Способ производства холоднокатаного горячеоцинкованного проката с полиуретановым покрытием

Изобретение относится к области черной металлургии. Для увеличения прочности проката с полиуретановым покрытием при испытании на изгиб с 3Т до менее 1Т способ включает горячую прокатку стальной полосы из низкоуглеродистой микролегированной стали, содержащей, мас. %: углерод не более 0,005, кремний не более 0,04, марганец 0,08-0,15, сера не более 0,010, фосфор не более 0,015, хром не более 0,04, никель не более 0,04, медь не более 0,04, алюминий не более 0,070, азот не более 0,005, титан не более 0,100, молибден не более 0,008, ниобий не более 0,005, ванадий не более 0,008, железо и неизбежные примеси - остальное, смотку в рулон, травление, холодную прокатку, обезжиривание, непрерывный отжиг, нанесение цинкового покрытия массой не более 300 г/м2, охлаждение, дрессировку, смотку в рулон и нанесение полиуретанового покрытия в линии нанесения полимерного покрытия, при этом температуру конца горячей прокатки и смотки устанавливают 840-900°C и 660-720°C соответственно, непрерывный отжиг холоднокатаной полосы ведут при температуре 700-850°C, дрессировку ведут с обжатием 0,75-1,2%, общую толщину полиуретанового покрытия наносят 40-50 мкм. Кроме того, дрессировку оцинкованной полосы производят на валках с шероховатостью Ra 2,2-2,6 мкм, а после дрессировки дополнительно проводят правку полосы. 2 з.п. ф-лы, 2 табл.

 

Изобретение относится к области черной металлургии, в частности к производству холоднокатаного горячеоцинкованного проката с полиуретановым покрытием, с массой цинкового покрытия не более 300 г/м2.

Для оценки прочности полимерного покрытия при изгибе от 0Т и более ГОСТ Р 52146-2003 предусматривает специальное испытание, основанное на изгибе образца на 180° до образования трещин. Если на поверхности покрытия отсутствуют трещины, то прочность при первом изгибе соответствует 0Т. В случае наличия трещин испытания продолжают. При отсутствии трещин прочность полимерного покрытия при втором изгибе составляет Образец изгибают до исчезновения трещин на поверхности покрытия.

В соответствии с ГОСТ Р 52146 качественный показатель прочности при изгибе на 180° отсутствие трещин и повреждений для лакокрасочного покрытия не должен превышать 3Т. Однако существует необходимость по требованию потребителей оцинкованного проката с лакокрасочным покрытием при изготовлении изделий с особо сложной формой ограничить значение этого показателя до и менее.

Причиной образования трещин полимерного покрытия при изгибе, как правило, являются трещины цинкового покрытия, на которое оно нанесено. Трещины цинкового покрытия, в свою очередь, образуются из-за высокой степени деформации внешней поверхности изгиба.

Деформация поверхностного слоя листового проката при изгибе на 180° определяется соотношением:

где ε - деформация поверхностного слоя проката;

h - толщина проката;

D - наружный диаметр при испытании проката;

Rн - наружный радиус изгиба при испытании проката.

Формула показывает, что деформация наружной поверхности изгиба зависит от его радиуса. Чем меньше радиус изгиба, тем больше степень деформации. Для показателя прочности степень деформации внешнего поверхностного слоя составляет 33%. Это относится к изгибу, выполненному точно по радиусу. Однако радиус в разных локальных точках поверхности изгиба может меняться. Это может произойти в результате образования излома стальной холоднокатаной основы образца в процессе испытания. В месте излома образуется угол с очень маленьким радиусом изгиба. В результате степень деформации, согласно формуле, возрастает в несколько раз и цинковое покрытие, которое могло выдержать деформацию в 33%, трескается.

Таким образом, положительное влияние на результаты испытаний прочности покрытия при Т-изгибе будут оказывать те параметры технологии, которые уменьшают вероятность образования излома стальной основы. К ним относятся химический состав стали, на которую нанесено защитное покрытие, режимы горячей прокатки, режим отжига в печи линии горячего цинкования и деформационная обработка оцинкованного проката.

Также положительное влияние на результат испытания прочности покрытия при Т-изгибе оказывает использование эластичного полимерного покрытия достаточной толщины.

Известен способ получения оцинкованной стальной полосы, включающий холодную прокатку полос с величиной шероховатости (Ra), равной 1,1-1,5 мкм, и плотностью пиков 80-160 на 1 см, химическую очистку поверхности полосы, предварительный нагрев, рекристаллизационный отжиг, горячее цинкование, влажную дрессировку с величиной обжатия 0,5-0,8% на валках с шероховатостью, равной 2,5-3,0 мкм, плотностью пиков, равной 150-200 на 1 см после предварительной обкатки их в дрессировочной клети без полосы с удельным усилием 100-200 Н/мм2 в течение 0,1-0,3 ч, при дрессировке и обкатке осуществляют очистку рабочей поверхности бочек валков (Патент РФ №2149717, МПК B21B 1/28, опубл. 27.05.2000 г.).

При реализации данного способа улучшается адгезия лакокрасочного покрытия, однако при испытании проката с лакокрасочным покрытием на изгиб не исключается появление изломов оцинкованной полосы, что приведет к появлению трещин и уменьшению прочности лакокрасочного покрытия.

Наиболее близким по технической сущности к предлагаемому изобретению является способ производства оцинкованной полосы для последующего нанесения полимерного покрытия массой цинкового покрытия, преимущественно не более 300 г/м2, включающий горячую прокатку стальной полосы из малоуглеродистой стали, смотку в рулон, травление, холодную прокатку, обезжиривание, непрерывный отжиг, нанесение цинкового покрытия, охлаждение, дрессировку и смотку в рулон, согласно которому температуру конца горячей прокатки и смотки устанавливают 830-900°C и 670-720°C соответственно, непрерывный отжиг холоднокатаной полосы ведут при температуре 680-820°C, дрессировку ведут с обжатием 0,4-1,2%, при этом сталь имеет следующий химический состав, мас. %: углерод 0,02-0,05, кремний не более 0,04, марганец 0,12-0,25, сера не более 0,018, фосфор не более 0,020, хром не более 0,05, никель не более 0,06, медь не более 0,08, алюминий 0,025-0,070, азот не более 0,007, железо и неизбежные примеси - остальное (Патент РФ №2529323, МПК C21D 8/04, B21B 1/24, C22C 38/00, C21D 9/48, C23C 2/00, опубл. 27.09.2014).

Недостатком данного способа является то, что при реализации данной технологии не возможно обеспечить прочность полиуретанового покрытия при изгибе менее чем 1Т.

Техническим результатом данного изобретения является увеличение прочности полиуретанового покрытия при испытании на изгиб с 3Т до менее 1Т.

Указанный технический результат достигается тем, что в способе производства холоднокатаного горячеоцинкованого проката с полиуретановым покрытием, включающем горячую прокатку стальной полосы из особонизкоуглеродистой микролегированной стали, смотку в рулон, травление, холодную прокатку, обезжиривание, непрерывный отжиг, нанесение цинкового покрытия, охлаждение, дрессировку, смотку в рулон и нанесение полиуретанового покрытия в линии нанесения полимерного покрытия, согласно изобретению температуру конца горячей прокатки и смотки устанавливают 840-900°C и 660-720°C соответственно, непрерывный отжиг холоднокатаной полосы ведут при температуре 700-850°C, дрессировку ведут с обжатием 0,75-1,2%, общую толщину полиуретанового покрытия наносят 40-50 мкм, при этом сталь имеет следующий химический состав, мас. %:

Углерод не более 0,005
Кремний не более 0,04
Марганец 0,08-0,15
Сера не более 0,010
Фосфор не более 0,015
Хром не более 0,04
Никель не более 0,04
Медь не более 0,04
Алюминий не более 0,070
Азот не более 0,005
Титан не более 0,100
Молибден не более 0,008
Ниобий не более 0,005
Ванадий не более 0,008
Железо и неизбежные примеси остальное

Кроме того, для улучшения плоскостности проката, в некоторых случаях целесообразно после дрессировки проводить правку полосы на изгиборастяжной машине.

Кроме того дрессировку горячеоцинкованной полосы производят на валках с шероховатостью Ra 2,2-2,6 мкм.

Сущность изобретения состоит в следующем. Для уменьшения вероятности образования излома стальной основы, а также для исключения площадки текучести на диаграмме растяжения образцов (в процессе определения механических свойств) выплавляют сталь типа IF без элементов внедрения, таких как углерод, азот, сера. Для связывания этих элементов производят микролегирование титаном и ниобием.

Углерод - один из упрочняющих элементов. Увеличение содержания углерода более 0,005% приводит к снижению пластичности, ухудшению штампуемости.

Кремний в стали применен как раскислитель. При увеличении кремния более 0,04% имеет место охрупчивание стали, снижается пластичность, ухудшается штампуемость.

Марганец обеспечивает получение заданного комплекса механических свойств. При содержании марганца менее 0,08% прочность стали ниже допустимой. Увеличение содержания марганца более 0,15% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Сера является примесным элементом и упрочняет ферритную матрицу за счет образования сульфидов марганца. Увеличение содержания серы более 0,010% приводит к ухудшению штампуемости.

Фосфор упрочняет сталь, повышает твердость феррита и усиливает выделение дисперсных карбидных включений. Увеличение содержания фосфора более 0,015% упрочняет сталь, ухудшает ее штампуемость.

Хром, никель, медь упрочняют ферритную матрицу. При содержании каждого из этих элементов более 0,04% снижается пластичность стали, ухудшается ее штампуемость.

Титан и ниобий применены как легирующие элементы. Микролегирование титаном и ниобием обеспечивает удаление из твердого раствора примесей внедрения (углерода, азота и серы). Минимальное содержание титана и ниобия определяется требованием достаточного удаления из твердого раствора примесей внедрения. Увеличение содержания титана более 0,100% и ниобия более 0,005% нецелесообразно вследствие чрезмерного упрочнения стали, из-за удорожания стали.

Ванадий и молибден упрочняют ферритную матрицу. При содержании ванадия более 0,008% и молибдена более 0,008% ухудшается штампуемость и увеличивается себестоимость стали.

Алюминий введен в сталь как раскислитель. Увеличение содержания алюминия более 0,07% приводит к ухудшению штампуемости.

Азот является элементом, упрочняющим сталь. Увеличение содержания азота более 0,005% приводит к снижению пластичности и способствует старению стали.

Для нанесения полиуретанового покрытия поверхность горячеоцинкованного проката должна иметь равномерно шероховатую, хорошо развитую поверхность.

Дрессировка горячеоцинкованного проката с обжатием менее 0,75% приведет к тому, что прокат будет иметь на поверхности плохо дрессированные гладкие участки. В результате дальнейшей обработки на этих участках могут образоваться тонкие трещины цинкового покрытия, которые в процессе испытания на Т-изгиб увеличиваются и приводят разрыву полиуретанового покрытия. Увеличение степени обжатия при дрессировке выше 1,2% приведет к снижению пластических свойств горячеоцинкованного проката и проката с полиуретановым покрытием. Дрессировка полос с обжатием 0,75-1,2% обеспечивает также оптимальный уровень механических свойств.

Нанесение эластичного полиуретанового покрытия толщиной 40-50 мкм позволяет скрыть трещины цинковой основы. Нанесение эластичного полиуретанового покрытия толщиной менее 40 мкм не обеспечивает достижение технического результата. Нанесение полиуретанового покрытия толщиной более 50 мкм приводит к перерасходу лакокрасочных материалов и удорожанию проката.

В ряде случаев после дрессировки проводят правку горячеоцинкованной полосы на изгиборастяжной машине с удлинением до 0,5%.

Кроме того, для обеспечения необходимой шероховатости покрытия дрессировку горячеоцинкованной полосы производят на валках с шероховатостью Ra 2,2-2,6 мкм.

Примеры реализации способа.

Полосу из стали, химический состав которой приведен в таблице 1, прокатывали на стане горячей прокатки, сматывали в рулон, травили на непрерывной травильной линии, прокатывали на стане холодной прокатки. Химическую очистку, рекристаллизационный отжиг, нанесение цинкового покрытия, дрессировку и правку проводили на агрегате непрерывного горячего цинкования. Полученный таким образом оцинкованный прокат обрабатывали на линии нанесения полимерных покрытий.

Деформационно-термические режимы обработки полосы и толщина полимерного покрытия приведены в таблице 2.

Прочность полимерного покрытия при изгибе на 180° определяли по ГОСТ 52146-2003. Результаты испытаний представлены в таблице 2.

Из таблиц 1 и 2 видно, что в случае реализации предложенного способа (составы №1-5) прочность полиуретанового покрытия при изгибе на 180° не превышает При запредельных значениях заявленных параметров (составы №6-9) прочность полимерного покрытия составляет 1Т,

Применение предложенного способа позволяет получить прокат с полиуретановым покрытием с более жесткими требованиями по прочности покрытия при изгибе на 180°.

1. Способ производства холоднокатаной горячеоцинкованной стальной полосы с полиуретановым покрытием, включающий горячую прокатку стальной полосы из низкоуглеродистой микролегированной стали, смотку в рулон, травление, холодную прокатку, обезжиривание, непрерывный отжиг, нанесение цинкового покрытия, охлаждение, дрессировку, смотку в рулон и нанесение полиуретанового покрытия в линии нанесения полимерного покрытия, отличающийся тем, что полосу получают из стали, содержащей, мас. %:

углерод не более 0,005
кремний не более 0,04
марганец 0,08-0,15
сера не более 0,010
фосфор не более 0,015
хром не более 0,04
никель не более 0,04
медь не более 0,04
алюминий не более 0,070
азот не более 0,005
титан не более 0,100
молибден не более 0,008
ниобий не более 0,005
ванадий не более 0,008
железо и
неизбежные примеси остальное,

причем температуру конца горячей прокатки и смотки стальной полосы устанавливают 840-900°С и 660-720°С соответственно, непрерывный отжиг холоднокатаной полосы осуществляют при температуре 700-850°С, а дрессировку ведут с обжатием 0,75-1,2%, при этом на оцинкованную полосу наносят полиуретановое покрытие толщиной 40-50 мкм.

2. Способ по п. 1, отличающийся тем, что дрессировку оцинкованной полосы производят на валках с шероховатостью Ra 2,2-2,6 мкм.

3. Способ по п. 1, отличающийся тем, что после дрессировки дополнительно проводят правку полосы.



 

Похожие патенты:

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием.

Изобретение относится к вариантам металлического листа с бесхроматным покрытием для наружного применения. Металлический лист с покрытием включает металлический лист и размещаемую на нем верхнюю покровную пленку, которая содержит частицы, имеющие микропоры, в качестве агента для регулирования глянца.

Изобретение относится к изготовлению покрытого погружением в расплав цинкового сплава стального листа с превосходным сопротивлением почернению. Способ включает погружение стального листа в ванну для нанесения покрытия погружением в расплав цинкового сплава для образования слоя покрытия на поверхности стального листа и приведение его в контакт с водным раствором, содержащим соединение ванадия, для охлаждения стального листа и нанесенного слоя покрытия, имеющих повышенную температуру, и для образования композитной оксидной пленки на поверхности нанесенного слоя покрытия.
Изобретение относится к области металлургии, а именно к покрытому сплавом на основе алюминия стальному материалу, используемому в различных областях в качестве коррозионностойкого материала.

Изобретение относится к области нанесения покрытий и может быть использовано для формирования интерметаллического антиэмиссионного покрытия на сеточных электродах мощных генераторных ламп.

Изобретение относится к способу выполнения металлизации керамики для перехода металл-керамика и к получению перехода металл-керамика. Способ получения металло-керамического составного элемента, имеющего переход металл-керамика, в котором керамический корпус соединен с металлической крышкой.

Изобретение относится к металлическому листу, содержащему стальную подложку с нанесенным по меньшей мере на одну из ее сторон покрытием, содержащим 0,1-20 мас.% магния, при необходимости 0,1-20 мас.% алюминия, остальное - цинк, возможные, обусловленные процессом примеси и при необходимости один или несколько дополнительных элементов, выбранных из Si, Sb, Pb, Ti, Ca, Mn, Sn, La, Ce, Cr, Ni, Zr и Bi, при этом массовое содержание каждого дополнительного элемента составляет менее 0,3%.

Изобретение относится к производству оцинкованного стального листа. Способ включает стадию образования оксидного слоя, заключающуюся в приведении оцинкованного стального листа в контакт с кислым раствором в течение 1-60 секунд, и в последующей промывке оцинкованного стального листа водой, и стадию нейтрализационной обработки, заключающуюся в приведении поверхности оксидного слоя, образованного на стадии образования оксидного слоя, в контакт с водным щелочным раствором в течение 0,5 секунд или более, в промывке поверхности оксидного слоя водой и сушке поверхности оксидного слоя, при этом водный щелочной раствор содержит 0,01 г/л или более ионов Р и 0,01 г/л или более коллоидно-дисперсных частиц.

Изобретение относится к способу покрытия металлических форм из сплавов для производства шин транспортных средств типа Al-Mg и Al-Si. В способе форму обезжиривают и протравливают в ванне с рН от 11,0 до 12,5 при температуре от 50 до 70°С в течение 1-2 мин, промывают в деминерализованной воде при температуре от 20 до 30°С, затем погружают в ванну с жидким циркониевым пассивирующим средством с рН от 4,8 до 5,2 при температуре от 25 до 30°С на 2-3 мин, затем вновь промывают в деминерализованной воде при температуре от 20 до 30°С, сушат при температуре от 110 до 115°С в течение 20-25 мин.

Изобретение относится к наружному покрытию, применяемому для элементов подземного трубопровода, изготовленных из материала на основе железа. Наружное покрытие для элемента подземного трубопровода, изготовленного из материала, на основе железа, причем упомянутое покрытие имеет первый пористый слой и второй пористый слой, расположенный на первом слое и способный закупоривать поры первого слоя.

Настоящее изобретение относится к точечному сварному соединению, сборке двух стальных листов, способу изготовления точечного сварного соединения, детали кузова автомобиля и кузову автомобиля.

Изобретение относится к области металлургии. Техническим результатом изобретения является получение прочностных характеристик стали, склонности к ВН-эффекту при отсутствии площадки текучести.

Изобретение относится к области металлургии, конкретно к технологии производства холоднокатаного проката повышенной прочности из микролегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки.

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа феррито-мартенситной стали способ включает выплавку стали, содержащей, мас.%: С 0,10-0,15, Si 0,10-0,40, Mn 1,8-2,4, Cr 0,20-0,40, Mo 0,10-0,40, Al 0,02-0,08, P не более 0,02, S не более 0,02, Fe и неизбежные примеси, горячую прокатку при температуре начала от 1050 до 1200°C и конца 800-890°C, смотку листа в рулон при 580-650°C, холодную прокатку с суммарным обжатием 45-70% на толщину 0,9-1,5 мм и термическую обработку в агрегате непрерывного действия путем нагрева до температуры отжига 730-790°C, выдержки, замедленного охлаждения до температур ниже Ar1, ускоренного охлаждения до 250-330°C и перестаривания при упомянутой температуре.

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа феррито-мартенситной стали способ включает выплавку стали, содержащей, мас.%: С 0,09-0,14; Si 0,05-0,40; Mn 1,7-2,3; Cr 0,20-0,40; Mo 0,10-0,40; Al 0,02-0,08; Nb 0,01-0,04; P не более 0,02; S не более 0,02; Fe и неизбежные примеси, горячую прокатку при температуре начала от 1075 до 1250°C и заканчивают при 800-890°C, смотку листа в рулон при температуре не ниже 600°C, холодную прокатку с суммарным обжатием 45-70% на толщину 0,9-1,5 мм и термическую обработку в агрегате непрерывного действия путем нагрева до температуры отжига 720-780°C, выдержки, замедленного охлаждения до температур ниже Ar1, ускоренного охлаждения до 270-400°C и перестаривания при упомянутой температуре.

Изобретение относится к области металлургии. Для обеспечения механической прочности более или равной 600 МПа и удлинения при разрыве более или равного 20% изготавливают катаный стальной лист, химический состав которого содержит, мас.%: 0,10≤C≤0,30, 6,0≤Mn≤15,0, 6,0≤Al≤15,0, и, необязательно, один или несколько элементов, выбранных из числа следующих: Si≤2,0, Ti≤0,2, V≤0,6 и Nb≤0,3, железо и неизбежные при переработке примеси – остальное, при выполнении условия: отношение массы марганца к массе алюминия .

Изобретение относится к области металлургии. Для повышения пластических характеристик проката выплавляют сталь, содержащую, мас.%: C 0,005 или менее, Si 0,02 или менее, Mn 0,20 или менее, S 0,012 или менее, P 0,012 или менее, Al 0,06 или менее, N 0,006 или менее, Ti 0,04-0,080, при этом соотношение содержания элементов определяется по формуле Fe и неизбежные примеси - остальное, которую разливают в сляб.

Изобретение относится к области металлургии, а именно к получению листовой сварной заготовке для горячей штамповки. Заготовка включает в себя сварную часть, сформированную путем сварки встык первого покрытого металлическим алюминием стального листа и второго покрытого металлическим алюминием стального листа.

Изобретение относится к области металлургии. Для обеспечения стойкости листа к замедленному разрушению, повышения его предела прочности, адгезии гальванического покрытия, удлинения и раздаваемости отверстий стальной лист на своей поверхности имеет слой гальванического покрытия и выполнен из стали, содержащей, в мас.%: C 0,05-0,40, Si 0,5-3,0 и Mn 1,5-3,0, Р в пределах 0,04 или менее, S в пределах 0,01 или менее, N в пределах 0,01 или менее, Al в пределах 2,0 или менее, O в пределах 0,01 или менее, Fe и неизбежные примеси, микроструктура стального листа содержит феррит, бейнит, по объемной доле, 30% или больше отпущенного мартенсита и 8% или больше аустенита, при этом предел прочности стального листа составляет 980 МПа или больше, при этом слой гальванического покрытия имеет оксид, содержащий, по меньшей мере, один химический элемент, выбранный из Si, Mn и Al, а в сечении в направлении по толщине листа, включая стальной лист и слой гальванического покрытия доля площади проекции оксида составляет 10% или больше.

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката с минимальным пределом текучести 350 МПа из низколегированной стали, предназначенного для изготовления металлоконструкций.
Изобретение относится к скользящему элементу, в частности к поршневому кольцу. Скользящий элемент имеет по меньшей мере одну поверхность скольжения с покрытием, которое по направлению изнутри наружу имеет по меньшей мере один первый адгезионный слой, твердый безводородный DLC-слой, второй адгезионный слой, мягкий водородсодержащий, содержащий по меньшей мере один металл и/или по меньшей мере один карбид металла DLC-слой, который является более мягким, чем твердый безводородный DLC-слой, а также твердый водородсодержащий DLC-слой, который является более твердым, чем мягкий водородсодержащий, содержащий по меньшей мере один металл и/или по меньшей мере один карбид металла DLC-слой. Обеспечивается создание скользящего элемента с оптимальными механическими и трибологическими свойствами. 10 з.п. ф-лы.
Наверх