Способ получения диспергирующей присадки к дизельному топливу и диспергирующая присадка к дизельному топливу

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способу получения диспергирующей присадки к дизельному топливу. Проводят реакцию метатезисной сополимеризации функционализированного норборнена и циклоолефина и 1-гексена в качестве агента переноса цепи в присутствии металлокомплексного диалкильного рутениевого катализатора в одну стадию в толуоле. Реакцию проводят в течение 8-23 ч при температуре 25-70°C. Соотношение функционализированного норборнен:циклоолефин устанавливают от 1:15 до 1:1, соотношение катализатор:олефины в реакционной смеси от 1:300000 до 1:15000. Затем реакционную смесь пропускают через слой окиси алюминия, фильтрат упаривают с получением целевого продукта. Технический результат - упрощение способа за счет одностадийности синтеза диспергирующей присадки, повышение выхода целевого продукта до 95 мас.% при минимальном расходе рутениевого катализатора. 2 н. и 2 з.п. ф-лы, 1 табл., 12 пр.

 

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способу получения диспергирующей присадки к дизельному топливу метатезисной сополимеризацией олефинов и функционализированных производных дициклопентадиена (ДЦПД).

Известен диспергатор к дизельному топливу и способ его получения реакцией малеинового ангидрида и этилендиамина в метаноле. CN 104403706 A, опубл. 11.03.2015.

Недостатком данной присадки является использование в синтезе токсичных реагентов и растворителя - этилендиамина и метанола.

Известен способ получения диспергирующей добавки, заключающийся в обработке предварительно синтезированного полиизобутиленмалеинового ангидрида глицидолом и полиалкиленполиамином. US 4954572 A, опубл. 04.09.1990.

К недостаткам присадки можно отнести многостадийность синтеза, высокие температуры реакций, токсичность реагентов и сложность образующихся смесей.

Известна диспергирующая присадка к дизельному топливу, состоящая из двух частей: продукта обработки алкилмалеинового ангидрида полиалкиленполиаминами и полимера на основе эфиров акриловой кислоты и высших спиртов. US 5725610 A, опубл. 10.03.1998.

Недостатком присадки является ее многокомпонентность, высокая стоимость мономеров для полиакрилатной части, токсичность исходных полиалкиленполиаминов, а также высокая температура реакции при их реакции с алкилмалеиновым ангидридом.

Известна диспергирующая присадка, состоящая из двух частей: алкиленянтарного ангидрида, полученного из малеинового ангидрида, и полимерного углеводорода и полимера на основе амида акриловой кислоты (поликриламида). US 20060037512 A1, опубл. 23.02.2006.

Недостатком присадки является ее многокомпонентность, а также плохая растворимость полиакрилатной части присадки.

Известна двухкомпонентная диспергирующая присадка к дизельному топливу и способ ее получения. Первый компонент представляет собой имид, полученный реакцией сополимера малеинового ангидрида с 1-олефинами C20-C24 и аминопропилталлового амина.

Второй компонент получают реакцией диталлового амина с этилендиаминтетрауксусной кислотой при температуре 200°C. US 6071993 А, опубл. 06.06.2000.

К недостаткам способа можно отнести многокомпонентность присадки и высокие температуры реакции при синтезе ее компонентов.

Известна двухкомпонентная диспергирующая присадка к дизельному топливу и способ ее получения. Первый компонент получают реакцией диталлового амина с этилендиаминтетрауксусной кислотой при температуре 200°C

Второй представляет собой имид, полученный реакцией малеинового ангидрида с первичным высшим алифатическим амином.

US 6786940 B1, опубл. 07.09.2004.

К недостаткам способа можно отнести многокомпонентность присадки и высокие температуры реакции при синтезе ее компонентов.

Известен способ получения аналога этилен/винилацетатного сополимера метатезисной полимеризацией с раскрытием цикла 3-ацетоксициклооктена в присутствии рутениевого катализатора Граббса второго поколения (соотношение олефины:катализатор=4000:1) в хлороформе при температуре 60°C и 4-цис-октена в качестве агента переноса цепи. Zhang J., Matta М.Е., Martinez Н., Hillmyer М.A. Precision Vinyl Acetate/Ethylene (VAE) Copolymers by ROMP of Acetoxy-Substituted Cyclic Alkenes. Macromolecules. 2013, v. 46, p. 2535-2543.

Недостатком способа является использование неэкологичного хлорсодержащего растворителя - хлороформа, а также большой расход используемого рутениевого катализатора и высокая стоимость исходного 3-ацетоксициклооктена.

Наиболее близким к заявляемому является способ получения полимера метатезисной полимеризацией с раскрытием цикла функционализированных производных норборнена и циклооктена в присутствии рутениевого катализатора Граббса (соотношение олефины:катализатор=1000:1) в хлороформе при температуре 60°C.

.

Stumpf A.W., Saive Е., Demonceau A., Noels A.F. Ruthenium-based Catalysts for the Ring Opening Metathesis Polymerisation of Low-strain Cyclic Olefins and of Functionalised Derivatives of Norbomene and Cyclooctene. J. Chem. Soc., Chem. Commun., 1995, p. 1127-1128.

К недостаткам способа можно отнести использование неэкологичного хлорсодержащего растворителя - хлорбензола, а также большой расход используемого рутениевого катализатора и высокую стоимость исходного 3-карбоксиэтилциклооктена.

Технической задачей заявленной группы изобретений является создание диспергирующей присадки к дизельному топливу, а также разработка эффективного способа получения диспергирующей присадки метатезисной сополимеризацией олефинов из недорогих нетоксичных исходных продуктов.

Технический результат от реализации заявленного изобретения заключается в упрощении способа за счет одностадийности синтеза диспергирующей присадки, использовании недорогих, доступных и нетоксичных исходных реагентов и растворителей, повышении выхода целевых продуктов до 95 мас.% при минимальном расходе рутениевого каталазатора.

Технический результат достигается тем, что проводят реакцию метатезисной сополимеризацией функционализированного норборнена и циклоолефина и 1-гексена в качестве агента переноса цепи в присутствии металлокомплексного диалкильного рутениевого катализатора общей формулы

, где заместители R1 и R2 выбраны из группы R1=Me, R2=Et, [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N-метил-N-этиламино-метилфенилметилен)рутений - K1, R1=R2=Et, [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N,N-диэтиламино-метилфенилметилен)рутений - K2, R1=Me, R2=Bn, [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N-бензил-N-метиламино-метилфенилметилен)рутений - K3, R1+R2=CH2CH2OCH2CH2, [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-(4-морфолинил)-аминометилфенилметилен)рутений - K4, одну стадию в толуоле, при соотношении функционализированный норборненциклоолефин от 1:15 до 1:1, соотношении катализаторы:олефины в реакционной смеси от 1:300000 до 1:15000, при температуре 25-70°C в течение 8-23 ч, затем реакционную смесь пропускают через слой окиси алюминия, фильтрат упаривают с получением целевого продукта.

Целевой продукт в виде остатка представляет собой полимерную диспергирующую присадку.

Синтез проводят в соответствии с уравнением реакции

В функционализированном норборнене заместители R3 и R4 выбраны из группы: R3=Н и R4=Me, метил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=Et, этил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=H и R4=n-Pr, пропил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=i-Pr, изопропил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=n-Bu, бутил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=i-Bu, изобутил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Me и R4=Me, метил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=Et, этил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=n-Pr, пропил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=i-Pr, изопропил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=n-Bu, бутил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=i-Bu, изобутил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат.

Циклоолефин выбирают из циклооктена и циклооктадиена-1,5.

Выход полимерной диспергирующей присадки составляет до 95 мас.%.

Изобретение иллюстрируется следующими примерами.

Пример 1. Получение диспергирующей присадки к дизельному топливу ДГ-1.

К раствору 0,46 г (3 ммоль) метил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, 3,3 г (30 ммоль) циклооктена (соотношение 1:10) и 0,25 г (3 ммоль) гексена-1 в 10 мл толуола при температуре 70°C и добавляют раствор (1:100000 катализаторы:олефины) 0,2 мг (0,36×10-3 ммоль) диэтильного рутениевого металлокомплексного катализатора K1 в 0,1 мл толуола и перемешивают при температуре 70°C в течение 4 ч. Реакционную смесь отфильтровывают через тонкий слой оксида алюминия, фильтрат упаривают. Остаток - 3,8 г (выход 94 мас.%) диспергирующей присадки ДГ-1 к ДТ.

Полученный полимерный продукт используют в качестве диспергирующей присадки к дизельному топливу и вводят в базовое дизельное топливо вместе с депрессорной присадкой на основе полиальфаолефинов (0,05 мас.%) в количестве 0,05 мас.%. Базовое ДТ имеет температуру застывания минус 9°C, предельную температуру фильтруемости минус 5°C и температуру помутнения минус 4°C. Дизельное топливо с депрессорным и диспергирующим компонентами выдерживали, в соответствии с методикой ВНИИНП в течение 16 ч при температуре минус 9°C, затем определяли предельную температуру фильтруемости верхнего и нижнего слоев топлива. Полученные данные предельной температуры фильтруемости дизельного топлива с присадкой сведены в таблицу и представлены вместе с последующими экспериментами.

Пример 2. Получение диспергирующей присадки к дизельному топливу ДГ-2.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,9 мг (1,4×10-3 ммоль, 1:15000) катализатора K2, исходные олефины берут в соотношении 1:5, 0,5 г (3 ммоль) этил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 1,65 г (15 ммоль) циклооктена, реакцию проводят при температуре 25°C в течение 23 ч. Получают 2,3 г (выход 94%) диспергирующей присадки ДГ-2 к ДТ.

Пример 3. Получение диспергирующей присадки к дизельному топливу ДГ-3.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,02 мг (0,03×10-3 ммоль, 1:300000) катализатора K3, исходные олефины берут в соотношении 1:1, 0,6 г (3 ммоль) пропил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 0,3 г (3 ммоль) циклооктодиена-1,5, реакцию проводят при температуре 60°C в течение 8 ч. Получают 1,0 г (выход 85 мас.%) диспергирующей присадки ДГ-3 к ДТ.

Пример 4. Получение диспергирующей присадки к дизельному топливу ДГ-4.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,2 мг (0,3×10-3 ммоль, 1:150000) катализатора K1, исходные олефины берут в соотношении 1:15, 0,6 г (3 ммоль) изопропил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 4,9 г (45 ммоль) циклооктодиена-1,5, реакцию проводят при температуре 50°C в течение 8 ч. Получают 5,2 г (выход 90 мас.%) диспергирующей присадки ДГ-4 кДТ.

Пример 5. Получение диспергирующей присадки к дизельному топливу ДГ-5.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K2, исходные олефины берут в соотношении 1:10, 0,6 г (3 ммоль) н-бутил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 3,3 г (30 ммоль) циклооктена, реакцию проводят при температуре 40°C в течение 10 ч. Получают 3,8 г (выход 91 мас.%) диспергирующей присадки ДГ-5 к ДТ.

Пример 6. Получение диспергирующей присадки к дизельному топливу ДГ-6.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K3, исходные олефины берут в соотношении 1:10, 0,6 г (3 ммоль) изобутил бицикло[2.2.1]гепт-5-ен-2-карбоксилата и 3,3 г (30 ммоль) циклооктадиена-1,5, реакцию проводят при температуре 30°C в течение 12 ч. Получают 3,9 г (выход 93 мас.%) диспергирующей присадки ДГ-5 к ДТ.

Пример 7. Получение диспергирующей присадки к дизельному топливу ДГ-7.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,3 мг (0,4×10-3 ммоль, 1:50000) катализатора K1, исходные олефины берут в соотношении 1:5, 0,5 г (3 ммоль) метил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 1,65 г (15 ммоль) циклооктена, реакцию проводят при температуре 40°C в течение 14 ч. Получают 2,3 г (выход 95 мас. %) диспергирующей присадки ДГ-7 к ДТ.

Пример 8. Получение диспергирующей присадки к дизельному топливу ДГ-8.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K2, исходные олефины берут в соотношении 1:10, 0,54 г (3 ммоль) этил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 3,3 г (30 ммоль) циклооктена, реакцию проводят при температуре 50°C в течение 16 ч. Получают - 3,8 г (выход 92 мас.%) диспергирующей присадки ДГ-8 к ДТ.

Пример 9. Получение диспергирующей присадки к дизельному топливу ДГ-9.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,7 мг (1,0×10-3 ммоль, 1:50000) катализатора K3, исходные олефины берут в соотношении 1:15, 0,54 г (3 ммоль) н-пропил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 4,95 г (45 ммоль) циклооктадиена-1,5, реакцию проводят при температуре 60°C в течение 18 ч. Получают 5,1 г (выход 88 мас.%) диспергирующей присадки ДГ-9 к ДТ.

Пример 10. Получение диспергирующей присадки к дизельному топливу ДГ-10.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,5 мг (0,7×10-3 ммоль, 1:30000) катализатора K1, исходные олефины берут в соотношении 1:5, 0,54 г (3 ммоль) изопропил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 1,65 г (15 ммоль) циклооктадиена-1,5, реакцию проводят при температуре 70°C в течение 20 ч. Получают 2,2 г (выход 89 мас.%) диспергирующей присадки ДГ-10 к ДТ.

Пример 11. Получение диспергирующей присадки к дизельному топливу ДГ-11.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,2 мг (0,36×10-3 ммоль, 1:100000) катализатора K2, исходные олефины берут в соотношении 1:10, 0,6 г (3 ммоль) н-бутил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 3,3 г (30 ммоль) циклооктена, реакцию проводят при температуре 60°C в течение 8 ч. Получают 3,9 г (выход 95 мас.%) диспергирующей присадки ДГ-11 к ДТ.

Пример 12. Получение диспергирующей присадки к дизельному топливу ДГ-11.

Пример аналогичен примеру 1, но вместо 0,2 мг (0,35×10-3 ммоль, 1:100000) катализатора K1 добавляют 0,3 мг (0,5×10-3 ммоль 1:100000) катализатора К1, исходные олефины берут в соотношении 1:15, 0,6 г (3 ммоль) изобутил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилата и 4,95 г (45 ммоль) циклооктена, реакцию проводят при температуре 70°C в течение 8 ч. Получают 5,4 г (выход 92 мас.%) диспергирующей присадки ДГ-12 кДТ.

Введение полученной диспергирующей присадки в дизельное топливо приводит к стабильности ДТ при его холодном хранении в соответствии с методикой ВНИИНП. Разность предельной температуры фильтруемости верхнего и нижнего слоев топлива после выдерживания в течение 16 ч при температуре минус 9°C не превышала 2°C, что говорит о седиментационной устойчивости ДТ. Полученные полимерные диспергирующие присадки могут быть использованы в качестве диспергирующих компонентов депрессорно-диспергирующих присадок.

1. Способ получения диспергирующей присадки к дизельному топливу, характеризующийся тем, что проводят реакцию метатезисной сополимеризации функционализированного норборнена и циклоолефина и 1-гексена в качестве агента переноса цепи в присутствии металлокомплексного диалкильного рутениевого катализатора общей формулы

, где заместители R1 и R2 выбраны из группы R1=Me, R2=Et, [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N-метил-N-этиламино-метилфенилметилен)рутений - К1, R1=R2=Et, [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N,N-диэтиламино-метилфенилметилен)рутений - К2, R1=Me, R2=Bn, [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-N-бензил-N-метиламино-метилфенилметилен)рутений - К3, R1+R2=CH2CH2OCH2CH2, [1,3-бис-(2,4,6-триметилфенил)-2-имидазол-идинилиден]дихлоро(о-(4-морфолинил)-аминометилфенилметилен)рутений - К4, в одну стадию в толуоле, при соотношении функционализированный норборнен:циклоолефин от 1:15 до 1:1, соотношении катализатор:олефины в реакционной смеси от 1:300000 до 1:15000 при температуре 25-70°С в течение 8-23 ч, затем реакционную смесь пропускают через слой окиси алюминия, фильтрат упаривают с получением целевого продукта.

2. Способ по п. 1, отличающийся тем, что используют функционализированный норборнен общей формулы где заместители R3 и R4 выбраны из группы R3=Н и R4=Me, метил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=Et, этил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=H и R4=n-Pr, пропил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=i-Pr, изопропил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=n-Bu, бутил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=i-Bu, изобутил бицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Me и R4=Me, метил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=H и R4=Et, этил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=H и R4=n-Pr, пропил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=H и R4=i-Pr, изопропил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=n-Bu, бутил 2-метилбицикло[2.2.1]гепт-5-ен-2-карбоксилат, R3=Н и R4=i-Bu, изобутил 2-метилбицикло [2.2.1] гепт-5-ен-2-карбоксилат.

3. Способ по п. 1, отличающийся тем, что циклоолефин выбирают из циклооктена и циклооктадиена-1,5.

4. Диспергирующая присадка к дизельному топливу, характеризующаяся тем, что она получена способом по п. 1 формулы изобретения.



 

Похожие патенты:

Изобретение раскрывает топливную композицию для дизелей на основе дизельного топлива с добавлением рапсового масла, которая дополнительно содержит присадку суперантигель HG3427, при следующих соотношениях компонентов, % масс.: рапсовое масло 5,0÷45; суперантигель HG3427 3÷5; дизельное топливо до 100.

Изобретение раскрывает кислородсодержащую антидетонационную присадку к автомобильным бензинам для двигателей внутреннего сгорания с искровым зажиганием, состоящую из метилтретбутилового эфира, при этом присадка дополнительно содержит изобутиловый спирт при следующем соотношении компонентов,% масс.: изобутиловый спирт 20-80; метилтретбутиловый эфир – остальное.

Изобретение относится к неагломерирующим противотурбулентным присадкам, способу их получения и может быть использовано для снижения гидродинамического сопротивления в трубопроводе при турбулентном режиме течения углеводородов.

Изобретение относится к области нефтепереработки и нефтехимии. Описан способ получения депрессорной присадки к дизельному топливу.

Изобретение раскрывает присадку к ультрамалосернистому дизельному топливу, которая представляет собой композицию жирных кислот таллового масла и метилалкиловых эфиров С5-С6 при массовом соотношении соответственно 80-90:10-20.

Изобретение раскрывает присадку для снижения потерь бензинов от испарения при их хранении и применении, которая характеризуется тем, что в качестве поверхностно-активного вещества используют продукт конденсации борной кислоты, этаноламина и стеариновой кислоты при их мольном соотношении 1:1,5:1,5 соответственно в количестве 0,001-0,01 мас.%.

Изобретение раскрывает композиция газойля, в которой содержание серы составляет 1 м.д. по массе или менее, содержание ароматических соединений составляет 1% по массе или менее, содержание С5-С15 парафинов составляет от 40% до 70% по массе, содержание С20-С27 парафинов составляет от 7% до 16% по массе и содержание изопарафинов составляет от 50% до 75% по массе, характеризующаяся тем, что имеет в своем составе добавку, улучшающую холодную текучесть, в количестве от 150 м.д.
Изобретение раскрывает присадку к топливу, которая представляет собой трифторметан CF3H. Технический результат заключается в улучшении характеристик сгорания топлива, повышении экономии используемого газообразного углеводородного топлива, а также в придании топливу противопожарных свойств.

Изобретение описывает способ получения нефти с пониженной эффективной вязкостью и температурой застывания путем введения в высоковязкую нефть депрессорной присадки на основе полимера в растворителе, при этом в качестве полимера используют каучук бутадиеновый СКДН, в качестве растворителя каучука используют дизельное топливо или фракцию альфа-олефинов С20-С26 при следующем соотношении компонентов, мас.
Изобретение относится к способам получения антитурбулентных присадок на основе (со)полимеров высших альфа-олефинов и может быть использовано в топливных магистралях жидкостных ракетных двигателей (ЖРД).

Изобретение относится к монобензоатному пластификатору, а именно 3-фенилпропилбензоату, пригодному для использования в качестве пластификатора в дисперсиях полимеров, к полимерным адгезивным композициям, в том числе на водной и неводной основе, а также пригодных для использования в упаковочных клеях, монтажных адгезивах, в ламинатах, конвертах, упаковках для пищевых продуктов, столярном клее, строительных адгезивах, для сборки электронных изделий, содержащих указанный монобензоатный пластификатор, к смесям пластификаторов, содержащим указанный монобензоатный пластификатор, латексному клею, уплотняющей и герметизирующей композиции, содержащих указанный монобензоатный пластификатор, к способу обеспечения вязкостной характеристики, улучшения времени схватывания пленки по краям при использовании указанного монобензоатного пластификатора.

Изобретение относится к композиции для переформования компонентов, предназначенной для электронных устройств. Композиция для переформования содержит сополимер [А]-[В]-[А], где [А] представляет собой мономер жесткого блока, характеризующегося значением Tg, большим чем 30°С, а [В] представляет собой мономер мягкого блока, характеризующегося значением Tg, меньшим чем 20°С, и сополимер [А]-[В]-[А] включает более чем 35 мас.% мономера [А], смолу, придающую клейкость и от 0,05 до 5 мас.% в расчете на совокупную массу композиции УФ-поглотителя, выбираемого из группы, состоящей из бензотриазолов, триазинов и бензофенонов.

Настоящее изобретение относится к полимерам, содержащим функциональные концевые группы, и их получению. Способ включает процесс анионной полимеризации в растворе, в котором одну или несколько бис(триалкилсилил)перекисей (функционализирующие реагенты) общей формулы (II) где R1, R2, R3 могут быть одинаковыми или различными и означают алкил, циклоалкил или аралкил, которые могут содержать гетероатомы, такие как О, N, S, Si, в виде чистого вещества, раствора или суспензии добавляют к полимерам с реакционноспособными концами полимерных цепей, выбранным из группы полибутадиена, полиизопрена, сополимера бутадиена и изопрена, сополимера бутадиена и стирола, сополимера изопрена и стирола или тройного полимера бутадиена, изопрена и стирола.
Изобретение относится к синтезу полимеров и композициям продуктов. Описана легкоудаляемая композиция, которая содержит каучуковый компонент и полимерные микросферы, образованные путем суспензионной полимеризации.

Изобретение относится к области строительства, в частности к различным типам облицовки в качестве панелей. Аспектами изобретения являются композиции шовных герметиков, стеновые конструкции, способы обработки стен и продукты, связанные с любым из вышеуказанных аспектов, включая армирующую накладку, например, для защиты углов в местах стыка плит, крепежа и ленты для заклейки швов.

Группа изобретений относится к композиции и способам подавления образования накипи и отложений в мембранных системах. Композиция для подавления образования накипи в мембранных системах содержит 5-40 мас.% сополимера акриловой кислоты-2акриламидо-2-метилпропансульфоновой кислоты и 5-40 мас.% полималеиновой кислоты.

Изобретение относится к технологии материалов, преобразующих электромагнитное излучение. Способ получения прозрачных металлсодержащих полимеризуемых композиций, предназначенных для изготовления избирательно поглощающих электромагнитное излучение материалов для светотехники, опто- и микроэлектроники, осуществляют взаимодействием растворимых солей металлов или их смесей с органическими серосодержащими соединениями в мольных соотношениях, не превышающих 1:1,5, в качестве реакционной среды используют стирол и/или эфиры (мет)акриловой кислоты при мольном отношении в смеси стирола к эфирам (мет)акриловой кислоты от 0 до 1, при нагревании в интервале температур 70-90°C в течение 5-20 минут.

Настоящее изобретение касается композиции для улучшения свойств текучести в топливных композициях. Композиция для улучшения свойств текучести в топливных композициях содержит полиалкил(мет)акрилатный полимер, содержащий фрагменты мономеров формулы (II) , где R представляет собой атом водорода или метил, R2 представляет собой линейный алкильный остаток, содержащий 7-15 атомов углерода и имеющий среднечисловую молекулярную массу Мn от 1000 до 10000 г/моль и полидисперсность Mw/Mn от 1 до 8, и этилен-винилацетатный сополимер, представляющий собой привитой сополимер, содержащий этилен-винилацетатный сополимер в качестве основания, и алкил(мет)акрилат, содержащий 1-30 атомов углерода в алкильном остатке, в качестве привитого слоя.

Изобретение относится к вулканизующейся полимерной композиции, полимерному вулканизату, полученному из полимерной композиции, и способу его получения. Вулканизующаяся полимерная композиция содержит (i) гидрированный полимер, обладающий главной полимерной цепью, образованной из (ia) от 25 до 89,5 мас.%, предпочтительно от 30 до 80 мас.% и более предпочтительно от 45 до 75 мас.% в пересчете на полимер первого мономера, который вводит по меньшей мере один из вторичных атомов углерода и третичный атом углерода в главную полимерную цепь, такого как по меньшей мере один диеновый мономер, и (ib) от 10 до 74,9 мас.%, предпочтительно от 10 до 60 мас.%, более предпочтительно от 15 до 55 мас.%, особенно предпочтительно от 20 до 50 мас.% в пересчете па полимер по меньшей мере второго мономера, такого как мономер α,β-этиленненасыщенного нитрила; (ic) от 0,1 до 20 мас.%, предпочтительно от 0,5 до 20 мас.%, более предпочтительно от 1 до 15 мас.%, особенно предпочтительно от 1,5 до 10 мас.% в пересчете на полимер по меньшей мере одного мономера моноэфира α,β-этиленненасыщенной дикарбоновой кислоты, мономера α,β-этиленненасыщенной дикарбоновой кислоты, мономера ангидрида α,β-этиленненасыщенной дикарбоновой кислоты или диэфира α,β-этиленненасыщенной дикарбоновой кислоты в качестве третьего мономера, где сумма содержаний всех мономерных звеньев, указанных в (ia), (ib) и (ic), равна 100 мас.%; (ii) по меньшей мере один сшивающий реагент-полиамин и (iii) по меньшей мере один би- или полициклический амин-основание, который выбран из группы, содержащей 1,5-диазабицикло[4.3.0]-5-нонен (ДБН), 1,4-диазабицикло[2.2.2]октан (ДАБЦО), 1,5,7-триазабицикло[4.4.0]дец-5-ен (ТБД), 7-метил-1,5,7-триазабицикло[4.4.0]дец-5-ен (МТБД) и их производные.

Изобретение относится к области композиций на основе органических высокомолекулярных соединений, конкретнее, к твердому полимерному электролиту для литиевых аккумуляторов.

Изобретение относится к способу получения полимеров сопряженных диенов. Способ получения полимеров сопряженных диенов включает полимеризацию по меньшей мере одного сопряженного диена в присутствии каталитической системы, включающей по меньшей мере один бис-иминовый комплекс кобальта, имеющий общую формулу (I): где: n равен 0 или 1, Y представляет собой незамещенную двухвалентную ароматическую группу, R1 и R2 одинаковы или различны и представляют собой атом водорода или метильную группу, R3 и R4 одинаковы или различны и представляют собой атом водорода, или они выбраны из неразветвленных или разветвленных С1-С3 алкильных групп, циклоалкильных групп; необязательно замещенных неразветвленными или разветвленными С1-С4 алкильными группами арильных групп, или R2 и R4 необязательно могут быть соединены друг с другом, образуя вместе с другими атомами, к которым они присоединены, незамещенный пиридиновый цикл, или R1 и R3 необязательно могут быть соединены друг с другом, образуя вместе с другими атомами, к которым они присоединены, незамещенный пиридиновый цикл, Х1 и Х2 представляют собой атом галогена, такого как хлор, бром, йод.
Наверх