Способ упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой

Изобретение относится к способу упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой турбины из титановых сплавов. Осуществляют предварительную обработку поверхности детали электролитно-плазменным полированием. Электролитно-плазменное полирование проводят при напряжении 260-280 В в 5-7% водном растворе фторида аммония при температуре 65-75°C. Затем осуществляют ионно-имплантационную обработку ионами азота при энергии от 15 до 18 кэВ, дозой от 1,6⋅1017 см-2 до 2⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1. В результате достигают повышение выносливости и циклической долговечности деталей. 2 з.п. ф-лы.

 

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой турбины из титановых сплавов для повышения выносливости и циклической долговечности деталей.

В настоящее время большое внимание привлекают материалы с ультрамелкозернистой (УМЗ) структурой. Эти материалы обладают рядом уникальных свойств, имеющих практический интерес. Металлы с УМЗ структурой обладают повышенной прочностью, пластичностью, что делает их перспективными для промышленного использования. Однако детали, изготовленные из материалов с УМЗ структурой, в частности из титановых сплавов, для повышения их эксплуатационных характеристик также требуют поверхностной защитно-упрочняющей обработки.

Известен способ газового азотирования титановых сплавов, приводящий к получению на поверхности нитридов титана высокой твердости и износостойкости. Процесс проводят в основном при 700-900°C в аммиачной среде. Повышенные температуры процесса приводят к росту зерна в изделии, диффузии водорода и уменьшению характеристик пластичности и вязкости. Тонкие изделия, например лопасти центробежных насосов, получают значительные коробления (Химико-термическая обработка металлов и сплавов. Справочник под редакцией Ляховича Л.С. - М.: Металлургия, 1981, 424 с.).

Известен способ упрочнения деталей из титановых сплавов (патент US №5443663. МПК C23C 8/36. «Plasma nitrided titanium and titanium alloy products». Опубл. 1995), включающий ионное азотирование в плазме тлеющего разряда при температуре 480°C. Однако данный способ не может быть использован для упрочнения титановых сплавов с ульрамелкозернистой структурой, поскольку приводит к искажению структуры материала поверхностного слоя и ухудшению его эксплуатационных свойств.

Известен способ упрочнения поверхности титановых сплавов (патент RU №2117073. МПК C23C 14/48. Способ модификации поверхности титановых сплавов. Опубл. 1997), включающий имплантацию ионов азота и последующий стабилизирующий отжиг.

Известен также способ упрочнения поверхностей деталей из титановых сплавов включающий азотирование с последующим отжигом (патент RU №2558320. МПК C23C 8/36. Способ упрочнения поверхности титановых сплавов в вакууме. Бюл. №21. Опубл. 2015). Азотирование деталей проводят в вакуумной камере в газовой смеси азота и аргона при температуре 650-700°C путем вакуумного нагрева в плазме.

Недостатками известных способов является необходимость нагрева поверхностного слоя детали, при которой происходит нарушение структуры материала детали и потеря ее эксплуатационных свойств.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ упрочняющей обработки деталей из титановых сплавов, включающий предварительную подготовку поверхности детали и последующую ее ионно-имплантационную обработку ионами азота (патент РФ №2116378. МПК C23C 14/48. Способ модификации поверхностных слоев деталей из сплавов на основе титана. Опубл. 1998 г.). При этом предварительную обработку осуществляют методом ионной очистки ионами инертных газов аргона или ксенона с энергией 250-350 кВ, плотностью ионного тока 3-10 мА/см2, в течение времени более 3000 с, ионную имплантацию азотом проводят с энергией 30-50 мкА/см2, в течение 500-2500 с, а отжиг проводят при температуре 450-550°C и давлении остаточных газов 10-3-5⋅10-3 Па в течение 2-2,5 ч.

Недостатком прототипа является невозможность его применения для упрочняющей обработки деталей из титановых сплавов с УМЗ структурой из-за снижения эксплуатационных свойств материала.

Задачей настоящего изобретения является создание такого поверхностного слоя материала детали, который позволил бы обеспечить повышенные эксплуатационные характеристики деталей из титановых сплавов с УМЗ структурой.

Техническим результатом заявляемого способа является повышение эксплуатационных характеристик (предела выносливости, циклической долговечности) деталей из титановых сплавов с УМЗ структурой за счет упрочняющей ионно-имплантационной обработки поверхности деталей. Технический результат достигается тем, что в способе упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой, включающем предварительную подготовку поверхности детали и последующую ее ионно-имплантационную обработку ионами азота, в отличие от прототипа предварительную подготовку поверхности детали осуществляют электролитно-плазменным полированием в 5-7% водном растворе фторида аммония при температуре 65-75°C при напряжении 260-280 В, а ионно-имплантационную обработку проводят при энергии от 15 до 18 кэВ, дозой от 1,6⋅1017 см-2 до 2⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1.

Кроме того, в предлагаемом способе электролит дополнительно может содержать регуляторы кислотности для достижения pH раствора в диапазоне 4,5…6,5 pH, а в качестве регуляторов кислотности могут использоваться либо гидроксиламин солянокислый, либо гидроксиламин сернокислый, а в качестве деталей из титановых сплавов используют лопатки компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

Для оценки эксплуатационных свойств деталей, обработанных по предлагаемому способу, были проведены следующие испытания. Образцы из титанового сплава ВТ-6 с УМЗ структурой были подвергнуты ионно-имплантационной обработке как по способу-прототипу (патент РФ №2116378. МПК C23C 14/48. 1998 г.) согласно приведенным в способе-прототипе условиям и режимам обработки, так и по предлагаемому способу.

Режимы обработки образцов по предлагаемому способу.

Электролитно-плазменное полирование (ЭПП). Напряжение: 250 В - неудовлетворительный результат (Н.Р.); 260 В - удовлетворительный результат (У.Р.); 280 В - (У.Р.); 290 В - (Н.Р.). Электролит - водный раствор фторида аммония, концентрацией: 4% - (Н.Р.); 5% - (У.Р.); 6% - (У.Р.); 7% - (У.Р.); 8% - (Н.Р.). Электролит с дополнительным содержанием регуляторов кислотности для достижения pH раствора в диапазоне 4,5…6,5 pH: гидроксиламин солянокислый - (У.Р.); гидроксиламин сернокислый - (У.Р.);

Температура процесса ЭПП: 58°C - (Н.Р.); 65°C - (У.Р.); 70°C - (У.Р.); 75°C - (У.Р.); 82°C - (Н.Р.).

Ионно-имплантационная обработка (ИИО) ионами азота. Величина энергии: 13 кэВ - (Н.Р.); 15 кэВ - (У.Р.); 16 кэВ - (У.Р.); 17 кэВ - (У.Р.); 18 кэВ - (У.Р.); 20 кэВ - (Н.Р.). Доза: 1,4⋅1017 см-2 - (Н.Р.); 1,6⋅1017 см-2 - (У.Р.); 1,8⋅1017 см-2 - (У.Р.); 2,0⋅1017 см-2 - (У.Р.); 2,2⋅1017 см-2 - (Н.Р.). Скорость набора дозы: 0,5⋅1015 с-1 - (Н.Р.); 0,7⋅1015 с-1 - (У.Р.); 0,9⋅1015 с-1 - (У.Р.); 1,0⋅1015 с-1 - (У.Р.); 1,16⋅1015 с-1 - (Н.Р.).

В качестве деталей из титанового сплава ВТ-6 с УМЗ структурой использовались экспериментальные образцы лопаток компрессора газотурбинного двигателя, лопатки газотурбинной установки и лопатки паровой турбины.

Неудовлетворительным результатом считался режим обработки, приводящий к снижению выносливости и циклической прочности образцов титанового сплава с УМЗ структурой в результате ионно-имплантационного воздействия на поверхность образца. удовлетворительным результатом принимался результат, обеспечивающий повышение выносливости и циклической прочности образцов из титанового сплава с УМЗ структурой не менее чем на 3-8%.

Обработка по способу-прототипу (патент РФ №2116378) - (Н.Р.).

Были проведены испытания на выносливость и циклическую прочность образцов из титанового сплава ВТ-6 с УМЗ структурой на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (σ-1) образцов в исходном состоянии составляет 520-550 МПа, у образцов, упрочненных по способу-прототипу - 500-530 МПа, а по предлагаемому способу - 560-590 МПа.

Таким образом, проведенные сравнительные испытания показали, что применение в способе упрочняющей обработки деталей из титановых сплавов с ультрамелкозернистой структурой следующих приемов: предварительная подготовка поверхности детали и последующая ее ионно-имплантационная обработка ионами азота; использование в качестве предварительной обработки поверхности детали электролитно-плазменное полирования; использование в качестве упрочняющей обработки поверхности детали ионно-имплантационной обработки ионами азота; проведение электролитно-плазменного полирования при напряжении 260-280 В в 5-7% водном растворе фторида аммония при температуре 65-75°C, а также использование следующих дополнительных приемов: проведение ионно-имплантационной обработки деталей при энергии от 15 до 18 кэВ, дозой от 1,6⋅1017 см-2 до 2⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1; использование в качестве деталей из титановых сплавов либо лопаток компрессора газотурбинного двигателя или газотурбинной установки, либо лопаток паровой турбины позволяет повысить эксплуатационные характеристики (предел выносливости, циклическую долговечность) деталей из титановых сплавов с ультрамелкозернистой структурой, что подтверждает заявленный технический результат предлагаемого изобретения.

1. Способ упрочняющей обработки детали из титанового сплава с ультрамелкозернистой структурой, включающий предварительную подготовку поверхности детали и последующую ее ионно-имплантационную обработку ионами азота, отличающийся тем, что предварительную подготовку поверхности детали осуществляют электролитно-плазменным полированием в 5-7% водном растворе фторида аммония при температуре 65-75°С при напряжении 260-280 В, при этом ионно-имплантационную обработку выполняют при энергии от 15 до 18 кэВ, дозой от 1,6⋅1017 см-2 до 2⋅1017 см-2 и со скоростью набора дозы от 0,7⋅1015 c-1 до 1⋅1015 с-1.

2. Способ по п. 1, отличающийся тем, что используют электролит, дополнительно содержащий регуляторы кислотности для достижения рН раствора в диапазоне 4,5…6,5 рН, а в качестве регуляторов кислотности используют гидроксиламин солянокислый или гидроксиламин сернокислый.

3. Способ по п. 1 или 2, отличающийся тем, что осуществляют обработку лопатки компрессора газотурбинного двигателя, или газотурбинной установки, или паровой турбины.



 

Похожие патенты:
Изобретение относится к области металлургии и может быть использовано для оптимизации технологического процесса сверхпластической деформации ответственных силовых деталей: лопасти компрессоров ГТД, валы, роторы и т.д.

Изобретение относится к области технической физики и может быть использовано для формирования покрытий путем импульсно-периодического плазменного осаждения, а также для изменения механических, химических, электрофизических свойств приповерхностных слоев материалов.
Изобретение относится к ионной химико-термической обработке и может быть использовано в машиностроении, двигателестроении, металлургии и изготовлении инструментов.

Изобретение относится к способу ионной имплантации поверхностей детали из конструкционной стали и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов.
Изобретение относится к металлургии, а именно к способам химико-термической обработки деталей из легированных инструментальных сталей, и может быть использовано в машиностроении для поверхностного упрочнения режущего инструмента.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе никеля, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе кобальта, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения.

Изобретение относится к ионно-лучевой вакуумной технологии получения материалов со специальными свойствами, в частности к способу поверхностной обработки углеродистой стали, и может быть использовано для изготовления деталей машин и механизмов, работающих в сложных условиях.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, хрома и ниобия при их соотношении, мас.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, циркония и ниобия при их соотношении, мас.%: титан 57,25, алюминий 9,43, кремний 0,86, цирконий 23,34, ниобий 9,12.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, ниобия, алюминия, кремния и молибдена при их соотношении, мас.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, ниобия и железа при их соотношении, мас.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида титана, алюминия, кремния, ниобия и молибдена при их соотношении, мас.
Изобретение относится к области металлургии и может быть использовано для оптимизации технологического процесса сверхпластической деформации ответственных силовых деталей: лопасти компрессоров ГТД, валы, роторы и т.д.

Изобретение относится к способe получения износостойкого многослойного покрытия для режущего инструмента и может быть использовано в металлообработке. Наносят ионно-плазменное многослойное покрытие.

Изобретение относится к способу обработки нитей из карбида кремния, применяемых для армирования композиционных материалов. Способ включает стадию химической обработки нитей водным раствором кислоты, содержащим фтористоводородную кислоту и азотную кислоту, при температуре 10-30°С для удаления диоксида кремния, который присутствует на поверхности нитей, и для образования слоя микропористого углерода.

Изобретение относится к области модифицирования металлогидридных материалов, в частности к способу напыления титанового покрытия на частицы из гидрида титана , и может быть использовано для изготовления радиационно-защитных материалов биологической защиты в ядерной индустрии.
Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава и может быть использовано для гравюр штампов, применяемых для горячей объемной изотермической штамповки металлических деталей.
Наверх