Механизм герметизации стыка стыковочного агрегата космического корабля

Изобретение относится к стыковочным устройствам космических аппаратов. Механизм герметизации стыка стыковочного агрегата космического корабля содержит стыковочный шпангоут с равномерно распределенными по периметру стыка системами замков, электроприводы, торцевое уплотнение на стыковочной поверхности шпангоута. Замки имеют корпуса с открытыми технологическими окнами в одной из боковых и в торцевых стенках и в стенках, прилегающих к стыковочному шпангоуту, в которых установлены пассивные и активные крюки. Пассивные крюки подпружинены тарельчатыми пружинами, а активные крюки установлены на коромыслах, расположенных на эксцентриковых валах со шкивами. На технологических окнах установлены пластины с отверстиями под активные и пассивные крюки и пазами под ответные активные и пассивные крюки соответственно. На коромыслах под активными крюками установлены заслонки с пазами под активные крюки. На технологических окнах установлены крышки. Пластины, заслонки и крышки выполнены из материалов с низкой теплопроводностью. Техническим результатом изобретения является обеспечение многократного использования элементов механизма герметизации стыка стыковочного агрегата. 11 ил.

 

Изобретение относится к космической технике, в частности к стыковочным устройствам космических аппаратов, и может применяться для герметизации стыков стыковочных агрегатов.

Известен механизм герметизации стыка стыковочных агрегатов (см. RU, патент 2559666, 2014), содержащий стыковочные шпангоуты с системами замков с пассивными крюками и активными крюками на эксцентриковых валах со шкивами с зубьями, электроприводы, торцевое уплотнение на шпангоуте, тяги в виде сегментов зубчатого колеса для последовательного соединения шкивов и выходного вала электропривода. Недостатком указанной конструкции является ее низкий КПД ввиду больших потерь на трение в зубчатых соединениях тяг между замками и, как следствие, необходимость в использовании мощного электропривода для вращения всех шкивов замков механизма герметизации стыка.

Известен механизм герметизации стыка стыковочных агрегатов космического комплекса "Салют"-"Союз" ("Стыковочные устройства космических аппаратов". B.C. Сыромятников, Москва, "Машиностроение", 1984 г., стр. 21-27, 78-84 - прототип), содержащий стыковочный шпангоут с равномерно распределенными по периметру стыка системами замков, электроприводы, торцевое уплотнение на стыковочной поверхности шпангоута, при этом замки имеют корпуса с открытыми технологическими окнами в одной из боковых и в торцевых стенках, а также в стенках, прилегающих к стыковочному шпангоуту, в которых установлены пассивные и активные крюки, притом пассивные крюки подпружинены тарельчатыми пружинами, а активные крюки установлены на коромыслах, расположенных на эксцентриковых валах со шкивами, связанными между собой и с электроприводами тросовой связью.

Основной недостаток такого механизма герметизации стыка заключается в том, что он не рассчитан на многократное использование в последующих полетах в составе стыковочного агрегата космического корабля многоразового использования, т.к. в нем отсутствует защита от воздействия высоких температур, возникающих при прохождении корабля через плотные слои атмосферы на этапе спуска на Землю.

Техническим результатом предлагаемого изобретения является обеспечение повторного применения элементов механизма герметизации стыка стыковочного агрегата после его возвращения из космического полета.

Технический результат достигается тем, что в механизме герметизации стыка стыковочного агрегата космического корабля, содержащем стыковочный шпангоут с равномерно распределенными по периметру стыка системами замков, электроприводы, торцевое уплотнение на стыковочной поверхности шпангоута, при этом замки имеют корпуса с открытыми технологическими окнами в одной из боковых и в торцевых стенках, а также в стенках, прилегающих к стыковочному шпангоуту, в которых установлены пассивные и активные крюки, притом пассивные крюки подпружинены тарельчатыми пружинами, а активные крюки установлены на коромыслах, расположенных на эксцентриковых валах со шкивами, связанными между собой и с электроприводами тросовой связью, в отличие от известного в нем на технологических окнах, выполненных в стенках корпусов замков, прилегающих к стыковочному шпангоуту, установлены пластины с отверстиями под активные и пассивные крюки и пазами под ответные активные и пассивные крюки соответственно, на коромыслах под активными крюками установлены заслонки с пазами под активные крюки, притом заслонки перекрывают отверстия в пластинах при открытом положении активных крюков, на технологических окнах в одной из боковых и в торцевых стенках корпусов замков установлены крышки, при этом пластины, заслонки и крышки выполнены из материалов с низкой теплопроводностью.

Установка пластин с отверстиями под активные и пассивные крюки и пазами под ответные активные и пассивные крюки соответственно на технологических окнах, выполненных в стенках корпусов замков, прилегающих к стыковочному шпангоуту, заслонок с пазами под активные крюки на коромыслах под активными крюками, перекрывающих отверстия в пластинах при открытом положении активных крюков, позволяет защитить внутреннюю полость замка, а установка крышек на технологических окнах в одной из боковых и в торцевых стенках корпусов замков - внутреннюю полость механизма герметизации стыка от попадания плазмы и перегрева при прохождении плотных слоев атмосферы при возвращении на Землю в составе стыковочного агрегата космического корабля и обеспечить многократное применение его компонентов в следующих полетах.

Сущность изобретения поясняется чертежами, на которых приведены:

на фиг. 1 - механизм герметизации стыка, вид со стороны стыковочного шпангоута;

на фиг. 2 - замок, главный вид;

на фиг. 3 - вид А с фиг. 2;

на фиг. 4 - сечение Б-Б с фиг. 3;

на фиг. 5 - вид В с фиг. 3;

на фиг. 6 - сечение Г-Г с фиг. 4;

на фиг. 7 - сечение Д-Д с фиг. 6 (активный крюк в открытом положении);

на фиг. 8 - вид Е с фиг. 7;

на фиг. 9 - сечение Д-Д с фиг. 6 (активный крюк в закрытом положении);

на фиг. 10 - сечение Д-Д с фиг. 6 (активный крюк в резервном открытом положении);

на фиг. 11 - вид Ж с фиг. 10.

Механизм герметизации стыка стыковочного агрегата космического корабля содержит стыковочный шпангоут 1 с системами замков 2 с электроприводами 3, на стыковочной поверхности 4 которого установлено торцевое уплотнение 5. Замки имеют корпуса 6 с открытыми технологическими окнами в одной из боковых 7 и в торцевых 8 стенках, а также в стенках 9, прилегающих к стыковочному шпангоуту 1. В замках установлены пассивные крюки 10 и активные крюки 11. Пассивные крюки 10 подпружинены набором тарельчатых пружин 12, активные крюки 11 установлены на коромыслах 13 и закреплены пироболтами 14, при этом коромысла 13 расположены на эксцентриковых валах 15 со шкивами 16, связанными между собой и с электроприводами 3 тросовой связью 17. На технологических окнах корпусов замков 6 в стенках 9, прилегающих к стыковочному шпангоуту 1, установлены пластины 18 с отверстиями 19 под активные крюки 11 и отверстиями 20 под пассивные крюки 10 и пазами 21 под ответные активные и пазами 22 под ответные пассивные крюки соответственно. На коромыслах 13 под активными крюками 11 установлены заслонки 23 с пазами 24 под активные крюки 11, перекрывающие отверстия 19 в пластинах 18 при открытом положении 25 активных крюков 11 и повернутые вместе с коромыслом 13 при закрытом положении 26 активных крюков 11. На технологических окнах корпусов замков 6 в одной из боковых 7 стенок установлены крышки 27, а на технологических окнах в торцевых 8 стенках - крышки 28.

Заслонка 23 должна быть выполнена с такими геометрическими размерами и формой, чтобы в открытом положении 25 активного крюка 11 размеры s1>0, s2>0, а в закрытом положении 26 активного крюка 11 в случае необходимости в резервном открытии активного крюка 11 путем подрыва пироболта 14, размеры s3>0, s4>0, при этом размеры s1, s4 не должны быть слишком большими (оптимально ограничить (s1, s4)<2 мм);

где s1 - зазор между пластиной 18 и заслонкой 23 при открытом положении 25 активного крюка 11;

s2 - перекрытие заслонки 23 и пластины 18 при открытом положении 25 активного крюка 11;

s3 - зазор между заслонкой 23 и выступающей резьбовой частью подорванного пироболта 14 активного крюка 11;

s4 - зазор между заслонкой 23 и активным крюком 11, открытым путем подрыва пироболта 14.

Т.к. активный крюк 11 переводится в открытое положение 25 путем поворота вместе с коромыслом 13 через его центр вращения, то для выполнения условия 0<s1<2 заслонку 23 необходимо установить на коромысле 13 на расстоянии от его оси вращения, при этом:

,

где - расстояние от оси вращения эксцентрикового вала 15, на котором установлено коромысло 13, до нижней плоскости пластины 18;

е - эксцентриситет эксцентрикового вала 15;

с - размер от верхней кромки заслонки 23 до точки ее крепления на коромысле 13.

Также оптимально выполнить верхнюю форму заслонки 23 закругленной с радиусом r, выбирающимся из условия:

.

Для выполнения условия s2>0, длина заслонки 23 (размер а) должна удовлетворять следующему условию:

,

где g - максимальный угол отклонения активного крюка 11 в открытом положении 25 относительно вертикальной оси.

Для выполнения условия s3>0 толщина заслонки 23 (размер b) должна удовлетворять следующему условию:

,

где m - угол отклонения активного крюка 11 относительно вертикальной оси из его закрытого положения 26 при подрыве пироболта 14;

j - размер от оси пироболта 14 до оси вращения активного крюка 11 при подрыве крепящего его на коромысле 13 пироболта 14;

k - диаметр резьбы пироболта 14;

h - размер от оси вращения активного крюка 11 при подрыве крепящего его на коромысле 13 пироболта 14 до поверхности активного крюка 11, перпендикулярной оси пироболта 14;

i - длина выступающей из активного крюка 11 части резьбы пироболта 14;

d - размер от оси вращения активного крюка 11 при подрыве крепящего его на коромысле 13 пироболта 14 до оси вращения коромысла 13.

Для выполнения условия 0<s4<2 паз 24 в заслонке 23 под активный крюк 11 необходимо выполнить с углом наклона р на расстоянии и от края заслонки 23:

,

,

где n - угол между поверхностью активного крюка 11, перпендикулярной оси пироболта 14, и поверхностью активного крюка 11, попадающей в паз 24 заслонки 23 при подрыве крепящего его на коромысле 13 пироболта 14;

- размер от оси вращения активного крюка 11 до поверхности активного крюка 11, попадающей в паз 24 заслонки 23 при подрыве крепящего его на коромысле 13 пироболта 14;

- размер от оси вращения активного крюка 11 при подрыве крепящего его на коромысле 13 пироболта 14 до поверхности коромысла 13, на которую устанавливается заслонка 23.

Работа механизма герметизации стыка стыковочного агрегата космического корабля начинается после завершения работы стыковочного механизма по сцепке, выравниванию и совмещению стыков космических аппаратов по сигналу соответствующего датчика, сигнализирующему о касании торцевого уплотнения 5 стыковочного шпангоута 1 со стыковочной плоскостью ответного шпангоута. При этом включаются электроприводы 3, вращающие с помощью тросовой связи 17 шкивы 16 систем замков 2. Активные крюки 11 входят в зацепление с ответными пассивными крюками и переходят в закрытое положение 26, обжимая торцевое уплотнение 5 стыковочного шпангоута 1 стыковочным шпангоутом ответного стыковочного агрегата. Работа замков 2 контролируется датчиками обжатия торцевого уплотнения 5 и после закрытия активных крюков 11 электроприводы 3 отключаются.

Для раскрытия стыка электроприводы 3 включаются в обратную сторону, переводя из закрытого 26 в открытое положение 25 активные крюки 11 систем замков 2. В случае нештатной ситуации предусмотрена возможность открытия активных крюков 11 путем подрыва крепящих их пироболтов 14.

При возвращении космического корабля на Землю на этапе прохождения плотных слоев атмосферы пластины 18 и заслонки 23 защищают от попадания плазмы и перегрева внутреннюю полость замков 2, а крышки 27 и 28 - внутреннюю полость механизма герметизации стыка, и обеспечивают многократное применение его компонентов в следующих полетах.

Механизм герметизации стыка стыковочного агрегата космического корабля, содержащий стыковочный шпангоут с равномерно распределенными по периметру стыка системами замков, электроприводы, торцевое уплотнение на стыковочной поверхности шпангоута, при этом замки имеют корпуса с открытыми технологическими окнами в одной из боковых и в торцевых стенках, а также в стенках, прилегающих к стыковочному шпангоуту, в которых установлены пассивные и активные крюки, притом пассивные крюки подпружинены тарельчатыми пружинами, а активные крюки установлены на коромыслах, расположенных на эксцентриковых валах со шкивами, связанными между собой и с электроприводами тросовой связью, отличающийся тем, что в нем на технологических окнах, выполненных в стенках корпусов замков, прилегающих к стыковочному шпангоуту, установлены пластины с отверстиями под активные и пассивные крюки и пазами под ответные активные и пассивные крюки соответственно, на коромыслах под активными крюками установлены заслонки с пазами под активные крюки, притом заслонки перекрывают отверстия в пластинах при открытом положении активных крюков, на технологических окнах в одной из боковых и в торцевых стенках корпусов замков установлены крышки, при этом пластины, заслонки и крышки выполнены из материалов с низкой теплопроводностью.



 

Похожие патенты:

Изобретение относится к системе захолаживания и продувки контуров криогенного ракетного топлива летательного аппарата. Объектом изобретения является устройство захолаживания оборудования (6, 7, 8) криогенных контуров летательного аппарата во время полета, содержащее средства забора воздуха снаружи летательного аппарата, средства извлечения азота из этого воздуха при помощи сепаратора азота типа OBIGGS (3) и средства (4, 5) распределения этого азота вокруг указанных компонентов.

Изобретение относится к способу электрических проверок космического аппарата (КА). Для электрической проверки производят включение и выключение КА, подключение и отключение наземных имитаторов бортовых источников электропитания, автоматизированную выдачу команд управления, допусковое телеизмерение и контроль параметров бортовой вычислительной системы, контроль сопротивления изоляции бортовых шин относительно корпуса, формирование директив автоматической программы и директив оператора в ручном режиме, формирование протокола испытаний, отображение текущего состояния процесса испытаний.

Изобретение относится к наземным электрическим проверкам космических аппаратов (КА) при их изготовлении. В процессе проверок КА (1) используют: имитаторы ИБС (2) солнечных и имитаторы ИАБ (3) аккумуляторных батарей.

Изобретение относится к космической технике и может быть использовано при создании космических аппаратов (КА) различного назначения. В способе сборки КА на оснастку в форме трубы устанавливают опорные панели в плоскостях XOY, на опорные панели устанавливают с закреплением приборные панели, монтируют опорные панели жесткости в плоскости XOZ к приборным панелям, монтируют панель астроплаты в плоскости ZOY к оснастке, приборным панелям и опорным панелям жесткости.
Изобретение относится к способу территориального размещения мобильных командно-измерительных приёмо-передающих станций (мобильных станций). Для реализации способа определяют текущее положение мобильных станций и космических аппаратов, проводящих дистанционное зондирование заданного района Земли с помощью измерительных средств, прогнозируют траектории и рассчитывают трассы полета космических аппаратов с помощью вычислительных средств, определяют геометрический центр зондируемого района и антиподную точку на поверхности Земли с учетом ее угловой скорости вращения, периодов обращения космических аппаратов и ограничений по размещению мобильных станций, определяют место размещения мобильных станций и в соответствии с ними осуществляют их перемещение.
Изобретение относится к космической технике и может быть использовано при изготовлении космических аппаратов, предназначенных для фиксации на поверхности космических объектов.

Изобретение относится к управлению ориентацией космических аппаратов (КА), осуществляемой в солнечно-земной системе координат. Способ включает ориентацию первой оси КА на Землю путем разворотов вокруг второй и третьей осей КА с помощью электромеханических исполнительных органов.

Изобретение относится к приводам для разворота оборудования относительно корпуса космического аппарата (КА). Привод для разворота оборудования на космическом носителе, не создающий реактивного момента, включает в свой состав двигатель привода, статор которого укреплен на корпусе космического носителя, а ротор связан с разворачиваемым оборудованием, систему управления двигателем и маховик-компенсатор реактивного момента.

Изобретение относится к вероятностным (т.е. без стабилизации структуры) спутниковым системам наблюдения Земли, c охватом её обширных регионов.

Группа изобретений относится к построению и управлению космическими аппаратами на орбитах ИСЗ. Система включает в себя орбитальную станцию, целевые (ЦМ) и обеспечивающие модули на компланарных орбитах.

Изобретение относится к системам отделения полезной нагрузки (ПН) от несущих конструкций при выводе на расчетную орбиту. Устройство отделения состоит из цилиндрического корпуса, силовых элементов - стержней, шарнирно установленных в цилиндрическом корпусе, устройства их фиксации, толкателя, обеспечивающего параметры отделения ПН.

Группа изобретений относится к построению и управлению космическими аппаратами на орбитах ИСЗ. Система включает в себя орбитальную станцию, целевые (ЦМ) и обеспечивающие модули на компланарных орбитах.

Изобретение относится к ракетно-космической технике. Способ проведения летно-конструкторских испытаний (ЛКИ) автономного стыковочного модуля (АСМ) для очистки орбит от крупногабаритного космического мусора основан на выборе мишени из имеющихся на орбитах для их увода на орбиты утилизации, выведении с помощью ракеты-носителя, разгонного блока (РБ) и АСМ в область орбиты очистки от объектов космического мусора (мишеней), маневрах дальнего и ближнего наведения для стыковки и захвата мишени, сведении на орбиту утилизации.

Изобретение относится к космической технике и может быть использовано для освобождения отделяемых в процессе эксплуатации и многоразовой отработки силовых крупногабаритных агрегатов, например головных обтекателей, отсеков и ступеней ракет-носителей, подвесных баков летательных аппаратов, космических аппаратов и других полезных нагрузок (ПН).

Изобретение относится к космической технике и может быть использовано для освобождения отделяемых в процессе эксплуатации и многоразовой отработки силовых крупногабаритных агрегатов, например головных обтекателей, отсеков и ступеней ракет-носителей, подвесных баков летательных аппаратов, космических аппаратов и других полезных нагрузок (ПН).

Изобретение относится к устройствам стыковки и управления относительным движением космических объектов. Устройство (1) включает в себя корпус (10) с отсеком (11) и вал (20), выполненный с возможностью вращения вокруг первой оси (А1).

Изобретение относится к бортовой автоматике изделий ракетной, ракетно-космической, авиационной, специальной техники, главным образом к агрегатам и системам стыковки и разделения частей летательных аппаратов, в частности к системам разведения детонационных команд от инициирующих устройств к исполнительным узлам, например системам разделения, а также к устройствам взрывной логики - пиротехническим временным устройствам.

Предложенное изобретение относится к области ракетной техники, а более конкретно к устройствам разъединения тяг, относящихся к разным, разделяемым между собой ступенями.

Изобретение относится к ракетно-космической технике. В способе минимизации зон отчуждения для отделяемых частей (ОЧ) ракеты-носителя (РН) на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю.

Изобретение относится к средствам фиксации и разделения элементов космического аппарата. Устройство состоит из отделяемой (ОЧ) и стационарной (СЧ) частей.

Изобретение относится к устройствам разделения отсеков летательных аппаратов (ЛА). Узел разделения отсеков ЛА включает силовые элементы отсеков, соединяющий их болт, упорный элемент в посадочном месте хвостовой части тела болта со стороны его боковой поверхности, и сдвигаемый ограничитель положения упорного элемента, сообщенный с источником газа избыточного давления. Поверхность упорного элемента, взаимодействующая с головкой болта, наклонена к оси тела болта под острым углом. Головка болта отделена от его тела, снабжена сквозным осевым отверстием под хвостовую часть тела и надвинута на нее. В головке болта со стороны ее боковой поверхности выполнено окно для установки упорного элемента, снабженное заглушкой, установленной в окне и закрепленной на головке болта. Со стороны торцевой поверхности в хвостовой части тела болта выполнено осевое отверстие и входной конус. Сдвигаемый ограничитель положения упорного элемента выполнен в виде цилиндрического тела, расположенного в осевом отверстии тела болта под посадочным местом и снабженного выходным конусом, ответным входному конусу в хвостовой части тела болта и заклиненным в нем. Техническим результатом изобретения является упрощение конструкции узла, уменьшение его габаритов. 3 з.п. ф-лы, 3 ил.
Наверх