времени Т и по ней значение измеряемой емкости

Измерение емкости указанным способом сопряжено с необходимостью стабилизации значений Е и R, т.к. их изменение под действием внешних факторов и старения приводит к появлению дополнительной погрешности измерения.

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого способа измерения электрической емкости, направлен на устранение влияния изменения напряжения Е источника постоянного тока, сопротивления R резистора в цепи заряда конденсатора с измеряемой емкостью СХ на результат измерения, т.е. на повышение точности измерения электрической емкости.

Технический результат достигается тем, что на измеряемый конденсатор СХ через резистор R подают постоянное напряжение Е и измеряют время t1 заряда этого конденсатора с момента подачи Е до момента достижения на конденсаторе заранее принятого порогового значения U0; затем, не меняя значений сопротивления R и постоянного напряжения Е, заменяют измеряемый конденсатор на образцовый конденсатор с известной емкостью СО, заряжают его, фиксируют время t2 его зарядки до того же порогового значения U0 и рассчитывают измеряемую емкость СХ по формуле:

Краткое описание чертежей

На фиг. 1 изображена принципиальная схема реализации предлагаемого способа измерения емкости. На фиг. 2 - переходные характеристики, показывающие изменение мгновенных значений напряжений U1(t) и U2(t). На фиг. 3 - схема установки для осуществления экспериментальной проверки работоспособности предлагаемого способа измерения электрической емкости.

Осуществление изобретения

Предлагаемый способ опирается на следующие предпосылки.

Как известно, при подключении RC-четырехполюсника к источнику постоянного тока напряжение на конденсаторе меняется по экспоненте. Так, если с помощью замыкающего ключа К1 (фиг. 1) в момент времени t=0 через резистор R подать постоянное напряжение Е на конденсатор с измеряемой емкостью СХ, то напряжение U1(t) на нем, контролируемое измерителем 1, начинает нарастать по экспоненте (фиг. 2):

с постоянной времени Т1=R⋅СХ.

Как только U1(t) достигнет заранее принятое пороговое значение U0, фиксируют момент времени t1. Отключают с помощью ключа K1 источник постоянного напряжения Е. С помощью переключающего ключа К2 отключают измеряемый конденсатор СХ и замещают его образцовым конденсатором с известной емкостью СО. С помощью ключа К1 снова подают в момент времени t=0 через резистор R постоянное напряжение Е на конденсатор СО.

Напряжение U2(t) на конденсаторе СО начинает нарастать по экспоненте с постоянной времени Т2=RCO (фиг. 2):

Как только U2(t) достигнет заранее принятое пороговое значение U0, фиксируют момент времени t2. В общем случае t1≠t2. Если, например, СОХ, то t2>t1 (как показано на фиг. 2). Так как моменты времени t1 и t2 фиксируют при достижении мгновенными значениями напряжений U1(t) и U2(t) одного и того же уровня U0, то можно записать:

С учетом (4) и (5) это условие (6) можно записать:

Из (7) следует, что , т.е. t1T2=t2T1 или

Решая (8) относительно неизвестного значения СХ, получаем формулу для его расчета (3).

При выводе этой расчетной формулы (3) в выражении (7) в левой и правой части равенства произвели сокращение на Е, а в выражении (8) - сокращение на R. Такие математические действия с равенствами (7) и (8) возможны в предположении, что за короткое время необходимое для проведения измерения t1 и t2 эти параметры, т.е. Е и R, остаются неизменными.

Поэтому значения Е и R не вошли в расчетную формулу (3), что устраняет возможность появления дополнительной погрешности в случае изменения этих параметров.

Так же в расчетную формулу (3) не вошло и значение U0, определяющее моменты t1 и t2.

Следовательно, предлагаемый способ устраняет влияние изменения напряжения источника питания Е, сопротивления R в цепи заряда измеряемой емкости и порогового значения напряжения U0, определяющего моменты фиксации t1 и t2.

Кроме того, если при измерении t1 и t2 имела место мультипликативная составляющая систематической инструментальной погрешности, то она также не повлияет на результат измерения емкости по предлагаемому способу, т.к. войдет сомножителем в числитель и знаменатель расчетной формулы (3).

Кроме того, если значения СХ и СО соизмеримы и, соответственно, соизмеримы значения t1 и t2, то практически исчезнет влияние и аддитивной составляющей систематической погрешности, т.к. она войдет в числитель и знаменатель расчетной формулы (3) с одним и тем же знаком.

Если предлагаемый способ будет реализован на базе микроконтроллера, то интервал времени, необходимый для его осуществления, т.е. для измерения t1 и t2 и расчета СХ по (3), будет составлять доли секунды, что позволяет рассчитывать на постоянство Е, R и U0 в столь короткий интервал.

Необходимо отметить, что последовательность измерения t1 и t2 не влияет на результат расчета по формуле (3). Можно сначала с помощью ключа К2 соединить с резистором R конденсатор Со, подать ключом К1 постоянное напряжение Е через резистор R на этот конденсатор и при достижении U2(t) порогового значения U0 зафиксировать t2; отключит Е; ключом К2 отсоединить СО и подключить СХ; подать Е на СХ; при достижении U1(t) порогового значения U0 зафиксировать t1 и по формуле (3) определить значение измеряемой емкости СХ.

Заранее принятое пороговое значение U0, как и в известном способе, основанном на измерении параметров переходного процесса, должно быть меньше значения Е, и его обычно выбирают в пределах (0,3-0,7)Е.

Значение СО с целью повышения чувствительности предлагаемого способа, исходя из общеизвестных положений метрологии, следует брать соизмеримым с предполагаемым значением измеряемой емкости СХ, что обеспечивает измерения как t1, так и t2 в равноточных условиях. Исходя из этого, можно рекомендовать СО=(0,1…10)СХ.

Измерение интервалов времени t1 и t2 возможно с применением любых известных средств как в цифровом, так и аналоговом исполнении, имеющих порог чувствительности, позволяющий проводить измерение емкости в соответствующих пределах. Чем выше чувствительность, тем меньше значение СХ, доступное для измерения предлагаемым способом.

Проверка работоспособности предлагаемого способа проводилась на установке (фиг. 3), в которой измеритель напряжения 1 выполнен на базе аналогового компаратора на операционном усилителе, например типа К554СА3. В качестве измерителя времени установлен электронный цифровой секундомер 2, например типа СИ8 ОВЕН, с чувствительностью 10 мс и имеющий два входа: один вход 3 для запуска высоким напряжением; другой вход 4 для остановки счета в случае поступления низкого напряжения (менее 0,8 В для этого секундомера). Такой порог чувствительности позволяет проводить измерения электрической емкости примерно от 0,5 мкФ и выше в сторону увеличения.

При измерении t1 и t2 при срабатывании ключа К1 (фиг. 3) высокое напряжение от источника Е поступает на вход 3 секундомера 2, запуская его в работу. Компаратор 1 включен по схеме инвертора, т.к. опорное напряжение U0 подается на неинвертирующий вход компаратора, а измеряемое напряжение U1(t) (или U2(t)) поступает на инвертирующий вход компаратора. До тех пор пока U1(t)<U0 (или U2(t)<0), на выходе компаратора высокое напряжение, что обеспечивает работу секундомера. Как только U1(t) (или U2(t)) станет равным U0, на выходе компаратора напряжение станет низким, что остановит работу секундомера и позволит снять его показания.

Как видно из представленной таблицы, изменение U0 с 5 до 7,5 В (опыты №1 и №2), изменение Е с 10 до 20 В (опыты №2 и №3), изменение R с 102 до 152 кОм практически не повлияли на точность измерения, и относительная погрешность измерения электрической емкости с применением предложенного способа не превысила 2%.

Предлагаемый способ измерения емкости по сравнению с прототипом и другими известными способами обладает следующими преимуществами:

- устраняет влияние дестабилизирующих факторов, таких как изменение напряжения питания, изменение сопротивления в цепи зарядки конденсатора и изменение значения напряжения срабатывания измерителя временных интервалов на точность измерения;

- доступность технической реализации на базе общедоступных микроконтроллеров, автоматически выполняющих все необходимые операции по измерению емкости.

Способ измерения электрической емкости, основанный на регистрации времени заряда измеряемого конденсатора с момента подачи на него через резистор постоянного напряжения до момента достижения на измеряемом конденсаторе заранее принятого порогового значения напряжения, отличающийся тем, что, заменив измеряемый конденсатор образцовым конденсатором с известной емкостью, измеряют время заряда образцового конденсатора, не меняя при этом значения сопротивления резистора, напряжения зарядного источника и заранее принятого порогового значения напряжения на конденсаторе, и измеряемую емкость вычисляют по формуле:

где СО - емкость образцового конденсатора;

t1 - время заряда конденсатора с измеряемой емкостью СX до заранее принятого порогового значения напряжения на его обкладках;

t2 - время заряда конденсатора СО до заранее принятого порогового значения напряжения на его обкладках.



 

Похожие патенты:

Изобретение относится к измерительной технике, может использоваться в системах контроля и разбраковки электрических конденсаторов, в системах сбора данных с емкостных датчиков в технологических устройствах, а также в медицинской практике.

Изобретение относится к электроизмерительной технике, в частности, к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния изоляции асинхронного электродвигателя с короткозамкнутым ротором.

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.).

Изобретение относится к промышленной электронике, аналого-цифровой технике и схемотехнике. Технический результат заключается в уменьшении погрешности дифференцирования от конечного значения коэффициента.

Изобретение относится к способу и устройству для реализации сенсорной кнопки и идентификации отпечатка пальца, а также к терминальному устройству, которые используются для объединения сенсорной кнопки с идентификацией отпечатка пальца.

Изобретение относится к способу и устройству для реализации сенсорной кнопки и идентификации отпечатка пальца, а также к терминальному устройству, которые используются для объединения сенсорной кнопки с идентификацией отпечатка пальца.

Изобретение относится к измерительной технике и предназначено для измерения физических параметров материала, в том числе при экстремальных температурах и давлениях, например, устройство может быть применено для контроля сухости пара пароводяной среды.

Изобретение относится к многослойным самолетным или аэрокосмическим иллюминаторам и касается прозрачного изделия с датчиком влаги. Включает в себя один или более датчиков влаги мониторинга проникновения влаги, чтобы контролировать эксплуатационные показатели влагостойкого барьера.

Изобретение способ определения диэлектрической проницаемости диэлектрических материалов относится к технике измерения диэлектрической проницаемости диэлектрических материалов.

Изобретение относится к электросвязи и электротехнике, где осуществляется передача электромагнитных колебаний по электрической цепи, прямым проводом которой является металлический проводник, а обратным - металлический проводник или проводящая среда.

Изобретение относится к области измерительной техники и может быть использовано в датчиковых системах для преобразования сигналов сенсоров (ускорения, давления, радиации и т.п.) в напряжение.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в системах измерения уровня заправки ракетно-космической техники.

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике, в частности оно позволяет определять параметры четырехэлементных двухполюсников или параметры датчиков с четырехэлементной схемой замещения.

Предлагаемый способ относится к системам автоматизации контроля электрохимической защиты стальных подземных коммуникаций, в том числе магистральных трубопроводов транспортировки нефти и газа, и может использоваться при оснащении контролируемых пунктов (КП) устройствами телемеханики в системах дистанционного контроля электрохимической защиты.

Изобретение относится к измерительной технике и предназначено для имитации сигналов мостовых тензорезисторных датчиков при проведении метрологических исследований и калибровке быстродействующих измерительных систем в автоматическом режиме.

Предлагаемое изобретение относится к измерительной технике, в частности к мостовым схемам измерения. Устройство измерения отношения напряжения мостовых датчиков содержит рабочий (измерительный) мост 1, измерительная диагональ которого через последовательно соединенные усилитель 2, селектируемый пиковый детектор 3, запоминающую емкость 4, двуквадрантный генератор управляемой частоты 5 связана с диагональю питания моста 1.

Изобретение относится к контрольно-измерительной технике, автоматике и промэлектронике, в частности, оно позволяет определять параметры четырехэлементных двухполюсников или параметры датчиков с четырехэлементной схемой замещения.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах.

Изобретение относится к метрологии, в частности к средствам измерения параметров двухполюсников. Измеритель содержит генератор, четырехплечую мостовую цепь и нуль-индикатор.

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников, имеющих многоэлементную схему замещения.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в системах измерения уровня заправки ракетно-космической техники. Устройство для определения уровня диэлектрического вещества содержит основной и дублирующий датчики уровня, эталон, два идентичных измерительных канала (основной и дублирующий), три идентичных измерителя уровня. Блоки, входящие в состав устройства, и их соединение показаны на фиг.1. Техническим результатом является повышение достоверности измерения параметров датчиков уровня заправки, удаленных с помощью длинной кабельной линии связи от средства измерения, а также повышение надежности устройства, заключающееся в защите от сбойных процессов в устройствах вычислительной техники, и от отказов электронной компонентной базы в измерительном канале. Технический результат обеспечивается троированием и перевязкой определителей уровня при дублированных измерительных каналах, а также применением встроенной системы диагностики, которая выполняет анализ достоверности выполненных измерений, и, в случае если какое-либо измерение не достоверно, выводится признак недостоверности. При этом все измеренные и расчетные значения величин сохраняются в памяти функциональных блоков устройства. 4 ил.
Наверх