Многоступенчатый плазмотрон



Многоступенчатый плазмотрон
Многоступенчатый плазмотрон
Многоступенчатый плазмотрон
H05H1/30 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2650197:

Общество с ограниченной ответственностью "ТВИНН" (RU)

Изобретение относится к генераторам плазмы, а именно к плазменным реакторам с увеличенными объемом плазмы и величиной вводимой в плазму электрической энергии, и может быть использовано в металлургии для прямого восстановления металлов, в материаловедении для синтеза порошков, в плазмохимии для реализации высокотемпературных химических реакций, в экологии для переработки производственных отходов, а также других областях техники. Технический результат - повышение мощности гибридного плазмотрона при сохранении преимуществ комбинированного разряда. Многоступенчатый плазмотрон включает в качестве первой ступени разрядную камеру с центральным электродом, СВЧ генератор и средства ввода реакционных газов и исходного материала в разрядную камеру, источник постоянного напряжения, отрицательный полюс которого подсоединен к центральному электроду, а положительный - к стенкам камеры, магнитную систему с внешним соленоидом, трубу, установленную у выходного отверстия разрядной камеры, а в качестве последующих ступеней - пары электродов, размещенных в трубе между ее стенкой и осью трубы и разнесенных по ее длине и азимуту, при этом каждая пара электродов подсоединена к источнику тока. 7 з.п. ф-лы, 2 ил.

 

Изобретение относится к генераторам плазмы, а именно к плазменным реакторам с увеличенными объемом плазмы и величиной вводимой в плазму электрической энергии, и может быть использовано в металлургии для прямого восстановления металлов, в материаловедении для синтеза порошков, в плазмохимии для реализации высокотемпературных химических реакций, в экологии для переработки производственных отходов, а также других областях техники.

Существующие плазменные реакторы по своей сути и конструктивно представляют собой плазмотроны: дуговые плазмотроны, ВЧ-плазмотроны и СВЧ-плазмотроны /Райзер Ю.П. Физика газового разряда. - М.: Наука, 1987. - 592 с./.

Недостатком дуговых плазмотронов является резкая пространственная неоднородность параметров плазмы, а недостатками ВЧ и СВЧ плазмотронов - ограниченная величина вводимой в плазму электрической энергии, лимитируемая мощностью используемых ВЧ и СВЧ генераторов (<100 кВт).

Вышеуказанные недостатки преодолены плазмой комбинированного разряда, зажигаемого в газе при одновременном приложении к нему постоянного и переменного электрических полей /Патент РФ №2361376/. Плазма комбинированного разряда объемна и однородна, а вводимая в ней электрическая энергия не ограничена мощностью ВЧ и СВЧ генераторов.

Комбинированный разряд реализован в гибридном плазмотроне, использующем электрическую энергию источника постоянного тока и СВЧ генератора /Lysov G., Leontiev I., Yashnov Yu. Combined MW-DC gas discharge, XXXI ICPIG, Granada, 14-19 July 2013/.

Известна конструкция двухступенчатого плазмотрона, в котором первая ступень представляет собой СВЧ разрядную камеру, а вторая - дуговой плазмотрон, при этом сформированный в СВЧ разрядной камере плазменный факел поступает внутрь дугового плазмотрона через его кольцевой катод /ЕВРОПАТЕНТ № GB2484209/.

Недостатком предложенного технического решения является то, что переменное (СВЧ) и постоянное электрические поля разнесены в пространстве, вследствие чего СВЧ поле из первой ступени не проникает в область кольцевого катода второй ступени, что ухудшает однородность эмиссии с его поверхности, снижая ресурс катода /Lysov G., Leontiev I., Yashnov Yu. Combined MW-DC gas discharge, XXXI ICPIG, Granada, 14-19 July 2013/.

Наиболее близким по технической сущности и достигаемому результату является одноступенчатый гибридный плазмотрон в виде СВЧ плазмохимического реактора, включающего осесимметричную металлическую разрядную камеру с верхним и нижним торцевыми днищами, расположенный по оси камеры центральный электрод, проходящий сквозь верхнее днище и отделенный от него диэлектрической вставкой, СВЧ генератор и средства подвода СВЧ энергии в разрядную камеру, средств ввода реакционных газов и исходного материала в разрядную камеру, магнитную систему с соосным с камерой внешним соленоидом, трубу, установленную по оси у выходного отверстия нижнего днища, источник постоянного напряжения, отрицательный полюс которого подсоединен к центральному электроду, а положительный - к стенкам трубы /Патент РФ №2270536/.

Недостатками данного технического решения являются ограниченные протяженность плазмы, необходимая для эффективной переработки исходных продуктов, и величина вводимого в плазму комбинированного разряда электрической энергии из-за существования оптимального соотношения между СВЧ энергией и энергией постоянного тока 1:4 /www.twinn-plasma.com/, а мощность современных СВЧ генераторов, как было сказано выше, не превосходит сотни киловатт.

Задачей изобретения является устранение вышеуказанных недостатков при сохранении преимуществ комбинированного разряда.

Техническим результатом предложенного технического решения является повышение мощности гибридного плазмотрона.

Указанная задача решается, а технический эффект достигается за счет того, что в гибридном плазмотроне, включающем осесимметричную металлическую разрядную камеру с верхним и нижним торцевыми днищами, расположенный по оси камеры центральный электрод, проходящий сквозь верхнее днище и отделенный от него диэлектрической вставкой, СВЧ генератор и средства подвода СВЧ энергии в разрядную камеру, средств ввода реакционных газов и исходного материала в разрядную камеру, источник постоянного напряжения, отрицательный полюс которого подсоединен к центральному электроду, а положительный - к стенкам камеры, магнитную систему с соосным с камерой внешним соленоидом, трубу, установленную по оси у выходного отверстия нижнего днища, внутрь трубы между ее стенками и осью введены, по крайней мере, одна пара электродов, разнесенных вдоль оси и размещенных по азимуту так, что у их поверхностей, обращенных к оси, есть нормали, ориентированные преимущественно навстречу друг другу, и один источник тока, полюса которого подсоединены к электродам.

Электроды выполнены кольцевыми.

Источник тока пары кольцевых электродов является источником постоянного тока и в магнитную систему для каждой пары кольцевых катода и анода введен соосно с трубой внешний соленоид.

По крайней мере, часть нижнего днища разрядной камеры выполнена в виде катода по отношению к ближайшему кольцевому аноду.

Центральный электрод выполнен в виде полого цилиндра, к которому подсоединены средства ввода реакционных газов и/или исходного материала.

Часть электродов имеет принудительное охлаждение.

Труба имеет, по крайней мере, один ввод для реакционных газов и/или исходных продуктов.

У дальней от выходного отверстия днища пары электродов внутренний диаметр одного из них много меньше его внешнего диаметра, который меньше внутреннего диаметра другого электрода.

На фиг. 1 - схематично показан в разрезе двухступенчатый плазмотрон, одна из ступеней которого выполнена в виде гибридного плазмотрона.

На фиг. 2 - показана одна из ступеней с кольцевыми электродами многоступенчатого плазмотрона, подключенными к источнику постоянного тока.

Первая ступень двухступенчатого плазмотрона представляет собой осесимметричную разрядную камеру 1 преимущественно цилиндрической формы с металлическими стенками 2, верхним 3 и нижним 4 торцевыми днищами. Внутри камеры по ее оси размещен центральный электрод 5, проходящий через верхнее днище 3 и отделенный от него диэлектрической вставкой 6. СВЧ генератор 7 через волновод 8 подключен к разрядной камере 1. Разрядная камера 1 имеет вводы 9 и 10 для подачи в нее реакционных газов и/или исходного материала. Источник постоянного тока 11 подает отрицательный потенциал на центральный электрод 5, а положительный - на стенки 2. Внешний соленоид 12 магнитной системы, охватывающий разрядную камеру 1, создает в ней магнитное поле.

Вторая ступень выполнена в виде протяженной трубы 13, подсоединенной к торцевому нижнему днищу 4 разрядной камеры 1 и связанной с ней через отверстие 14 в нем. Внутри трубы 13 размещены попарно электроды 15 и 16, которые разнесены по азимуту, так что нормали n и n' их поверхностей направлены преимущественно навстречу друг к другу (их вектора образуют тупой угол), изолированы от стенок трубы диэлектрическим вставками 17, 18 и подсоединены к источнику питания 19.

Предпочтительнее размещать электроды на противоположных азимутах (угол между ними 180°).

Каждую пару электродов рассматривают как дополнительную ступень плазмотрона, фиг. 2. Число пар электродов (число ступеней) определяют по требуемой величине суммарной мощности многоступенчатого плазмотрона.

Многоступенчатый плазмотрон работает следующим образом.

В разрядную камеру 1 через вводы 9 и 10, выполненные, например, в виде патрубков, подают газ, формируя в ней газовый поток, направленный в сторону трубы 13. Разрядная камера 1, металлические стенки 2 которой выполнены, например, из нержавеющей стали вместе с центральным электродом 5, выполненным, например, из молибдена, представляет собой резонатор. В него от СВЧ генератора 7 через волновод 8 вводят СВЧ энергию и зажигают в газовом потоке СВЧ разряд.

Затем включают источник постоянного тока 11, пропускают через СВЧ разряд постоянный ток и получают комбинированный разряд.

Сформированный в разрядной камере 1 (первая ступень) поток плазмы комбинированного разряда через отверстие в нижнем торцевом днище 4, выполненном, по крайней мере, в области отверстия из тугоплавкого металла, например молибдена, втекает в трубу 13, выполненную, например, из нержавеющей стали.

Поток плазмы движется вдоль оси трубы 13, протекая около пары электродов 15, 16, выполненных, например, из меди и электрически изолированных от стенок трубы диэлектрическими вставками 17, 18, выполненными, например, из фторопласта. К электродам 15, 16 подают напряжение от источника 19, например регулируемого источника переменного тока, пропуская сквозь протекающий плазменный поток электрический ток, вводя в плазму дополнительную энергию, чтобы компенсировать тепловые потери плазмы и поддерживать ее параметры постоянными по длине.

Для эффективного прохождения тока через плазму электроды 15, 16 разносят по азимуту.

Таким образом, многоступенчатый плазмотрон производит пространственно протяженную плазму и вводит в нее большую электрическую энергию по сравнению с прототипом, не снижая ее долговечности, причем величина этой энергии возрастает пропорционально числу ступеней плазмотрона. Кроме того, предложенное техническое решение, увеличивая длину плазменного потока, поддерживает параметры плазмы постоянными по всей длине потока, что повышает эффективность переработки исходных продуктов за счет увеличения ее длительности.

Для большей эффективности ввода электрической энергии в плазму от источника 19 электроды 15 и 16 выполнены кольцевыми. При таком расположении электродов вектор электрического поля пересекает весь объем плазмы.

Для еще большего повышения вводимой в плазму электрической энергии используют источник постоянного тока 19 пары кольцевых электродов 15, 16 и вводят соосно с трубой внешний соленоид 20. Это позволяет зажечь и поддерживать между кольцевыми электродами дуговой разряд, электрическая мощность которого максимальна из всех существующих типов газового разряда /Райзер Ю.П. Физика газового разряда. - М.: Наука, 1987. - 592 с./, но ограничивает долговечность электродов.

Для повышения эффективности переработки исходных продуктов увеличивают время их пребывания в плазме за счет их ввода через открытую полость внутри центрального электрода 5, для чего центральный электрод выполняют в виде полого цилиндра.

Для упрощения конструкции за счет снижения числа кольцевых электродов часть нижнего днища 4, прилегающую к отверстию в нем, используют в качестве одного из катодов по отношению к ближайшему кольцевому электроду.

Для повышения вводимой в плазму электрической энергии теплонагруженные кольцевые электроды имеют принудительное охлаждение.

Для расширения функциональных возможностей многоступенчатого плазмотрона труба 13 имеет вводы для реакционных газов и исходных продуктов.

Для плавного снижения скорости плазменного потока, вытекающего из трубы, в последней ступени диаметр последнего кольцевого электрода увеличивают, расширяя сечение плазменного потока.

1. Многоступенчатый плазмотрон, включающий осесимметричную металлическую разрядную камеру с верхним и нижним торцевыми днищами, расположенный по оси камеры центральный электрод, проходящий сквозь верхнее днище и отделенный от него диэлектрической вставкой, СВЧ генератор и средства подвода СВЧ энергии в разрядную камеру, средств ввода реакционных газов и исходного материала в разрядную камеру, источник постоянного напряжения, отрицательный полюс которого подсоединен к центральному электроду, а положительный - к стенкам камеры, магнитную систему с соосным с камерой внешним соленоидом, трубу, установленную по оси у выходного отверстия нижнего днища, отличающийся тем, что внутрь трубы между ее стенками и осью введены, по крайней мере, одна пара электродов, разнесенных вдоль оси и размещенных по азимуту так, что у их поверхностей, обращенных к оси, есть нормали, ориентированные преимущественно навстречу друг другу, и один источник тока, полюса которого подсоединены к электродам.

2. Многоступенчатый плазмотрон по п. 1, отличающийся тем, что электроды выполнены кольцевыми.

3. Многоступенчатый плазмотрон по п. 2, отличающийся тем, что источник тока пары кольцевых электродов является источником постоянного тока и в магнитную систему для каждой пары кольцевых катода и анода введен соосно с трубой внешний соленоид.

4. Многоступенчатый плазмотрон по п. 3, отличающийся тем, что, по крайней мере, часть нижнего днища разрядной камеры выполнена в виде катода по отношению к ближайшему кольцевому аноду.

5. Многоступенчатый плазмотрон по п. 1, отличающийся тем, что центральный электрод выполнен в виде полого цилиндра, к которому подсоединены средства ввода реакционных газов и/или исходного материала.

6. Многоступенчатый плазмотрон по п. 1, часть электродов которого имеет принудительное охлаждение.

7. Многоступенчатый плазмотрон по п. 1, отличающийся тем, что труба имеет, по крайней мере, один ввод реакционных газов и/или продуктов.

8. Многоступенчатый плазмотрон по п. 1, отличающийся тем, что у дальней от выходного отверстия днища пары электродов внутренний диаметр одного из них много меньше его внешнего диаметра, который меньше внутреннего диаметра другого электрода.



 

Похожие патенты:

Изобретение относится к системам термообработки. Сменный расходуемый компонент для осуществления операции резания или сварки включает в себя корпус и считываемое устройство хранения данных, присоединенное к корпусу или встроенное в корпус, причем устройство хранения данных содержит операционную инструкцию для устройства резания или сварки и выполнено с возможностью считывания внутри горелки для термообработки.

Изобретение относится к области ускорительной техники, в частности к системам подачи газа в сверхзвуковое сопло при формировании пучков ускоренных газовых кластерных ионов.

Изобретение относится к устройствам для плазменных дуговых горелок с газовым охлаждением. В заявленном изобретении сопла могут содержать корпус, имеющий проксимальный конец и дистальный конец, которые определяют длину корпуса сопла и его продольную ось.

Изобретение относится к области плазменной техники. Плазменный генератор содержит: модуль, генерирующий плазму, и вращающийся корпус, который имеет по меньшей мере одно плазменное сопло, через которое плазма, генерируемая модулем плазменного генератора, выдувается наружу, и который расположен отдельно от указанного модуля с возможностью вращения снаружи указанного модуля, содержащего высоковольтный электрод, расположенный в центральной области, противоэлектрод, расположенный вокруг высоковольтного электрода и заряжаемый электроэнергией, подаваемой на высоковольтный электрод, для генерирования высоковольтной дуги, и входное отверстие для газа, которое выполнено между высоковольтным электродом и противоэлектродом и через которое сжатый воздух или газ вводится в выпускную головку.

Изобретение относится к области диагностики плазмы и может быть использовано для исследований неравновесной анизотропной плазмы непосредственно в рабочих условиях широкого круга газоразрядных устройств: лазеров, плазмотронов, источников света, мощных стабилизаторов тока и напряжения, ключевых элементов, инверторов.

Изобретение относится к области плазменной техники. .

Группа изобретений относится к управлению вектором тяги плазменных двигателей. Устройство содержит закреплённые на корпусе плазменного двигателя в зоне за срезом его выходного канала две или четыре прямоугольной формы рамочных магнитных катушки, расположенных открытыми частями рамок напротив друг друга.

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в плазме и в газоразрядных приборах. Технический результат - обеспечение возможности формирования тепловой кумулятивной струи, плавящей металл, и образованного ею канала на поверхности металла необходимой длины.

Изобретение относится к плазменному экспандеру изменяемого объема и к устройствам для формирования плазмы для получения электронных или ионных пучков. Плазменный экспандер изменяемого объема имеет цилиндрическую форму, изготовлен из проводящих материалов, плазма попадает в него через отверстие в аноде, с другой стороны происходит частичное ограничение плазмы.

Изобретение относится к физике высоких плотностей энергии и термоядерного синтеза и может использоваться при получении мощных потоков мягкого рентгеновского излучения.

Изобретение относится к области высокочастотной техники. Генератор высокочастотного излучения на основе разряда с полым катодом содержит газоразрядную камеру, образованную электродами - полым катодом и анодом, к электродам камеры подключены источник питания и электрическая нагрузка, к камере подсоединена система создания газоразрядной среды.

Изобретение относится к области высокочастотной техники. Генератор высокочастотного излучения на основе разряда с полым катодом содержит газоразрядную камеру, образованную электродами - полым катодом и полым анодом, разделенными изолятором, к электродам камеры подключены источник питания и электрическая нагрузка, причем полость катода и полость анода открыты навстречу друг другу и соединены между собой каналом, формируемым в зоне стыка катода и анода отверстием, открывающим катодную полость, отверстием в изоляторе, задающим межэлектродный промежуток, и отверстием, открывающим анодную полость.

Изобретение относится к плазменной энергетике к области стабилизации напряжения в высоковольтном диапазоне и может быть использовано в силовых цепях объектов наземной и космической ядерной энергетики, а также при разработке систем экологической аварийной защиты и контроля на атомных станциях, ядерных энергетических установках, подводных лодках.

Изобретение относится к электротехнике, к устройствам с зарядным элементом, предназначенным для бесконтактной передачи электромагнитной энергии множеству электронных приборов.

Изобретение относится к электронной технике, в частности к технике газоразрядных и вакуумных приборов. .

Изобретение относится к области производства химически активных металлов из рудного сырья и других соединений и может быть использовано для рафинирования любых металлов, включая химически активные и тугоплавкие металлы, от неметаллических примесей и металлов.

Изобретение относится к погружным генераторам ударных волн для регенерации глубоких скважин на нефть, воду и другие жидкие флюиды с изменяющейся температурой из-за геотермического градиента, а также технике, работающей в условиях быстро и сильно изменяющихся температур.

Изобретение относится к плоскому излучателю. .
Изобретение относится к газоразрядной технике и может быть использовано в производстве газоразрядных индикаторных панелей (ГИП) переменного тока. .

Изобретение относится к способам формирования изображения на газоразрядном матричном индикаторе. .
Наверх