Устройство для устранения влияния гармонических возмущений момента нагрузки в электромеханической системе

Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока. Устройство для устранения влияния гармонических возмущений момента нагрузки в электромеханической системе содержит внеконтурный формирователь, подключенный к неинвертирующему входу элемента сравнения, выход которого соединен с регулятором внешнего контура, силовой преобразователь, подключенный к электродвигателю постоянного тока, соединенному со входом измерительного блока, выход которого соединен обратной связью по скорости с инвертирующим входом элемента сравнения. Устройство также содержит регулятор внутреннего контура, второй внеконтурный формирователь, второй элемент сравнения. Выход регулятора внешнего контура через второй внеконтурный формирователь подключен к неинвертирующему входу второго элемента сравнения, к инвертирующему входу которого подключен выход измерительного блока, выход второго элемента сравнения соединен со входом регулятора внутреннего контура, подключенного ко входу силового преобразователя. Регулятор внешнего контура выполнен с учетом интегральной составляющей модели возмущения, регулятор внутреннего контура выполнен с учетом колебательной составляющей модели возмущения и настроен на быстродействие в 5-7 раз выше требуемого от системы. В результате улучшается динамическая точность, сокращаются аппаратные и программные затраты при технической реализации системы. 4 ил.

 

Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока.

Существует ряд технических объектов, приводимых в движение средствами автоматизированного электропривода, наличие дефектов в изготовлении механической части которых (например, эксцентриситета валов рабочих органов и систем передач движения) приводит к возникновению гармонических колебаний статического момента нагрузки на валу рабочих органов. При этом частота таких колебаний жестко связана со скоростью электродвигателя, когда момент нагрузки на валу рабочего органа МН(t) можно представить в виде:

где М0 - постоянная составляющая момента; M1 - амплитуда колебаний момента; ω1 - скорость рабочего органа; t - время.

Для возмущающего воздействия (1), состоящего из постоянной и гармонической составляющих, соответствующее изображение Лапласа имеет вид

где s - комплексная переменная Лапласа; ; Ω - частота вращения электродвигателя; i - передаточное отношение редуктора.

Минимизация последствий подобных возмущений позволяет значительно улучшить показатели качества систем автоматического управления скоростными режимами технологических установок. Снижение флуктуаций момента нагрузки и, как следствие, скорости рабочих органов технологических машин оказывают существенное влияние на качество выпускаемой продукции. При этом увеличивается точность изготовления деталей при металлообработке, стабилизируются геометрические размеры длинномерных материалов при обработке изделий в поточных линиях (диаметр волокна или провода, толщина пленки и различных покрытий), нормируются их весовые показатели (плотность бумаги, ткани и др.), улучшается светопропускание оптических световодов и т.п.

Известна следящая система автоматического управления с компенсацией неизмеряемых возмущений (патент РФ №2051401, МПК6 G05B 11/01, год опубликования 1995). Следящая система содержит блок идентификации и формирования сигналов для компенсации возмущений и первый сумматор, причем выходы первого сравнивающего устройства и блока идентификации и формирования сигналов для компенсации возмущений подключены соответственно к первому и второму входам первого сумматора, выход которого связан с входом усилителя и первым входом блока идентификации и формирования сигналов для компенсации возмущений, к остальным входам которого подсоединены выходы соответственно усилителя, второго сравнивающего устройства, последовательного корректирующего устройства, усилителя мощности и датчика обратной связи.

Устройство выполняет свои основные функции, но обладает недостатком, присущим всем системам с наблюдателем Люенбергера, который является основой построения блока идентификации - низкой параметрической робастностью. Даже незначительная вариация параметров объекта управления, входящих в математическую модель, являющуюся основой блока идентификации, приводит к резкому снижению качественных показателей системы управления.

Известна самонастраивающаяся система комбинированного регулирования (патент РФ №2022313, МПК6 G05B 13/00, год опубликования 1994), содержащая регулятор, сумматоры, измеритель рассогласования, блок самонастройки, корректирующий фильтр, блоки умножения, управляемые ключи, блок памяти. Разомкнутый контур управления системы предназначен для компенсации контролируемых возмущений. Замкнутый контур регулирования формирует управление на основе результирующего отклонения выхода объекта от уставки. Блок самонастройки системы предназначен для работы в условиях редко измеряемого выхода объекта. Он повышает качество работы обоих контуров системы за счет стабилизации их коэффициентов передачи.

Система решает поставленные задачи, однако обладает рядом существенных недостатков. Во-первых, в состав устройства-аналога необходимо ввести датчик контролируемого внешнего возмущения, что в ряде случаев затруднительно (в частности, при воздействии на электромеханическую систему такого возмущения, как момент статического сопротивления на валу электродвигателя). Во-вторых, наличие в контуре обратной связи блоков, производящих сложный логический анализ информации, элементов записи и хранения, блока задержки, усложняет устройство и резко снижает его быстродействие. В-третьих, принцип работы блока самонастройки предполагает наличие временного интервала, когда управляющие и возмущающие воздействия системой игнорируются.

Наиболее близким к предлагаемому является устройство для компенсации возмущений (Гудвин Г.К. Проектирование систем управления / Гудвин Г.К., Гребе С.Ф., Сальгадо М.Э.. - М: БИНОМ. Лаборатория знаний, 2004. - 911 с., рис. 10.1), принятое за прототип. Работа устройства-прототипа заключается в том, что управление осуществляют регулятором по скорости рабочего органа, для чего предварительно по результату анализа спектрограммы скоростей электромеханической системы выделяют частоту наиболее существенного возмущения, с учетом этой частоты находят полином, формирующий математическую модель гармонического возмущения момента нагрузки, вводят этот полином сомножителем в знаменатель передаточной функции регулятора по скорости рабочего органа, а искажение передаточной функции электромеханической системы по управлению устраняют за счет воздействия внеконтурного формирователя.

При этом выходной сигнал регулятора по скорости рабочего органа будет содержать гармоническую составляющую, которая благодаря действию отрицательной обратной связи по скорости рабочего органа, замыкающей внешний контур регулирования, обеспечит противофазную компенсацию возмущения. Следует отметить, что регулятор и внеконтурный формирователь реализованы в виде материальных объектов (цифровых или аналоговых блоков), которые при наладке требуют установки внутренних параметров, соответствующих полиномам, синтезированным в процессе конструирования системы управления. Устройство, выбранное за прототип, выполняет свои основные функции, требует измерения лишь выходной координаты объекта управления - угловой скорости вала рабочего органа.

Структурная схема устройства-прототипа применительно к электромеханической системе с двигателем постоянного тока приведена на фиг. 1. В состав структурной схемы входят внеконтурный формирователь 1, представляющий собой префильтр и предназначенный для устранения искажения передаточной функции электромеханической системы по управлению; элемент сравнения 2, который формирует на своем выходе сигнал ошибки, управляющий регулятором 3. Регулятор 3 замыкает отрицательную обратную связь по скорости рабочего органа и выполнен в виде блока, передаточная функция которого представляется отношением полиномов. Кроме этого в составе системы имеется силовой преобразователь 4, который преобразует напряжение управления Uy на своем входе в напряжение U на якорной обмотке электродвигателя постоянного тока 5. Измерительный блок 6 предназначен для измерения скорости электродвигателя постоянного тока 5. Регулятор 3 и внеконтурный формирователь 1 реализованы в виде материальных объектов (цифровых или аналоговых блоков), которые при наладке требуют установки внутренних параметров, соответствующих полиномам, синтезированным в процессе конструирования системы управления.

В качестве основных параметров, влияющих на работоспособность системы, часть из которых приведена на фиг. 1, выбраны:

- напряжение, определяющее заданное значение скорости рабочего органа;

- напряжение после внеконтурного формирователя;

Uy, U - управляющее и выходное напряжение силового преобразователя;

Ia - ток якорной цепи электродвигателя постоянного тока;

Ω - угловая скорость вала электродвигателя постоянного тока;

ΩН - номинальная угловая скорость вала электродвигателя постоянного тока;

МН - момент нагрузки (статического сопротивления).

Также здесь и далее приняты следующие обозначения параметров системы:

КСП и ТСП - коэффициент передачи и постоянная времени силового преобразователя;

Ra и Та - активное сопротивление и постоянная времени якорной цепи электродвигателя постоянного тока;

С - конструктивная постоянная двигателя постоянного тока;

J - суммарный момент инерции ротора двигателя постоянного тока и рабочего органа;

i - передаточное отношение редуктора.

Система имеет полиномиальный регулятор 3, в знаменатель передаточной функции которого введена, как показано выше, модель возмущения. Попытаемся синтезировать структуру регулятора 3 для электромеханической системы, построенной с применением двигателя постоянного тока 5, управляемого от силового преобразователя 4.

Для конкретности приняты следующие значения параметров объекта: КСП=22, ТСП=0,001 с, Ra=0,177 Ом, Та=0,02 с, ΩН=157 рад/с, С=1,37 Вб, J=0,2 кг⋅м2, i=10.

Пусть требуется обеспечить пуск электромеханической системы (ЭМС) на заданный уровень скорости Ω вала двигателя постоянного тока 5, равный 15,7 рад/с, что составляет 10% от номинальной скорости при монотонном характере переходного процесса и времени нарастания переходной характеристики системы в линейной зоне ее работы не более 50 мс. После пуска системе необходимо отработать возмущающее воздействие момента нагрузки, соответствующее уравнению (1) вида

при отсутствии перерегулирования, обеспечив заданное быстродействие и нулевую статическую ошибку по скорости от действия момента нагрузки.

Согласно принципу селективной инвариантности полином, формирующий математическую модель возмущения (1), определяется в данном случае в виде

где s - комплексная переменная Лапласа, ω1=Ω/i - угловая скорость рабочего органа. Этот полином вводится сомножителем в знаменатель передаточной функции (ПФ) регулятора 3, а искажение передаточной функции ЭМС по управлению устраняется соответствующим внеконтурным формирователем 1. Регулятор 3 с такой моделью возмущения приобретает интегральную s и колебательную (s212) составляющие, которые в условиях действия отрицательной обратной связи (ОС) в совокупности обеспечивают астатизм 1-го порядка, т.е. нулевую статическую ошибку от действия постоянной составляющей момента, и противофазную компенсацию его гармонической составляющей в установившемся режиме работы. Появление дополнительных нулей ПФ системы по управляющему воздействию устраняется соответствующим внеконтурным формирователем 1 (префильтром).

Объектом управления в данной системе являются последовательно соединенные силовой преобразователь 4 и электродвигатель постоянного тока 5. Передаточная функция объекта управления может быть представлена в виде отношения полиномов B(s) и A(s).

Для повышения робастных свойств синтезируемых систем автоматического управления (исключения появления положительных ОС или неминимально-фазовых звеньев в составе регуляторов) пренебрежем в расчетах относительно малой постоянной времени ТСП. В результате этого ПФ объекта управления принимает вид с передаточной функцией

Для полученной ПФ объекта управления по правилам полиномиального модального управления рассчитывают регулятор, используя уравнение

где R(s) и s⋅C(s) - полиномы числителя и знаменателя ПФ регулятора, причем R(s)=G(s)⋅V(s), V(s) - вспомогательный полином, обеспечивающий техническую реализуемость регулятора, D(s) - желаемый характеристический полином (ХП) синтезируемой системы.

Для этого в соответствии с заданными требованиями динамики формируют структуру и определяют параметры регулятора 3

Использование передаточной функции объекта управления обеспечивает более полный учет его особенностей и способствует повышению помехоустойчивости и параметрической грубости системы.

Как видно из приведенного соотношения, порядок регулятора 3 с учетом внеконтурного формирователя 1 - восьмой. Это подтверждает наличие у прототипа недостатка в виде повышенной сложности при технической реализации как в цифровой, так и в аналоговой форме, что неизбежно приводит к высоким аппаратным или программным затратам.

На фиг. 2 приведены результаты проведенного компьютерного моделирования прототипа с синтезированным регулятором 3. Они представлены переходным процессом угловой скорости Ω вала электродвигателя постоянного тока 5. В процессе исследования осуществляется пуск электродвигателя постоянного тока 5 на заданную скорость Ω, равную 10% от номинальной, что при известных параметрах системы составляет 15,7 рад/с. С учетом выбранного передаточного отношения редуктора i=10 это соответствует угловой скорости рабочего органа ω1=1,57 рад/с. После завершения переходного процесса пуска к валу электродвигателя постоянного тока 5 прикладывается момент нагрузки МН выбранного вида . Здесь и далее внешнее возмущение в виде изменения момента нагрузки воздействует на вал электродвигателя в момент t=4 с. Анализ переходной характеристики указывает на удовлетворительное качество процесса пуска. Система обеспечивает заданное время нарастания переходной характеристики в линейной зоне ее работы не более 50 мс при отсутствии перерегулирования. При воздействии внешнего возмущения обеспечивается достаточное быстродействие, но наблюдается значительная динамическая ошибка 0,62 рад/с при отработке наброса момента нагрузки заданного вида.

Итак, выполняя возложенные на нее задачи, система демонстрирует недостаточную динамическую точность, обладает повышенной сложностью технической реализации регулятора. Последнее требует больших аппаратных или программных затрат при построении регулятора восьмого порядка как в аналоговой, так и в цифровой формах, снижает надежность системы, создает дополнительные проблемы при настройке системы на реальном объекте.

Технический результат предлагаемого изобретения заключается в улучшении динамической точности и сокращении аппаратных или программных затрат при технической реализации системы.

Технический результат достигается тем, что устройство для устранения влияния гармонических возмущений момента нагрузки в электромеханической системе, содержащее внеконтурный формирователь, подключенный к неинвертирующему входу элемента сравнения, выход которого соединен с регулятором внешнего контура, силовой преобразователь, подключенный к электродвигателю постоянного тока, соединенному со входом измерительного блока, выход которого соединен обратной связью по скорости с инвертирующим входом элемента сравнения, дополнительно содержит регулятор внутреннего контура, второй внеконтурный формирователь, второй элемент сравнения, при этом выход регулятора внешнего контура через второй внеконтурный формирователь подключен к неинвертирующему входу второго элемента сравнения, к инвертирующему входу которого подключен выход измерительного блока, выход второго элемента сравнения соединен со входом регулятора внутреннего контура, подключенного ко входу силового преобразователя, причем регулятор внешнего контура выполнен с учетом интегральной составляющей модели возмущения, регулятор внутреннего контура выполнен с учетом колебательной составляющей модели возмущения и настроен на быстродействие в 5-7 раз выше требуемого от системы.

На фиг. 3 изображена блок-схема заявляемого устройства, на фиг. 4 приведены результаты компьютерного моделирования работы устройства при тех же условиях и тех же режимах, которые выбраны для прототипа.

Для фиг. 3 введены следующие обозначения: первый внеконтурный формирователь 1, подключенный к неинвертирующему входу первого элемента сравнения 2, выход которого соединен со входом регулятора внешнего контура 3; силовой преобразователь 4, преобразующий свой входной сигнал Uy в напряжение U на якорной обмотке электродвигателя постоянного тока 5. Измерительный блок 6 выполнен с возможностью оценивания скорости двигателя постоянного тока 5. Для этого скорость электродвигателя постоянного тока 5 измеряется и преобразуется в напряжение UΩ, пропорциональное скорости электродвигателя постоянного тока 5. В состав блок-схемы введен второй внеконтурный формирователь 7, вход которого соединен с выходом регулятора внешнего контура 3, а выход - с неинвертирующим входом второго элемента сравнения 8. К инвертирующему входу второго элемента сравнения 8 подключен выход измерительного блока 6, а выход второго элемента сравнения 8 через регулятор внутреннего контура 9 подключен ко входу силового преобразователя 4.

Для достижения заявляемого технического результата и организации процесса управления в состав системы кроме известного внешнего контура регулирования по основной координате (в данном случае - по скорости рабочего органа или жестко связанной с ней скорости электродвигателя постоянного тока) вводят внутренний контур регулирования.

Устройство для устранения влияния гармонических возмущений момента нагрузки в электромеханической системе (фиг. 3) работает следующим образом. Устройство можно условно разделить на внешний и внутренний контуры. Первоначально для выбранной электромеханической системы производят анализ и определение частоты наиболее существенного возмущения со стороны момента нагрузки на валу рабочего органа Мн. Для этого используют спектрограмму скоростей.

Если спектрограмма была построена ранее, пользуются результатами проведенных исследований. На спектрограмме выделяют частоту наиболее существенного воздействия, которое приводит к возникновению доминирующего гармонического возмущения момента нагрузки на валу рабочего органа. По известной кинематической схеме механизма и выявленной частоте находят соответствующую угловую скорость рабочего органа ω1, которая позволяет вычислить математическую модель наиболее существенного возмущения, соответствующую уравнению (2). При этом в отличие от прототипа полином (3), формирующий составляющие математической модели возмущения (2), делится на интегральную и колебательную составляющие: s и (s212) соответственно. Колебательная составляющая вводится сомножителем в знаменатель передаточной функции регулятора внутреннего контура 9. Интегральная составляющая модели возмущения учитывается при синтезе передаточной функции регулятора внешнего контура 3.

Алгоритм синтеза параметров регулятора внешнего контура 3 и регулятора внутреннего контура 9 таков. Внешний контур регулирования построен по принципу полиномиального регулятора (ПР) по основной координате объекта управления - скорости электродвигателя постоянного тока 5 - и организован с учетом интегральной составляющей математической модели возмущения. Внутренний контур, представляющий собой также полиномиальный регулятор (ПР), синтезируется с учетом колебательной составляющей математической модели возмущения и настраивается на быстродействие, в 5-7 раз превышающее заданные динамические требования, предъявляемые ко всей системе в целом. Этим обеспечивается максимальное упрощение внешнего интегрального контура регулирования при соответствующем упрощении структуры первого внеконтурного формирователя 1 и улучшение качества отработки переменной составляющей момента нагрузки электродвигателя постоянного тока 5. Для реализации принципа селективной инвариантности такой электромеханической системы в ее внешнем и внутреннем контурах управления используются только полиномиальные регуляторы «входа-выхода».

Процедура настройки системы производится в направлении от внутреннего контура к внешнему. Синтез регулятора внутреннего контура 9 заключается в определении коэффициентов полиномов F(s) и E(s) регулятора, для чего используется следующее уравнение полиномиального синтеза

где A(s) и B(s) - характеристический полином и полином воздействия передаточной функции объекта управления (электродвигателя постоянного тока 5);

F(s) и E(s) - полиномы знаменателя и числителя передаточной функции регулятора внутреннего контура 9;

F(s)=G(s)⋅V(s);

V(s) - вспомогательный полином, обеспечивающий техническую реализуемость регулятора;

P(s) - желаемый характеристический полином синтезируемого внутреннего контура.

В нашем случае в полином знаменателя F(s) передаточной функции регулятора внутреннего контура 9 вводится колебательная составляющая математической модели возмущения

.

Для синтеза полиномиального регулятора внешнего контура 3, учитывающего интегральную составляющую модели возмущения, используется следующее полиномиальное уравнение

где P(s) и Q(s) - характеристический полином и полином воздействия передаточной функции внутреннего контура 9;

C(s) и R(s) - полиномы знаменателя и числителя передаточной функции регулятора внешнего контура 3;

D(s) - желаемый характеристический полином синтезируемой системы.

Выбранное высокое быстродействие регулятора внутреннего контура 9, содержащего колебательную составляющую модели возмущения, дает основание считать его безынерционным при синтезе регулятора внешнего контура 3, т.е. принимать: Q(s)=K, P(s)=1, что значительно упрощает регулятор внешнего контура 3.

Первый внеконтурный формирователь 1 и второй внеконтурный формирователь 7 внешнего и внутреннего контуров соответственно исключают искажение по управлению передаточных функций указанных контуров системы. Для выполнения своих функций их передаточные функции выбирают обратно пропорциональными числителям передаточных функций регуляторов внешнего контура 3 (R(s)) и внутреннего контура 9 (E(s)).

Проведем формирование элементов электромеханической системы путем синтеза регуляторов в направлении от внутреннего контура к внешнему, воспользовавшись теми же числовыми параметрами объекта управления и заданными требованиями к быстродействию системы, что и в прототипе.

Методом модального управления по уравнению синтеза (8) рассчитывается передаточная функция регулятора внутреннего контура 9, наделяемого быстродействием, в 5 раз превышающим заданное значение быстродействия системы, и содержащим колебательную составляющую модели возмущения. При заданном быстродействии системы в 50 мс это соответствует быстродействию внутреннего контура в 10 мс. В качестве желаемого для внутреннего контура принимается характеристический полином Ньютона 5-го порядка P(s)=(s+900)5 с величиной среднегеометрического корня Ω=900 с-1, что соответствует выбранному быстродействию внутреннего контура. Полином P(s) наиболее соответствует монотонному переходному процессу, что отвечает требованиям к качеству переходных процессов в системе и удобно для дальнейшей аппроксимации внутреннего контура звеньями пониженного порядка. В этом случае уравнение (8) принимает следующий развернутый вид

.

Его решение позволяет получить передаточную функцию регулятора внутреннего контура 9 следующего вида

.

Второй внеконтурный формирователь 7 внутреннего контура по аналогии с устройством-прототипом устраняет появление дополнительных нулей передаточной функции системы по управляющему воздействию. Передаточная функция второго внеконтурного формирователя 7 выбирается с учетом передаточной функции регулятора внутреннего контура 9 и принимает вид

.

Для расчета регулятора внешнего контура с интегральной составляющей модели возмущения используется полиномиальное уравнение синтеза (9).

Высокое быстродействие внутреннего контура дает основание считать его безынерционным при синтезе регулятора внешнего контура 3, т.е. принимать: (b0 - свободный коэффициент передаточной функции объекта управления, Ω - среднегеометрический корень регулятора внутреннего контура), P(s)=1. Выбор полинома D(s) для внешнего контура производится из тех же соображений, что и полинома P(s) для внутреннего контура системы. В соответствии с заданными требованиями динамики в качестве D(s) выбирается полином Ньютона 1-го порядка D(s)=(s+20) с величиной среднегеометрического корня Ω0=20 с-1, что соответствует заданному быстродействию системы в 50 мс.

В этом случае уравнение синтеза (9) принимает наиболее простой вид

1⋅s+7,2094⋅10-11⋅r0=s+20.

Его решение позволяет получить передаточную функцию регулятора внешнего контура 3 минимального порядка следующего вида

.

Передаточная функция первого внеконтурного формирователя 1 внешнего контура также выбирается с учетом передаточной функции регулятора внешнего контура 3 и в данном случае упрощается до коэффициента усиления, т.е. принимает вид

.

Полученные значения позволяют выбрать параметры аналоговых или цифровых блоков системы при ее технической реализации.

Таким образом, порядок передаточной функции системы, организованной путем использования заявляемого устройства с учетом порядков передаточных функций первого и второго внеконтурного преобразователей - седьмой.

Применение элементов и узлов, а также их взаимосвязей, характерных для заявляемого устройства, привело к упрощению регулятора, что при его технической реализации аналоговыми или цифровыми устройствами сокращает аппаратные или программные затраты. Это неизбежно приводит к повышению надежности, а при внедрении сокращает время наладки.

Проанализируем результаты компьютерного моделирования синтезированного регулятора при тех же параметрах объекта, что и для устройства-прототипа.

Анализ фиг. 4 доказывает высокую эффективность работы системы при пуске, сопоставимую с результатами компьютерного моделирования устройства-прототипа, приведенными на фиг. 2. При приложении внешнего возмущающего момента нагрузки после 4 секунды работы на установившейся скорости в 15,7 рад/с наблюдается существенное по сравнению с прототипом снижение динамической ошибки до 0,16 рад/с, что подтверждает улучшение динамической точности заявленной системы.

Компенсация влияния возникающих колебаний момента нагрузки по рассматриваемому варианту устройства осуществляется за счет того, что при возникновении таких колебаний происходит изменение угловой скорости вала электродвигателя постоянного тока 5, которое, будучи введено в виде отрицательной обратной связи на вход регулятора внешнего контура 3 и на вход регулятора внутреннего контура 9, настроенных на гашение заданной частоты, компенсируется внешним и внутренним контурами системы автоматического управления. Внутренний контур системы, настроенный на высокое быстродействие в 5-7 раз выше заданного, обеспечивает эффективную отработку возмущения, низкий порядок регулятора. Внешний контур, использующий интегральную составляющую регулятора внешнего контура 3, способствует улучшению динамической точности.

Один из элементов устройства - первый внеконтурный формирователь 1 - не входит ни в один из контуров и исключает искажение передаточной функции системы по управлению. Он представляет собой звено с передаточной функцией 1/R(s) и предназначен для коррекции влияния управляющего воздействия на объект управления. Первый внеконтурный формирователь 1 компенсирует появление дополнительных нулей передаточной функции системы по управляющему воздействию и выбирается аналогично прототипу.

Элементы внешнего контура регулирования представлены в устройстве следующим образом:

- первый элемент сравнения 2 вырабатывает на своем выходе сигнал ошибки ΔUΩ, представляющий собой разность сигналов с выхода первого внеконтурного формирователя 1 и сигнала UΩ с выхода измерительного блока 6, преобразующего выходную координату (скорость электродвигателя постоянного тока 5) в напряжение;

- регулятор внешнего контура 3 выполнен в виде звена с передаточной функцией R(s)/sC(s). Регулятор внешнего контура 3 включает в себя интегральную составляющую модели возмущения и, так же как и внеконтурный формирователь 1, реализован в виде материального объекта (цифрового или аналогового блоков), которые при наладке требуют установки внутренних параметров, соответствующих полиномам, синтезированным в процессе конструирования системы управления.

Для организации процесса управления в состав системы кроме известного внешнего контура регулирования по основной координате (в данном случае - по скорости рабочего органа или жестко связанной с ней скорости электродвигателя постоянного тока 5) вводят внутренний контур регулирования.

На входе во второй контур регулирования установлен второй внеконтурный формирователь 7, который исключает искажение передаточной функции системы по управлению. Он представляет собой звено с передаточной функцией 1/E(s) и предназначен для коррекции влияния управляющего воздействия Uи с выхода регулятора внешнего контура 3 на объект управления. Второй внеконтурный формирователь 7 компенсирует появление дополнительных нулей передаточной функции системы по управляющему воздействию. Передаточная функция 1/E(s) второго внеконтурного формирователя 7 выбирается с учетом передаточной функции регулятора внутреннего контура 9, как указано выше.

Синтез параметров элементов внутреннего контура производят по методике, приведенной ранее, причем при синтезе учитывают колебательную составляющую модели возмущения и задают быстродействие внутреннего контура в 5-7 раз выше требуемого быстродействия системы. Элементы внутреннего контура выполняют следующие функции:

- второй элемент сравнения 8 вырабатывает на своем выходе напряжение, представляющее собой разность напряжений Uр с выхода второго внеконтурного формирователя 7 и UΩ, поступающее с выхода измерительного блока 6 и сформированное измерительным блоком 6, исходя из текущего значения скорости Ω электродвигателя постоянного тока 5;

- регулятор внутреннего контура 9 выполнен в виде звена с передаточной функцией E(s)/F(s). Регулятор внутреннего контура 9 включает в себя колебательную составляющую модели возмущения и, так же как и второй внеконтурный формирователь 7, реализован в виде материального объекта (цифрового или аналогового блоков), которые при наладке требуют установки внутренних параметров, соответствующих полиномам, синтезированным в процессе конструирования системы управления. На выходе регулятора внутреннего контура 9 формируется напряжение Uy, необходимое для организации работы внутреннего контура регулирования;

- силовой преобразователь 4 под управлением напряжения Uy формирует на своем выходе напряжение U, поступающее на якорную обмотку электродвигателя постоянного тока 5, являющегося в данной системе элементом объекта управления;

- измерительный блок 6 предназначен для обеспечения информацией о скорости вращения электродвигателя постоянного тока 5 таких узлов устройства, на которых определяется разность задающего и измеренного сигналов, как первый элемент сравнения 2 и второй элемент сравнения 8.

Допустим, угловая скорость рабочего органа ω1 электромеханической системы равна той, которая вызывает наиболее значимые гармонические колебания момента нагрузки на валу. Этот режим может быть достигнут путем подачи на вход устройства управляющего сигнала , соответствующего ω1. В начальный момент пуска электродвигатель постоянного тока 5 и жестко связанный с ним рабочий орган начинают изменять свои скорости с нуля. В процессе пуска обратная связь по скорости обеспечивает требуемое быстродействие, исключая перерегулирование при выходе на заданную скорость. После достижения установившегося процесса на вал электродвигателя постоянного тока 5 начинает воздействовать постоянная и гармоническая составляющая момента нагрузки, частота которой жестко связана со скоростью вала электродвигателя постоянного тока 5. Синтезированная двухконтурная система регулирования настроена на данный вид возмущения, стабилизация угловой скорости вала электродвигателя постоянного тока 5 происходит раздельно по контурам. За счет регулятора внешнего контура 3, передаточная функция которого выбрана с учетом интегральной составляющей модели возмущения, изменения скорости вращения электродвигателя постоянного тока 5 отрабатываются с высокой степенью точности. Для этого измеренное значение скорости с выхода измерительного блока 6 подается на инвертирующий вход первого элемента сравнения 2, обеспечивая организацию стабилизирующей отрицательной обратной связи по основному параметру регулирования.

Внутренний контур отрабатывает переменную составляющую приложенного момента нагрузки и делает это с высоким быстродействием, предусмотренным при его синтезе. Настроенный на колебательную составляющую возмущения регулятор внутреннего контура 9 эффективно гасит возникающие гармонические колебания момента нагрузки, что происходит за счет действия отрицательной обратной связи по скорости через измерительный блока 6, который отвечает за оценку текущего значения скорости электродвигателя постоянного тока 5.

Предлагаемое техническое решение позволяет улучшить динамическую точность и сократить аппаратные или программные затраты при технической реализации системы.

Устройство для устранения влияния гармонических возмущений момента нагрузки в электромеханической системе, содержащее внеконтурный формирователь, подключенный к неинвертирующему входу элемента сравнения, выход которого соединен с регулятором внешнего контура, силовой преобразователь, подключенный к электродвигателю постоянного тока, соединенному с входом измерительного блока, выход которого соединен обратной связью по скорости с инвертирующим входом элемента сравнения, отличающееся тем, что дополнительно содержит регулятор внутреннего контура, второй внеконтурный формирователь, второй элемент сравнения, при этом выход регулятора внешнего контура через второй внеконтурный формирователь подключен к неинвертирующему входу второго элемента сравнения, к инвертирующему входу которого подключен выход измерительного блока, выход второго элемента сравнения соединен со входом регулятора внутреннего контура, подключенного ко входу силового преобразователя, причем регулятор внешнего контура выполнен с учетом интегральной составляющей модели возмущения, регулятор внутреннего контура выполнен с учетом колебательной составляющей модели возмущения и настроен на быстродействие в 5-7 раз выше требуемого от системы.



 

Похожие патенты:

Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока.

Изобретение относится к электрическим тяговым системам транспортных средств с питанием от внешних источников энергоснабжения. Устройство регулирования скорости включает в себя обмотку якоря и обмотку возбуждения тягового двигателя постоянного тока, статический возбудитель, последовательно соединенные токоограничивающий резистор, шунтированный быстродействующим выключателем, и реактор, два контактора, диод, три управляемых полупроводниковых ключевых элемента.

Изобретение относится к области электротехники и может быть использовано в высокоточных электроприводах. Технический результат - улучшение динамических характеристик электропривода.

Изобретение относится к электрическим тяговым системам транспортных средств с питанием от внешних источников энергоснабжения. Устройство включает в себя четыре тяговых двигателя постоянного тока, обмотки якорей (1)-(4) и обмотки возбуждения (11), (12), (15), (16), контакторы (6), (7), (8), (17), (19), импульсный преобразователь (10), контакторы тормозного переключателя (24), (29), тиристоры (14), (21) и GTO-тиристоры (18), (20), (21), (34).

Изобретение относится к электрическим тяговым системам транспортных средств с питанием от внешних источников энергоснабжения. Устройство регулирования скорости электроподвижного состава включает в себя тяговые двигатели постоянного тока, обмотки якорей (1)-(4) и обмотки возбуждения (11), (12), (15), (16), контакторы (6), (7), (8), (17), (19), (23), (26), (27), импульсный преобразователь (10), контакты тормозного переключателя (24), (29), тиристоры (14), (22), GTO-тиристоры (18), (20), (21), диоды (9), (13), (25), (28), реактор (30), быстродействующий выключатель (31) и резистор (32).

Изобретение относится к электротехнике, а именно к следящему электроприводу. Следящий электропривод содержит блок 1 задания, интегральный регулятор 2, пропорциональный регулятор 3, пропорционально-дифференциальный регулятор 4, силовой преобразователь 5, электродвигатель 6 с исполнительным механизмом 7, датчик 8 положения, блок 9 дифференцирования, пропорциональное звено 10, сумматор 11, сумматор-вычитатель 12, блоки 13 и 14 сравнения и мультиплексор 15.

Изобретение относится к области самонастраивающихся систем управления электроприводами. Способ самонастройки заключается в том, что в течение определенного интервала времени подают случайно сгенерированное управляющее задание на вход электропривода или предварительно построенной его модели.

Изобретение относится к области электротехники и может быть использовано для привода инструмента. Технический результат - уменьшение как синфазных, так и дифференциальных шумов.

Группа изобретений относится к области управления. Технический результат - увеличение точности процесса регулирования.

Изобретение относится к системе для улучшения определения добротности системы считывания положения вращения. Сущность изобретения заключается в том, что во время вращения объекта, считываемого датчиком положения, сохраняют данные, связанные с добротностью профиля магнитного датчика, в датчике положения, и выдают данные о положении через штырь датчика положения; и во время когда указанный объект не вращается, выдают, по меньшей мере, часть данных, связанных с добротностью профиля магнитного датчика, через штырь.

Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока.

Изобретение относится к области электротехники, в частности к позиционным электроприводам постоянного тока, и может быть использовано для автоматизации металлорежущих станков, электромеханических роботов, управления аэродинамическими рулями и в других механизмах систем радиотехники, автоматики и вычислительной техники.

Изобретение относится к области электротехники, в частности к позиционным электроприводам постоянного тока, и может быть использовано для автоматизации металлорежущих станков, электромеханических роботов, управления аэродинамическими рулями и в других механизмах систем радиотехники, автоматики и вычислительной техники.

Изобретение относится к автоматике. Способ расширения диапазона регулирования автоматических систем регулирования без потери устойчивости включает настройку регулятора, реализующего пропорциональную и интегральную составляющие закона регулирования, при которой сигнал управляющего воздействия зависит от величины ошибки регулирования и значений коэффициентов пропорциональной и интегральной составляющих.

Система адаптивного управления электрогидравлическим следящим приводом с контролем содержит сдвоенный золотник, сдвоенный исполнительный гидродвигатель, датчик обратной связи, линейный электродвигатель (ЛЭД) с обмоткой управления, модуль электрогидравлического усилителя, двухсистемную рулевую машинку, четыре канала адаптивного управления (КАУ), четыре контроллера межмашинного обмена (КМО), четыре приемопередачика.

Изобретение относится к области электротехники и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока.

Изобретение - способ автоматической компенсации влияния гармонических колебаний момента нагрузки в электромеханической системе и устройство для его осуществления относятся к электроавтоматике и могут найти применение при создании автоматизированных электроприводов постоянного и переменного тока.

Изобретение относится к счетчикам, измеряющим ресурсы и, в частности, относится к системам измерения ресурса энергопотребления, снабженным устройством записи данных и выполненным с возможностью переноса собранных данных в базу данных и к способу использования счетчика энергии для интеллектуального энергопотребления.

Изобретение относится к области астатического автоматического управления динамическими объектами с неопределенными параметрами на основе встроенной модели движения объекта и модальной инвариантности.

Изобретение относится к компьютерной технике. Технический результат - автоматизированное управление климатом на ограниченной территории.

Представлена система регулирования уровня жидкости в технологической установке. Система регулирования уровня жидкости содержит: подвижный узел, содержащий стержень, при этом стержень подвижного узла включает в себя ближний конец и дальний конец; поплавок, прикрепленный к дальнему концу стержня; приводной механизм, функционально связанный с подвижным узлом; процессор, связанный с приводным механизмом и выполненный с возможностью перемещения поплавка с помощью подвижного узла; датчик, содержащий вход и выход, причем вход датчика функционально связан с подвижным узлом для приема входного сигнала, представляющего характеристику поплавка или рабочей среды, а выход датчика функционально связан с процессором для создания выходного сигнала, связанного с входным сигналом; запоминающее устройство, связанное с процессором; приводящий в действие модуль, сохраненный в запоминающем устройстве, который, будучи выполняемым в процессоре, приводит в действие приводной механизм; устройство вывода данных, соединенное с процессором, и демонстрирующий модуль, сохраненный в запоминающем устройстве, который, будучи выполняемым в процессоре, демонстрирует выходной сигнал датчика на устройстве вывода данных. Технический результат – упрощение конструкции и повышение надежности. 4 н. и 28 з.п. ф-лы, 5 ил.
Наверх