Комбинированный инструмент для эндовазальной лазерной облитерации вен

Изобретение относится к медицинской технике. Инструмент для лечения варикозной болезни методом эндовазальной лазерной облитерации вен (ЭВЛО) содержит корпус, в котором сформирована внутренняя камера в виде пространственной фигуры торообразного вида. Внутренняя поверхность торообразной камеры представляет собой часть поверхности Каталана, образованную вращением кривой второго порядка вокруг длинной оси световода с возможностью фокусировки лазерного излучения в радиальный кольцевой поток. Камера изолирована от кровотока в вене линзообразной крышкой. Дистальный конец световода сформирован в виде многогранной усеченной пирамиды и размещен в центральной камере насадки. Инструмент обладает повышенной надежностью. 1 з.п. ф-лы, 3 ил.

 

Область техники

Область жизнедеятельности человека, к которой относится предлагаемое изобретение «Комбинированный инструмент для эндовазальной лазерной облитерации вен», - медицина, а именно сосудистая хирургия. Изобретение может быть использовано для хирургического лечения варикозной болезни вен нижних конечностей методом эндовазальной лазерной облитерации при термическом внутрисосудистом силовом воздействии излучения на сосуды или полые анатомические структуры. Изобретение может быть также рекомендовано к использованию его в проктологии, торакальной и челюстно-лицевой хирургии, артрологии, а также ветеринарной медицине.

Уровень техники

Значительный и эффективный результат предлагаемого изобретения «Комбинированный инструмент для эндовазальной лазерной облитерации вен» может быть получен при применении его для миниинвазивных лазерных технологий, в частности, таких как эндовазальная (эндовенозная) лазерная облитерация (коагуляция) (ЭВЛО, ЭВЛК) варикозных вен нижних конечностей человека.

ЭВЛО является современным методом малоинвазивной хирургии, призванным устранить патологический рефлюкс в поверхностных и перфорантных венах ног с помощью тепловой энергии лазерного излучения.

Венозная система нижних конечностей человека представляет собой разветвленную совокупность поверхностных вен, расположенную коаксиально систему глубоких вен, соединенных между собой перфорантными венами.

Система поверхностных вен включает большие и малые подкожные вены с их притоками, а система глубоких вен состоит из передних, задних большеберцовых вен, малоберцовых вен, которые, сливаясь воедино в подколенной ямке, образуют подколенную вену. В свою очередь, подколенная вена, сливаясь с малой подкожной веной, зачастую, на уровне коленного сустава формируют поверхностную бедренную вену. Последняя, продолжаясь в краниальном направлении, в верхней трети бедра принимает глубокую вену бедра, формируя, таким образом, общую бедренную вену. В общую бедренную вену, чуть ниже паховой складки впадает большая подкожная вена, после чего вены уходят в забрюшинное пространство, образуя системы подвздошной и полой вен.

Как любой гидравлический тракт, венозная система содержит в своей структуре клапаны, помогающие обеспечить однонаправленный кровоток обратно к сердцу. Венозные клапаны представляют собой, в основном, двустворчатые элементы - полулуния, вогнутый край которых свободен, а выпуклый прикреплен к стенке сосуда. Устройство клапанов свидетельствует об их пассивном функционировании в зависимости от направленности кровотока. При нормальной работе системы двустворчатые венозные клапаны закрываются под воздействием ретроградного кровотока, сводя свои свободные поверхности по направлению друг к другу, исключая рефлюкс и способствуя центростремительному продвижению венозной крови.

В системе «двустворчатый клапан - вена», как в любой длительно работающей циклической системе, могут возникать структурно-функциональные изменения, которые запускают каскад патологических процессов, приводящих к дисфункции и дисрегуляции эндотелия, повреждению венозной стенки, ее гипертрофии и ремоделированию. Являясь основными звеньями патогенеза варикозной трансформации вен, данные процессы приводят к нарушению нормального функционирования венозных клапанов с потерей способности последних плотно смыкаться под давлением обратного кровотока, развитию их относительной недостаточности и венозного рефлюкса. Венозный рефлюкс способствует развитию венозной гипертензии, прогрессированию клапанной недостаточности нижележащих вен, появлению, в начале, хронических заболеваний вен (ХЗВ), а позже и хронической венозной недостаточности (ХВН).

Варикозная болезнь нижних конечностей, как самая частая форма ХЗВ, в зависимости от клинической стадии, может проявляться расширением подкожных вен, отеком конечности, нарушением окраски ног в виде гипер- или гипопигментации голени/стопы, липодермасклерозом, наличием трофических язв.

Варикозное расширенные вены представляют собой кровеносные сосуды, подвергшиеся деформации и депланации поперечного сечения относительно оси, расширившиеся и потерявшие упругоэластичные свойства своей стенки. Застой крови внутри сосудов, спровоцированный клапанной дисфункцией, обуславливает дальнейшее увеличение геометрических размеров и искривление поперечных сечений вен. Варикозные вены обычно имеют синий или фиолетовый цвет и могут контурироваться непосредственно под кожей, приводя к характерному эстетическому недостатку. Варикозной трансформации обычно подвергаются подкожные вены ног, испытывающие высокое давление при ортостатических нагрузках, к примеру, у стоящего человека.

Механизм воздействия лазерного излучения на сосудистую стенку в совокупности факторов и их взаимовлияния недостаточно определен и ниже приводится одна из принятых рабочих гипотез.

Согласно этой гипотетической теории принцип ЭВЛО основан на термическом воздействии энергии лазерного излучения на интиму вены. Однако как установили многочисленные экспериментальные и клинические исследования, воздействие лазерного луча на стенку сосуда имеет опосредованный характер и напрямую зависит от длины волны.

Так, максимум поглощения энергии для лазера с длиной волны 980-1040 нм приходится на содержащуюся в сосуде кровь, а именно на гемоглобин эритроцитов. Под воздействием светового импульса происходит вскипание крови с последующим образованием пузырьков пара. Тепловое воздействие на стенку вены происходит благодаря ее контакту с этими пузырьками. При этом происходит прямое повреждение эндотелия и коагуляция белков в субэндотелиальных слоях.

Именно тотальная деструкция эндотелия имеет ведущее значение для качественной необратимой облитерации/абляции варикозной вены. В случае сохранения островков жизнеспособных эндотелиоцитов, именно последние могут стать источником регенерации с последующим возникновением кровотока и развитием реканализации.

Для обеспечения полной деструкции эндотелия при ЭВЛО необходимо создание достаточной плотности энергии лазерного излучения в просвете сосуда. Термическое повреждение интимы усугубляется карбонизированным торцом световода, который, разогревшись до экстремальных температур, приводит к выпариванию крови с образованием газа, состоящего из продуктов горения. Сгоревшие органические вещества в виде золы откладываются на интиме. Черный цвет интимы начинает максимально поглощать энергию лазера и разогреваться еще сильнее. Однако при более интенсивном и длительном воздействии происходит перфорация венозной стенки.

Глубокий и всесторонний анализ, проведенный ведущими специалистами-флебологами [1], [2], [3], показал, что ЭВЛО так и не стала стандартом в лечении варикозной болезни. В первую очередь из-за сохраняющегося уровня неудовлетворительных результатов, достигающего, по данным ряда авторов, 15% [1], [2]. В литературе нет публикаций, где бы указывался способ достижения 100% облитераций/абляций вен при ЭВЛО в отдаленном периоде наблюдения. Столь высокий процент реканализаций не может быть обоснован случайными факторами и является системным. Причем он не связан ни с методикой проведения ЭВЛО, ни с подбором лазерно-приборного оснащения, ни с выбором оптимальных режимов и параметров обеспечения ЭВЛО. И хотя в различных исследованиях имеется определенный разброс при выборе режимов ЭВЛО, в целом, они близки друг к другу и находятся в пределах точности экспериментов.

К примеру, линейная плотность энергии (ЛПЭ) потока лазерного излучения - один из важнейших параметров процесса, ограничен величиной не менее 80 Дж/см [3]. Исследованиями [2] ЛПЭ потока лазерного излучения (как и в предыдущем исследовании для лазеров с длиной волны 1470 нм и световодов с торцевой эмиссией излучения) получено:

- для гемоглобинпоглощающих «Н»-лазеров: диаметр вены до 9 мм, ЛПЭ 60-80 Дж/см вены;

- для водопоглощающих «W»- лазеров: диаметр вены до 10 мм, ЛПЭ 60-90 Дж/см вены.

При этом согласно тому же исследованию ЭВЛО вен диаметром более 13 мм в большинстве случаев приводит к неудовлетворительному результату по сочетанию боль/экхимоз/реканализация. Сравнение других рабочих параметров в ряде экспериментальных исследований - мощности, длины волны, скорости тракции и т.д. говорит о достаточной аутентичности применяемых методик как в России, так и за рубежом, исключая эти факторы из ситуации, определяющей причину отрицательного результата при ЭВЛО, как и фактор несовершенства лазерного оборудования.

Если при системном анализе способа воздействия известных лазерных хирургических методов считать, что два фактора: «лазерное оборудование» и «параметры реализации метода» не определяют итоговый результат как отрицательный, то за неблагополучный исход отвечает третий фактор. Это связь между двумя вышеприведенными факторами, ядро которых определяет сущность малоинвазивных способов воздействия энергии лазерного излучения на биологические структуры. Гибкая связь, подводящая лазерное излучение к операционному полю в пределах биологической структуры, носит название оптического световода, дистальный конец которого выполняет роль термического ланцета. Посредством такого исполнения гибкого волоконного световода удается обеспечить плотность мощности лазерного излучения, т.е. мощность, приходящуюся на единицу площади биологического объекта.

Гибкий оптический световод представляет собой сердечник, выполненный из сверхчистого кварца (процентное содержание в исходном сырье кварца не менее - 99,99985%). Кварцевый сердечник заключен в отражающую оболочку и чаще всего изготавливается из легированного кварца или полимера.

Дистальный конец гибкого оптического световода сформирован в виде усеченного конуса, кольца или пирамиды в зависимости от необходимой диаграммы излучения.

Используя различные приспособления на выходном (дистальном) конце рабочего волокна, можно менять пространственные характеристики выходного излучения. При использовании оптического волокна с плоским торцом, перпендикулярным оси волокна, излучение выходит вдоль волокна в виде расходящегося конусообразного луча с углом при вершине конуса, соответствующим числовой апертуре волокна (для кварцевых световодов около 25°). Естественно, что плотность мощности излучения уменьшается с удалением выходного торца волокна от объекта воздействия.

Кроме того, при дистанционном воздействии часть излучения отражается от ткани и может служить причиной нежелательного облучения хирурга, особенно его глаз.

Возможно контактное воздействие волоконным световодом на ткани, для чего дистальный конец рабочего кварцевого волокна на расстоянии примерно 5 мм очищают от защитной пластиковой оболочки и вводят в соприкосновение с тканью. Наличие физического контакта позволяет точно локализовать воздействие. Контакт с тканью исключает отражение излучения в окружающее пространство. При достаточной мощности излучения в месте контакта происходят загрязнение световода продуктами горения ткани, повышенное выделение тепла и, вызванный им, разогрев конца световода. При этом, на ткань осуществляется совместное воздействие лазерного излучения и раскаленного конца световода.

В некоторых случаях необходимо направить излучение перпендикулярно волокну. Для этого используют волоконный инструмент с боковым излучением (так называемый side-fiber), конец которого отполирован под углом, близким к 45°. Чтобы избежать повреждения торца волокна при соприкосновении с тканью, сверху на дистальный конец надевают защитный кварцевый колпачок. Чтобы можно было менять направление излучения, на волокно надевают специальный скользящий цанговый зажим, который зажимает волокно и позволяет вращать его вокруг оси [4].

В современной практике при проведении ЭВЛО используются световоды с торцевой (Bare-Tip), радиальной (Radial Fiber) и би-радиальной (Radial 2 Ring) эмиссией излучения. Как показывает опыт, световоды с торцевой эмиссией излучения не достаточно эффективны, требуют больших мощностей, чем радиальные, покрываются сажевым налетом (см. Приложение 1 к данной заявке на изобретение) и выходят из оптимального режима работы, приводя к перфорации венозной стенки.

Применение радиальных, а также би-радиальных световодов имеет свои особенности, c точки зрения теории надежности. Увеличение числа звеньев системы почти всегда уменьшает ее надежность и увеличивает число отказов. В системе световод-насадка, а тем более в бирадиальных световодах, кольцевые элементы увеличивают число сопряжений с сердцевиной светового волокна, что и приводит к частой фрагментации световолокна и, как правило, требует оперативного вмешательства [5], [6].

Но главным негативным фактором, оказывающим влияние на процесс проведения качественной облитерации/абляции, является карбонизация дистального конца световода и его элементов [1], [2], [3].

Результаты исследования [1], [2], [3] показали, что физические процессы, происходящие во время ЭВЛО, проходят в три стадии.

В начальный момент процесса ЭВЛО происходит выпаривание крови с образованием пузырьков газа. Появившаяся в процессе горения сажа откладывается на дистальном участке световода, что приводит к полной карбонизации рабочего конца.

На второй стадии начинает реализовываться непосредственное воздействие лазерного излучения на венозную стенку. Именно непосредственное воздействие излучения лазера на вену является основным фактором в реализации механизма ЭВЛО. От воздействия высокой температуры раскаленного торца световода интиму защищает эффект пленочного кипения. Если тракции световода не происходит или она производится слишком медленно, кровь полностью испаряется и эффект пленочного кипения исчезает.

Третья стадия предполагает непосредственное воздействие переразогретой рабочей части световода на венозную стенку.

Таким образом, воздействие лазерного излучения на венозный комплекс состоит из нескольких составляющих:

- прямое воздействие лазерного излучения;

- воздействие компонентами испаряющейся крови;

- воздействие переразогретой рабочей частью световода [1] и спонтанного, экспоненциального повышения температуры дистального конца световода с наращиванием на нем нагара, с возможным пережогом стенки вены и ее перфорацией.

Имеющиеся проблемы еще более усложняются наличием насадок на световодах с радиальной эмиссией и их узлов сопряжения с сердцевиной световода, являющегося проблемным элементом. Фрагментация по сопряжению ступицы насадки со световодом, излом, скалывание и обрыв световолокна, отсутствие центровки и самоустановки тела насадки в вене - вот неполный перечень несовершенств радиальных и би-радиальных кольцевых инструментов для ЭВЛО.

Кроме того, кварц является сверхчистым, оптико-прозрачным материалом. При нормальной температуре плавления 1713-1728°C кварц обладает твердостью равной 7 по шкале Мооса и плотностью равной 2,563. При высоких значениях температур его твердость снижается до 5 по шкале Мооса, а плотность становится равной 2,2.

Вследствие этого в предлагаемом изобретении предложено разделить световод. Функцию элемента, осуществляющего транспортировку лазерного излучения, сохранить за кварцевым оптическим световодом, а рабочий элемент - насадку выполнить из специального материала. Кроме того, кварц является высокоэффективным поглотителем теплового излучения. Коэффициент поглощения излучения у него лежит в пределах 15-20%.

Это предопределяет необходимость применения вместо кварца специальных материалов при изготовлении насадок, с формированием в них рабочей полости, прохождение которой не окажет существенного влияния на величину излучения.

Проведенный анализ патентов России, США, Белоруссии, Казахстана, Таджикистана, Германии по классу A61B на патентную чистоту предполагаемого изобретения позволила выбрать аналог и прототип (см. Приложение 2 к данной заявке на изобретение).

В качестве аналога для предлагаемого изобретения принят патент России № 2571322 «Устройство для облучения сосудов и полых органов» авторов Артюшенко В.Г., Даниелян Г.Л., Мазайшвили К.В., Меерович Г.А. [7].

В данном изобретении [7] предложено устройство, включающее лазер и оптоволоконный кабель, содержащий оптический разъем, световод с оптической сердцевиной, оптической рубашкой и защитной полимерной рубашкой, вытянутый диффузор с оптической сердцевиной и оптической рубашкой, включающий расположенные последовательно технологическую зону, оптическую зону и дистальный конус на конце, защитный колпачок, выполненный из оптически прозрачного инертного материала, прикрепленный своей внутренней цилиндрической поверхностью к оптической рубашке в технологической зоне диффузора, и термоусадочную защитную трубку на прилегающих друг к другу частях защитной полимерной рубашки световода и защитного колпачка диффузора, закрывающую технологическую зону диффузора. На поверхности оптической зоны диффузора выполнена спиральная канавка с шагом не меньше ее ширины и не больше 1/2 длины оптической зоны диффузора. Глубина канавки плавно увеличивается по направлению к дистальному конусу.

В указанном патенте [7], как и в предлагаемом изобретении, осуществлено дифференцирование световода от рабочего органа, представляющего собой удлиненный диффузор с нарезанной на цилиндрической части винтовой канавкой переменной глубины.

Недостатками данного патента [7] являются большая технологическая сложность изготовления удлиненного диффузора с винтовой канавкой переменной глубины и невозможностью использования собственного инструмента для глубокого проникновения в полые анатомические структуры.

Утверждение о том, что повышение надежности и долговечности инструмента определяется применением кварца и лейкосапфира, выращенного методом профилированного роста, является неправомерным.

Применение кварца и лейкосапфира при высоких уровнях мощности лазерного излучения не препятствует карбонизации, нагреву и развитию микротрещин защитных элементов инструмента. Это связано с природой кварца и структурой искусственно выращенных кристаллов лейкосапфира. Кроме того, указанное устройство громоздко и сложно в эксплуатации при облучении полых органов из-за невозможности глубокого проникновения в них.

В качестве прототипа предлагаемого изобретения принят патент России №2557888 «Устройство для эндолюминального лечения кровеносного сосуда» авторов Луковкин А.В., Тюрин Д.С., Михайличенко М.В., Калитко И.М. [8].

Технический результат патента [8] обеспечивается за счет того, что устройство для эндолюминального лечения кровеносного сосуда, содержащее гибкий волновод со светопроводной трубкой, имеющий удлиненную ось, проксимальный конец с разъемом, оптически соединяемый с источником лазерного излучения, дистальный конец, выполненный с возможностью размещения в кровеносном сосуде и содержащий по меньшей мере одну испускающую поверхность, испускающую излучение от источника излучения в сторону по отношению к удлиненной оси волновода на проходящий в угловом диапазоне участок окружающей стенки сосуда, при этом, устройство снабжено дополнительным источником лазерного излучения и датчиком приема отраженных излучений, по меньшей мере, основным рассеивателем в виде конуса с отклонением излучения, расположенным на оптическом выходе волновода между испускающей поверхностью волновода и защитным колпачком, прозрачным для лазерных излучений, и дополнительным рассеивателем для расширения зоны воздействия лазерного излучения, расположенным между защитным колпачком и основным рассеивателем, согласно изобретению дополнительно снабжено съемной стерилизуемой защитной оплеткой, выполненной из термоусаживающегося фторопласта в виде трубки со вставкой из УЗИ-контрастного материала, расположенной на волноводе поверх защитного колпачка, выполненного из сапфира.

К недостаткам данного патента [8] можно отнести неравномерность диаграммы излучения по окружности, а также использование искусственного сапфира. Изготовление защитного колпачка из искусственного сапфира не препятствует карбонизации, нагреву и развитию микротрещин защитных элементов инструмента. Это связано с технологией получения искусственного сапфира, при которой в массиве получаемого материала образуются микротрещины, число которых увеличивается при тепловом воздействии излучения и экспоненциальному нарастанию в них карбонизации.

Раскрытие изобретения

В основу изобретения поставлена задача усовершенствования инструмента для лечения варикозной болезни методом ЭВЛО путем повышения его надежности и эффективности с минимизацией неудовлетворительных результатов.

Целью данного изобретения является создание универсального комбинированного инструмента для проведения малоинвазивных лазерных операций, в том числе и ЭВЛО. Отличительным признаком предлагаемого инструмента, относительно аналога, является то, что насадка к оптическому световоду представляет собой пустотелый тор, образованный вращением кривой второго порядка вокруг длинной оси световода с возможностью фокусировки лучей в радиальный кольцевой поток перпендикулярно оси световода и вариации мощности потока энергии, герметично закрытый крышкой из того же материала, что и сама насадка, с удлиненной ступицей, посредством которой она сопряжена со световодом. В таком случае внутренняя поверхность торообразной объемной камеры представляет собой часть пространственных фигур вида: однополостной гиперболоид (см. Приложение 3 к данной заявке на изобретение), двуполостной параболоид или пустотелый тор с образованием поверхности Каталана.

Насадка выполнена из оптически прозрачного природного материала типа корунд, а сам корпус выполнен в виде цилиндра с торообразной объемной камерой, изолированной от внешней среды линзообразной кольцевой крышкой.

Световод выполнен в виде гибкого элемента, дистальный конец которого сформирован в виде многогранной усеченной пирамиды, изготовленной радиальной шлифовкой, и размещен в центральной камере насадки.

Такое решение позволяет лазерному излучению проходить пространство от дистального конца световода до зоны воздействия на биологическую ткань без значительного гашения потока энергии. Боковые поверхности насадки изолированы от окружающей среды специальным покрытием, например серебром или составом с высоким альбедо. Такая конструкция инструмента исключает непосредственный контакт дистального конца световода с кровью и веной и, как следствие, карбонизацию инструмента.

Такое техническое решение позволяет передать поток тепловой энергии лазерного излучения от граней дистального конца через пустотелую торообразную объемную камеру сквозь линзу к поверхности венозной стенки с осуществлением термического силового воздействия. При этом лазерное излучение, проходя через оптически прозрачную перегородку, спрямляется поверхностью, образованной кривой второго порядка, и преобразуется в радиально-кольцевое излучение, проходящее через верхний створ торообразной объемной камеры. В зависимости от условий проведения ЭВЛО внутренняя поверхность торообразной объемной камеры может быть выполнена по одной из кривых второго порядка - окружности, гиперболы или параболы. Для определения плотности потока излучения были проведены эксперименты на специально спроектированном и изготовленном стенде (см. Приложение 4 к данной заявке на изобретение) для испытания моделей насадок с различными торообразными объемными камерами (см. Приложение 5 к данной заявке). Насадки выполнялись в виде моделей из оптико-прозрачного высокопрочного органического стекла с использованием аффинного моделирования при коэффициенте масштабирования М 16:1 с подводом в центральную камеру насадки и измерениями плотностей потока излучения. Эксперименты показали, что наибольшая плотность потока достигается при параболической форме торообразной объемной камеры. При этом определено, что коэффициент поглощения излучения минимизируется и достигается величин 3-5% при прочих равных условиях эксперимента - величины наружного диаметра цилиндра насадки, глубины торообразной объемной камеры и сходности технологически процессов изготовления моделей.

К отличительному признаку предлагаемого инструмента относительно прототипа также относится то, что торообразная объемная камера закрыта линзообразной кольцевой крышкой, наружная поверхность которой представляет собой три сопряженные сферические поверхности разных радиусов. Это позволяет в процессе тракции световода с насадкой автоматически осуществлять самоцентрирование инструмента

Таким образом, новая совокупность общих (известных) и отличительных (новых) от прототипа существенных признаков, которыми характеризуется комбинированный инструмент для проведения ЭВЛО, является достаточной во всех случаях, на которые распространяется объем правовой защиты, так как решает поставленную задачу.

Обозначенные признаки, характеризующие изобретение, не являются обязательными, но, по мнению заявителя, являются лучшими и не исключают возможности иного конкретного эквивалентного выполнения комбинированного инструмента для проведения ЭВЛО в пределах указанной сущности изобретения.

Причинно-следственная связь отличительных (новых) признаков при их взаимодействии с известными (общими) признаками в обеспечении новых свойств объекта изобретения, обусловленных поставленной технической задачей, заключается в следующем:

- в связи с тем, что комбинированный инструмент для ЭВЛО представляет собой насадку, сопряженную со световодом, выполненную в виде цилиндра с торообразной объемной камерой, внутренняя поверхность которой образована пространственными фигурами вида: однополостной гиперболоид, двуполостной параболоид или пустотелый тор, то есть поверхностями Каталана. При этом лазерное излучение, проходя через оптически прозрачную перегородку, спрямляется в параллельный пучок, оказывающий воздействие на венозную стенку. Создаваемое при этом радиально-кольцевое равномерное излучение оказывает эффективное термическое воздействие, повышающее надежность облитерации;

- дистальный конец световода, расположенный в герметичной камере насадки, изолирован от кровотока и контакта с венозной стенкой. Это предотвращает перегрев рабочей части инструмента и его карбонизацию, возможность перфорации венозной стенки, развитие тромбозов и перифлебитов облитерируемых вен, появление экхимозов в послеоперационном периоде;

- корпус насадки и линзообразная кольцевая крышка выполняются из оптически прозрачного природного материала типа корунд. Световод изготавливается из очищенного кварца. Световод и корпус насадки сопрягаются в ступице насадки посредством оптико-прозрачного клеевого соединения на основе эпоксидных смол. При такой комбинации материалов и конструктивных особенностей уменьшается коэффициент поглощения лазерного излучения (пустотелая торообразная объемная камера), уменьшается потребляемая мощность, увеличивается теплопроводность элементов насадки и надежность всей системы;

- дистальный конец световода выполняется в виде многогранной усеченной пирамиды, произведенной радиальной шлифовкой, и размещается в центральной камере насадки.

В дальнейшем изобретение поясняется подробным описанием примера конкретного выполнения его лучшего варианта со ссылками на прилагаемые чертежи.

Перечень чертежей изобретения

На фиг. 1 изображен инструмент для лечения варикозной болезни методом ЭВЛО, общий вид, поперечный разрез. Условно на разрезе совмещены поверхности однополостного гиперболоида (левая сторона торообразной камеры) и двуполостного параболоида (правая сторона торообразной камеры).

На фиг. 2 изображен инструмент для лечения варикозной болезни методом ЭВЛО, вид сбоку.

На фиг. 3 изображен инструмент для лечения варикозной болезни методом ЭВЛО, разрез по ступице в месте сопряжения ступицы насадки со световодом посредством клеевого соединения.

Перечень обозначений и наименований элементов изобретения:

1 - световод

2 - корпус

3 - крышка

4 - оптико-прозрачный клей

Осуществления изобретения

В основу изобретения поставлена задача создания комбинированного инструмента для проведения малоинвазивных лазерных операций, в том числе и ЭВЛО.

Поставленная задача решается тем, что насадка к оптическому световоду представляет собой пустотелый тор, образованный вращением кривой второго порядка вокруг длинной оси световода с возможностью фокусировки лучей в радиальный кольцевой поток перпендикулярно оси световода и вариации мощности потока энергии, герметично закрытый крышкой из того же материала, что и сама насадка с удлиненной ступицей, посредством которой она сопряжена со световодом. В таком случае внутренняя поверхность торообразной объемной камеры должна представлять собой часть пространственных фигур вида: однополостной гиперболоид, двуполостной параболоид или пустотелый тор.

Такое техническое решение комбинированного инструмента для проведения малоинвазивных лазерных операций, в том числе и ЭВЛО, позволяет получить радиально-кольцевое равномерное излучение, оказывающее эффективное термическое воздействие на венозную ткань, повышающее надежность облитерации, гарантию отсутствия карбонизации и повышение безопасности, приводя к росту положительных результатов операций.

Кроме того, такое техническое решение позволяет лазерному излучению проходить пространство от дистального конца световода до зоны воздействия на биологическую ткань без значительного гашения потока плотности энергии излучения.

Вариация плотности потока излучения с непосредственным воздействием на венозную ткань, при необходимости, может быть осуществлена путем замены одной поверхности торообразной объемной камеры на другую поверхность. То есть поверхность, образующая пространственную фигуру гиперболоид, на поверхность, образующую параболоид и т.д.

Изобретение не ограничивается описанными и показанными на чертежах вариантами реализации, но может быть изменено, модифицировано и дополнено в рамках объема, определенного формулой изобретения.

Изобретение проверено в процессе стендовых и модельных испытаний и результаты испытаний полностью подтвердили его техническую и экономическую эффективность, а также целесообразность широкого использования.

Источники информации

1. Шевченко Ю.Л., Стойко Ю.М., Мазайшвили К.В., Максимов С.В., Цыплящук А.В., Париков М.А., Игнатьева Н.Ю., Захаркина О.Л. Выбор оптимальных параметров излучения 1470 нм для эндовенозной лазерной облитерации // Флебология. - 2013. - №4. - С. 18-24.

2. Шайдаков Е.В., Илюхин Е.А., Петухов А.В., Росуховский Д.А. Сравнение лазеров с длиной волны 970 и 1470 нм при моделировании эндовазальной лазерной облитерации вен in vitro // Флебология. - 2011. - № 4. - С. 23-30.

3. Шевченко Ю.Л., Стойко Ю.М., Мазайшвили К.В., Хлевтова Т.В. Механизм эндовенозной лазерной облитерации: новый взгляд // Флебология. - 2011. - Том 5, № 1. - С. 42-46.

4. Ландсберг Г.С. Элементарный учебник физики. Том 3. Колебания и волны. Оптика. Атомная и ядерная физика. - М., 1952 г. - 656 с.

5. Селиверстов Е.И., Балашов А.В., Лебедев И.С., Ан Е.С. Случай фрагментации световода в большой подкожной вене после эндовенозной лазерной облитерации // Флебология. - 2014. - № 4. - С. 55-57.

6. Шевченнко Ю.Л., Стойко Ю.М. / Клиническая флебология. М.: ДПК Пресс, 2016. - 256 с., ил.

7. Патент № 2571322, кл. МПК A61N 5/067, С1, «Устройство для облучения сосудов и полых органов» Андрюшенко В.Г., Даниелян Г.Л., Мазайшвили К.В., Меерович Г.А., дата подачи заявки 13.11.2014 г., дата опубликования 20.12.2015 г.

8. Патент №2557888, кл. МПК A61N 5/067, A61B 18/24, С2, «Устройство для эндолюминального лечения кровеносного сосуда» Луковкин А.В., Тюрин Д.С., Михайличенко М.В., Калитко И.М., дата подачи заявки 27.06.2014 г., дата опубликования 27.07.2015 г.

1. Инструмент для лечения варикозной болезни методом эндовазальной лазерной облитерации вен, состоящий из оптического кварцевого световода и насадки из природного материала типа корунд, отличающийся тем, что в корпусе насадки цилиндрической формы сформирована пустотелая кольцевая торообразная камера, внутренняя полость которой представляет собой часть поверхности Каталана, образованную вращением кривой второго порядка вокруг длинной оси световода с возможностью фокусировки лазерного излучения в радиальный кольцевой поток, а дистальный конец световода выполнен в виде многогранной усеченной пирамиды и установлен в герметичной камере в центральной части корпуса насадки.

2. Инструмент для лечения варикозной болезни методом эндовазальной лазерной облитерации вен по п. 1, отличающийся тем, что торообразная камера герметично изолирована от кровотока в вене линзообразной крышкой, выполненной из такого же природного материала, что и сама насадка, наружная поверхность которой представляет собой три сопряженные сферические поверхности разных радиусов, посредством которых осуществляется самоцентровка насадки в вене.



 

Похожие патенты:

Изобретение относится к медицине, а именно к офтальмологии, косметологии, челюстно-лицевой и пластической хирургии, и может быть использовано для лечения объемных поверхностно расположенных сосудистых и нейропластических образований.

Группа изобретений относится к медицине, в частности к нейрофизиологии и психофизиологии, и касается микрозабора эндогенных веществ из одной структуры и последующего выведения их в другую структуру мозга.

Изобретение относится к медицинской технике. Предлагается лазерное устройство для срезания волос, содержащее лазерный источник, оптически прозрачное выходное окно и оптические элементы.

Группа изобретений относится к медицинской технике, а именно к средствам для обработки кожи с использованием лазера. Устройство использует поляризованный свет для инициации процесса многофотонной ионизации в целевом местоположении в ткани кожи и содержит источник света, выполненный с возможностью генерации линейно поляризованного зондирующего света и линейно поляризованного света обработки, модулятор поляризации, спроектированный с возможностью управления направлением поляризации зондирующего света и направлением поляризации света обработки, поляризационно-чувствительный датчик для восприятия уровня деполяризации зондирующего света и контроллер, выполненный с возможностью приема сигнала (Sm) измерения от датчика и предоставления управляющего сигнала (Sc) модулятору поляризации и источнику света так, чтобы сканировать направление поляризации зондирующего света по заранее заданному диапазону направлений поляризации при приеме сигнала (Sm) измерения, и выбора оптимального направления поляризации (P1), для которого уровень деполяризации зондирующего света (12) является минимальным.

Группа изобретений относится к медицинской технике, а именно к средствам для обработки кожи с использованием лазера. Устройство использует поляризованный свет для инициации процесса многофотонной ионизации в целевом местоположении в ткани кожи и содержит источник света, выполненный с возможностью генерации линейно поляризованного зондирующего света и линейно поляризованного света обработки, модулятор поляризации, спроектированный с возможностью управления направлением поляризации зондирующего света и направлением поляризации света обработки, поляризационно-чувствительный датчик для восприятия уровня деполяризации зондирующего света и контроллер, выполненный с возможностью приема сигнала (Sm) измерения от датчика и предоставления управляющего сигнала (Sc) модулятору поляризации и источнику света так, чтобы сканировать направление поляризации зондирующего света по заранее заданному диапазону направлений поляризации при приеме сигнала (Sm) измерения, и выбора оптимального направления поляризации (P1), для которого уровень деполяризации зондирующего света (12) является минимальным.

Изобретение относится к медицинской технике, а именно к устройствам для обнаружения волос вблизи поверхности кожи. Устройство содержит детектор на основе света для обнаружения волос вблизи поверхности кожи.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для направленного разрушения раковых клеток. Для этого осуществляют их предварительную визуализацию путём введения в исследуемый объект комплекса, состоящего из объединенных молекул фотосенсибилизатора, флуоресцентных наночастиц, флуоресцирующих в инфракрасной области спектра, и биологических распознающих молекул.

Раскрыто устройство для резания волос, которое включает в себя генератор (2) лазерного пучка и контроллер (6) поляризации, выполненный с возможностью поляризовать лазерный пучок (10) и, по существу, выравнивать поляризацию лазерного пучка с продольной осью волоса, подлежащего срезанию.

Группа изобретений относится к медицинской технике. Заявлены устройство с режущей головкой и способ срезания волос.

Группа изобретений относится к медицине, а именно к медицинской лазерной технике и лазерной хирургии биотканей. Осуществляют рассечение биоткани лазерным излучением с использованием двух длин волн.

Группа изобретений относится к медицинской технике, а именно к средствам мониторинга контакта при проведении абляции тканей. Способ абляции содержит стадии введения зонда в тело живого субъекта, при этом зонд имеет абляционный электрод, выбора контактной силы, действующей между абляционным электродом и целевой тканью, уровня мощности и временного интервала, прогнозирования размера поврежденного участка, в соответствии с соотношением между данной контактной силой, действующей между абляционным электродом и целевой тканью, количеством энергии, передаваемой электрическим током, и временным интервалом, в течение которого электрический ток проходит по абляционному электроду, итерации стадии прогнозирования размера поврежденного участка как нелинейной функции от контактной силы, уровня мощности и временного интервала, посредством изменения контактной силы и поддержания значений уровня мощности и временного интервала на постоянном уровне, пока не будет найдена точка насыщения, в которой увеличение контактной силы не приводит к увеличению прогнозируемого размера поврежденного участка, установления, что одна из итераций стадии прогнозирования прогнозирует необходимый размер поврежденного участка, приведения абляционного электрода в контакт с целевой тканью, и абляции целевой ткани с использованием контактной силы, уровня мощности и временного интервала одной итерации.

Группа изобретений относится к медицинской технике, а именно к средствам отбора образцов биомаркеров в области нейромодуляции. Катетерная система включает элемент для нейромодуляции, содержащий один или более элементов, доставляющих энергию, при этом элемент для нейромодуляции сконструирован для модуляции нервов, находящихся на почечной артерии пациента или иным образом приближенных к ней, поддерживающую структуру, несущую элементы, доставляющие энергию, которая имеет полость, содержащую провода, подключенные с помощью электрического соединения к элементам, доставляющим энергию, и контрольный элемент внутри полости, определяющий проход, удлиненный ствол, имеющий дистальную часть, сконструированную для внутрисосудистого размещения, при котором элемент для нейромодуляции модулирует нервы, и проксимальную часть, сконструированную для экстракорпорального размещения, когда элемент для нейромодуляции модулирует нервы, окклюзионный элемент, проходящий вокруг сегмента дистальной части, порт для отбора образцов, расположенный дистально от сегментов дистальной части, полость для отбора образцов, проходящую от порта отбора образцов по направлению к проксимальной части, отверстие для надувания в окклюзионном элементе и полость для надувания, проходящую от отверстия для надувания по направлению к проксимальной части.

Изобретение относится к медицинской технике и применяется для визуализации игл при биопсии. Ультразвуковая система содержит: 3D ультразвуковой зонд для визуализации, включающий в себя двумерный матричный датчик; игольную направляющую, присоединяющуюся к зонду для визуализации с заранее заданной ориентацией относительно зонда для визуализации.

Изобретение относится к медицинской технике. Хирургический концевой эффектор содержит первый и второй элементы бранши.

Группа изобретений относится к медицинской технике, а именно к средствам для обработки кожи с использованием лазера. Устройство использует поляризованный свет для инициации процесса многофотонной ионизации в целевом местоположении в ткани кожи и содержит источник света, выполненный с возможностью генерации линейно поляризованного зондирующего света и линейно поляризованного света обработки, модулятор поляризации, спроектированный с возможностью управления направлением поляризации зондирующего света и направлением поляризации света обработки, поляризационно-чувствительный датчик для восприятия уровня деполяризации зондирующего света и контроллер, выполненный с возможностью приема сигнала (Sm) измерения от датчика и предоставления управляющего сигнала (Sc) модулятору поляризации и источнику света так, чтобы сканировать направление поляризации зондирующего света по заранее заданному диапазону направлений поляризации при приеме сигнала (Sm) измерения, и выбора оптимального направления поляризации (P1), для которого уровень деполяризации зондирующего света (12) является минимальным.

Изобретение относится к медицине, хирургии. Приводящий и отводящий сегменты кишки в области анастомоза пересекают в поперечном направлении под углом 60° к брыжеечному краю кишки.

Изобретение относится к металлургии, а именно к термомеханической обработке изделий из сплавов с памятью формы (СПФ) и наведению в них эффекта памяти формы (ЭПФ), в частности клипирующего устройства для создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах организма при проведении операций.

Изобретение относится к медицинской технике, в частности к устройствам для выполнения прицельной биопсии внутренних органов, мягких тканей, костей и различных опухолей под контролем магнитно-резонансной томографии с целью диагностики различных заболеваний.

Изобретение относится к хирургии и может быть использовано для обработки ткани слизистой оболочки тонкого кишечника пациента. Предложенная система включает удлиненную трубку, имеющую дальнюю часть.

Изобретения относятся к медицинской технике, а именно к средствам, используемым во время интракорпоральных процедур. Устройство для удаления или снижения количества частиц в замкнутом пространстве во время интракорпоральных процедур содержит корпус, первый электрод, внешний относительно корпуса и расположенный на нижней стороне корпуса, удлиненный электрически изолированный зонд, проходящий вниз от корпуса, второй электрод на свободном конце зонда и электрическую схему для генерирования между первым и вторым электродами напряжения.

Группа изобретений относится к медицинской технике, а именно к устройствам денервации. Катетер для денервации содержит корпус катетера, проходящий в одном направлении с образованием проксимального конца и дистального конца и имеющий внутреннее пространство, образованное в его продольном направлении, подвижный элемент, установленный на дистальном конце корпуса катетера с возможностью перемещения в продольном направлении корпуса катетера, управляющий элемент, имеющий дистальный конец, присоединенный к подвижному элементу для перемещения подвижного элемента, множество опорных элементов, имеющих один конец, присоединенный к конечной части корпуса катетера, и другой конец, присоединенный к подвижному элементу, при этом, когда подвижный элемент перемещается для уменьшения расстояния между конечной частью корпуса катетера и подвижным элементом, по меньшей мере отдельный участок множества опорных элементов сгибается так, что сгибающийся участок удаляется от корпуса катетера, множество электродов, установленных на сгибающемся участке множества опорных элементов для генерации тепла, питающий провод, электрически подсоединенный к множеству электродов для обеспечения пути подачи питания к множеству электродов, причем по меньшей мере один из корпуса катетера и подвижного элемента присоединен к по меньшей мере двум опорным элементам в точках, которые отстоят друг от друга на предварительно заданное расстояние в продольном направлении корпуса катетера. Согласно изобретению по меньшей мере одно из корпуса катетера и подвижного элемента имеет ступеньку, выполненную на поверхности, которая присоединена к опорному элементу или имеет наклон на поверхности, которая присоединена к опорному элементу. Устройство для денервации включает катетер для денервации. Использование изобретения обеспечивает расширение арсенала средств для денервации нервных путей посредством катетера. 2 н. и 18 з.п. ф-лы, 60 ил.
Наверх