Способ контроля движения наблюдаемого с космического аппарата ледника

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для контроля движения ледника относительно наземного объекта, столкновение с которым с вероятностью приведет к катастрофическим последствиям. Сущность: выполняют съемку с космического аппарата ледника и неподвижных характерных наземных точек в моменты, взятые через задаваемый промежуток времени. Определяют скорость движения фронтальной части ледника по получаемым изображениям. Дополнительно выполняют одну или более съемку ледника и характерных точек вокруг ледника через отсчитываемое от момента выполнения предшествующей съемки ледника время, взятое из заранее рассчитанного диапазона значений. По полученным изображениям определяют расстояния от характерных наземных точек до фронтальной части ледника. С учетом указанных расстояний определяют параметры, по которым контролируют движение фронтальной части ледника относительно наземного объекта. Технический результат: повышение точности контроля движения ледника относительно наземного объекта.

 

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для контроля движения наблюдаемого с космического аппарата (КА) ледника.

Ледники играют важную роль в жизни нашей планеты. Движение - основной процесс, управляющий жизнедеятельностью ледника. Оно служит источником энергии для изменений структуры ледникового льда, влияет на его тепловое состояние, разгружает области аккумуляции от льда (С.В. Калесник. Очерки гляциологии, Государственное издательство географической литературы, Москва, 1963).

Бесконтрольное движение ледника может привести к катастрофическим последствиям (Л.В. Десинов. Снежный покров и ледники. М., «Знание», 1988; Л.В. Десинов. Агрессия горного ледника. «Земля и Вселенная», №1, 2003). Поэтому необходимо контролировать движение и моменты времени катастрофического схода ледников.

Для определения скорости движения ледника пользуются своеобразными «ледниковыми часами» - криокинеметрами. Криокинеметр, приспособленный для непрерывной записи, называется криокинеграфом.

Сконструированный Швейцарской ледниковой комиссией криокинеметр (Mercanton P. Le de la Commission des glaciers. «Ztschr. F.G.», XXII, 1935) содержит основание, блок вращения, циферблат со стрелками и проволоку с закрепленными на ней грузиком и якорем, который связывает прибор с ледником, при этом проволока натянута грузиком через блок вращения, вращение которого передается на стрелки. Схема действия прибора очень проста: ледник продвигается вперед, от этого проволока, связывающая ледник с прибором, ослабляется и через блок оттягивается грузиком книзу; вращение блока передается через специальный механизм стрелкам циферблата. Чувствительность прибора такова, что 1-2 часа достаточно для получения заметного отсчета.

Криокинеметр этой конструкции может мерить скорость движения ледника только по его краю, при этом, поскольку длина проволоки под влиянием температурных колебаний изменяется, при длине проволоки, превышающей 10 м, уже получаются крупные ошибки.

Данный недостаток устраняется при реализации другой схемы криокинеграфа (Galloway R.W. Mechanical measurement of glacier motion. «Journ. Of Glaciology», No. 19, 1956), при которой прибор устанавливают на трубках, глубоко погруженных в лед и заполненных замораживающей смесью льда и соли. От горизонтального блока В прибора к двум точкам А и С склона долины протягивается длинная упругая проволока (например, струна). Длины АВ и ВС равны, высоты точек А и С над блоком В одинаковы - это обеспечивает одинаковое натяжение обеих половин проволоки, свободно висящей над поверхностью льда. Движение ледника увлекает блок В и заставляет блок вращаться в соответствии со скоростью движения ледника. Блок соединен с барабаном, обернутым бумагой, на которой перо, связанное с часовым механизмом, чертит линию.

Определив скорость движения ледника, можно приблизительно оценить момент времени его катастрофического схода.

Также для определения момента времени катастрофического схода ледника может использоваться способ, основанный на определении перемещения ледника за заданный промежуток времени (С.В. Калесник. Очерки гляциологии, Государственное издательство географической литературы, Москва, 1963), согласно которому ставят две вехи, одну на языке ледника, другую - на склоне ледника, и с помощью угломерного прибора, размещаемого с наблюдателем на склоне ледника, измеряют перемещение ледника за заданный промежуток времени и определяют скорость движения ледника. Для установки вех в леднике и его склоне бурят отверстия, в которые помещают, например, алюминиевые трубы.

С помощью данного способа можно получить качественную оценку момента времени катастрофического схода ледника.

Применение данного способа ограничено условием прямой видимости установленных на языке и склоне ледника вех и наблюдателя. Данный способ также предполагает работу специалистов на леднике и его склоне, что не всегда выполнимо.

Известен способ определения скорости движения фронтальной части ледника с КА (патент РФ № 2568152 по заявке №2014120766/28, МПК G01C 11/00 (2006.01), приоритет от 22.05.2014 - прототип), согласно которому определяют неподвижные характерные точки на склонах ледника, осуществляют с КА съемку ледника и неподвижных характерных точек и получают изображение, фиксируют контрольный створ в виде линии, проходящей через неподвижные характерные точки, в случае пересечения изображения ледника и контрольного створа измеряют по полученному изображению расстояние от контрольного створа до максимально удаленной крайней точки языка ледника, а в случае если изображение ледника и контрольный створ не пересекаются - расстояние до минимально удаленной крайней точки языка ледника, через промежуток времени ΔT, больший или равный n=3⋅d/0.2, где n - количество суток, d - геометрическое разрешение съемочной системы КА по поверхности Земли, повторяют съемку с КА при возникновении условий съемки, определяют изменение δL измеряемого расстояния от контрольного створа до крайней точки языка ледника и определяют скорость движения фронтальной части ледника по формуле δL/ΔТ.

К недостаткам способа-прототипа относится то, что он не обеспечивает контроля возможности наступления катастрофического события на объекте, достижение которого фронтальной части ледника приведет к катастрофическим последствиям, с учетом времени, необходимого для принятия решения по подготовке к наступлению катастрофического события.

Задачей, на решение которой направлено настоящее изобретение, является повышение точности контроля движения ледника относительно наземного объекта, достижение которого фронтальной частью ледника приведет к катастрофическим последствиям.

Технический результат предлагаемого изобретения заключается в осуществлении дистанционного контроля с КА достижения фронтальной частью ледника (языком ледника) задаваемого наземного объекта с учетом времени, необходимого для принятия решения по подготовке к наступлению катастрофического события на наземном объекте.

Технический результат достигается тем, что в способе контроля движения наблюдаемого с космического аппарата ледника, включающем съемку с космического аппарата ледника и неподвижных характерных наземных точек в моменты, взятые через задаваемый промежуток времени, и определение скорости движения фронтальной части ледника по получаемым изображениям, дополнительно выполняют одну или более съемку ледника и характерных точек вокруг ледника через отсчитываемое от момента выполнения предшествующей съемки ледника время ΔT, определяемое соотношением , где

S - расстояние от фронтальной части ледника до наземного объекта, достижение которого ледником приведет к катастрофическим последствиям, отсчитываемое вдоль линии движения фронтальной части ледника к наземному объекту, определяемое по расстояниям от характерных наземных точек до фронтальной части ледника, определяемым по изображению, полученному в предшествующей съемке ледника;

V - скорость движения фронтальной части ледника, отсчитываемая вдоль линии движения фронтальной части ледника к наземному объекту, определяемая на момент предшествующей съемки ледника по фиксируемым моментам времени предшествующих съемок ледника и расстояниям от характерных наземных точек до фронтальной части ледника, определяемым по изображениям, полученным в предшествующих съемках ледника;

a max - задаваемое максимальное ускорение движения фронтальной части ледника вдоль линии его движения к наземному объекту;

Δtкр - задаваемое время для принятия решения по подготовке к катастрофическому событию на наземном объекте,

при этом по получаемым изображениям определяют расстояния от характерных наземных точек до фронтальной части ледника, по которым определяют параметры, по которым контролируют движение фронтальной части ледника относительно наземного объекта. Поясним предложенные в способе действия.

При описании действий предложенного способа используем последовательную нумерацию съемок ледника. Обозначаем ΔTi, i≥2 - время (промежуток времени) от момента ti-1 выполнения (i-1)-ой съемки ледника до момента ti выполнения i-ой съемки ледника.

В предлагаемом способе изначально выполняют первую и вторую (повторную) съемки с КА ледника и неподвижных характерных наземных точек вокруг ледника в моменты, взятые через задаваемый промежуток времени, выбираемый, например, из следующих соображений.

Например, минимальная скорость движения ледника в период абляции может быть оценена величиной ≈0.2 м/сутки. Для надежного определения перемещения ледника можно использовать соотношение n=K⋅d/0.2, где d - геометрическое разрешение съемочной системы КА по поверхности Земли в метрах, n - количество суток до повторной съемки, K - коэффициент, выбираемый из условия надежности определения перемещения ледника (например, можно принять K=3). Таким образом, повторная съемка ледника может осуществляться при возникновении необходимых условий съемки через промежуток времени ΔT2≥n суток.

Условия съемки определяются характеристиками аппаратуры наблюдения и характеризуются взаимным положением объекта съемки и трасс КА на земной поверхности, освещенностью объекта (как правило, углом возвышения Солнца над плоскость местного горизонта), метеоусловиями (как правило, характеристиками облачности) (М.Ю. Беляев. Научные эксперименты на космических кораблях и орбитальных станциях. М., «Машиностроение», 1984). Условия для съемки наземных объектов с КА, в том числе с нескольких КА - например, спутников дистанционного зондирования Земли (ДЗЗ), КА типа международной космической станции (МКС) и др., - периодически возникают, и съемки могут быть реализованы.

По получаемым изображениям определяют (измеряют) расстояния от характерных наземных точек до фронтальной части ледника.

Необходимые неподвижные характерные точки всегда могут быть найдены на склонах вокруг ледника. Ими могут являться кучи камней, отдельные крупные валуны и т.д. Фиксация на изображениях неподвижных характерных наземных точек вокруг ледника с помощью современных оптических систем не представляет затруднений.

По расстояниям от характерных наземных точек до фронтальной части ледника, полученным по результатам последовательных съемок ледника, определяют длину перемещения фронтальной части ледника за время между съемками.

Например, по расстояниям от характерных наземных точек до фронтальной части ледника определяют местоположение фронтальной части ледника относительно данных характерных точек на момент выполнения каждой съемки (например, определяют координаты фронтальной части ледника в некоторой системе координат, связанной с характерными точками вокруг ледника). По определенным на моменты выполнения съемок координатам местоположений фронтальной части ледника определяют расстояние между данными местоположениями (данное расстояние отсчитывается вдоль линии движения фронтальной части ледника к наземному объекту), которое является длиной перемещения фронтальной части ледника за время между съемками.

По определенной длине перемещения фронтальной части ледника за время между съемками ледника определяют скорость движения фронтальной части ледника на данном интервале времени.

По получаемым изображениям определяют текущее расстояние от фронтальной части ледника до задаваемого наземного объекта, достижение которого ледником приведет к катастрофическим последствиям, отсчитываемое вдоль задаваемой (прогнозируемой) линии движения фронтальной части ледника к наземному объекту.

Также данное расстояние может быть определено по измеренным расстояниям от характерных наземных точек вокруг ледника до фронтальной части ледника. Например, относительно упомянутых характерных точек вокруг ледника задают местоположение задаваемого наземного объекта и с учетом рельефа местности задают точки вдоль линии движения фронтальной части ледника к наземному объекту (определяют координаты наземного объекта и точек линии движения фронтальной части ледника к наземному объекту в системе координат, связанной с характерными точками вокруг ледника). По определенным координатам местоположений фронтальной части ледника, наземного объекта и точек линии движения фронтальной части ледника к наземному объекту определяют искомое расстояние от фронтальной части ледника до задаваемого наземного объекта.

После этого дополнительно выполняют одну или более съемку ледника и неподвижных характерных точек вокруг ледника через промежутки времени ΔTi, отсчитываемые от момента выполнения предшествующей съемки ледника, определяемые соотношением

,

где i≥3 - порядковый номер выполняемой съемки ледника;

Si-1 - расстояние от фронтальной части ледника до наземного объекта, достижение которого ледником приведет к катастрофическим последствиям, отсчитываемое вдоль линии движения фронтальной части ледника к наземному объекту, определяемое по расстояниям от характерных наземных точек до фронтальной части ледника, определяемым по изображению, полученному в предшествующей (i-1)-ой съемке ледника;

Vi-1 - скорость движения фронтальной части ледника, отсчитываемая вдоль линии движения фронтальной части ледника к наземному объекту, определяемая на момент предшествующей (i-1)-ой съемки ледника по фиксируемым моментам времени предшествующих съемок ледника и расстояниям от характерных наземных точек до фронтальной части ледника, определяемым по изображениям, полученным в предшествующих съемках ледника;

a max - задаваемое максимальное ускорение движения фронтальной части ледника вдоль линии его движения к наземному объекту;

Δtкр - задаваемое время для принятия решения по подготовке к катастрофическому событию на наземном объекте.

Соотношение (1) соответствует условию, что при движении фронтальной части ледника с начальной скоростью Vi-1, заданной на момент времени предшествующей (i-1)-ой съемки ледника, и с ускорением amax фронтальная часть ледника достигнет заданного наземного объекта (объекта, достижение которого ледником приведет к катастрофическим последствиям) в момент времени через отрезок времени после момента времени предшествующей (i-1)-ой съемки ледника. Поэтому новая съемка (получение нового снимка) позволяет выявить опасное движение ледника не позднее, чем за время Δtкр до данного катастрофического события.

Задаваемое максимальное ускорение движения фронтальной части ледника в направлении на наземный объект amax задается, например, исходя из анализа ускорений движения фронтальной части ледника, полученных по результатам предшествующих наблюдений данного ледника или ледников аналогичного типа, аналогичного расположения и в аналогичных условиях. Также величина amax может задаваться с учетом текущего фактического ускорения движения фронтальной части ледника в направлении на наземный объект, определяемого по полученным в предшествующих съемках ледника изображениям: например, величина amax может задаваться с задаваемым превышением над фактическим ускорением движения фронтальной части ледника, определенным на момент выполнения последней съемки ледника.

Текущие значения параметров, характеризующих движение фронтальной части ледника относительно наземного объекта, - текущие значения скорости и ускорения движения фронтальной части ледника, отсчитываемых вдоль линии движения фронтальной части ледника к наземному объекту - определяются следующим образом.

Используя изображения, полученные в трех последних съемках ледника (в (i-2)-ой, (i-1)-ой и i-ой съемках), скорость и ускорение движения фронтальной части ледника, отсчитываемые вдоль линии движения фронтальной части ледника к наземному объекту, определяются по соотношениям

где δLi - длина перемещения фронтальной части ледника за время от момента выполнения (i-1)-ой съемки ледника до момента выполнения i-ой съемки ледника;

Vi, ai - скорость и ускорение движения фронтальной части ледника, отсчитываемые вдоль линии движения фронтальной части ледника к наземному объекту, на момент выполнения i-ой съемки ледника.

В общем случае после выполнения i-ой, i≥2 съемки ледника искомые параметры движения фронтальной части ледника определяются по изображениям, полученным в =1, …, min{3,i-1} последних съемках ледника, как решение системы уравнений

где xj, j=1, …, - искомые неизвестные параметры движения фронтальной части ледника: соответственно скорость, ускорение и производная ускорения движения фронтальной части ледника, отсчитываемые вдоль линии движения фронтальной части ледника к задаваемому наземному объекту, на момент выполнения (i-)-ой съемки ледника.

Индекс =1, …, min{3,i-1} принимает следующие возможные значения:

=1 при i=2;

=1,2 при i=3;

=1, 2, 3 при i≥4.

Система (4) является системой уравнений -ой степени относительно неизвестных xj, j=1, …, :

- при =1 система включает одно линейное уравнение относительно неизвестных xj, j=1;

- при =2 система включает два квадратных уравнения относительно неизвестных xj, j=1, 2;

- при =3 система включает три кубических уравнения относительно неизвестных xj, j=1, 2, 3.

Таким образом, величина максимального ускорения amax может задаваться с задаваемым превышением над определенным с использованием уравнений (2)÷(4) текущим фактическим ускорением движения фронтальной части ледника.

Момент времени наиболее ранней возможной реализации катастрофической ситуации на наземном объекте (достижение фронтальной частью ледника задаваемого наземного объекта прогнозируется по скорости движения фронтальной части ледника, определенной по последним выполненным съемкам ледника, и задаваемому максимальному ускорению движения фронтальной части ледника amax по соотношению

,

где Si - расстояние от фронтальной части ледника до наземного объекта отсчитываемое вдоль линии движения фронтальной части ледника к наземному объекту, на момент выполнения i-ой съемки ледника;

ΔTS - минимальное время, отсчитываемое от момента выполнения i-ой съемки ледника, через которое фронтальная часть ледника достигнет задаваемого наземного объекта (минимальное время перемещение фронтальной части ледника на расстояние Si, отсчитываемое от момента выполнения i-ой съемки ледника).

В случае когда по системе уравнений (4) при =3 определены скорость, ускорение и производная ускорения движения фронтальной части ледника, можно задать текущие величины amax (максимальное ускорение движения фронтальной части ледника вдоль линии его движения к наземному объекту) и (максимальная производная ускорения движения фронтальной части ледника вдоль линии его движения к наземному объекту с задаваемым превышением над значениями ускорения и производной ускорения движения фронтальной части ледника, определенными как решения системы уравнений (4).

В этом случае минимальное время ΔTS перемещения фронтальной части ледника на расстояние Si, отсчитываемое от момента выполнения i-ой съемки ледника, определяется по значениям скорости x1, определенной как решение системы уравнений (4), ускорения x2=amax и производной ускорения фронтальной части ледника как решение уравнения

Уравнение (6) является уравнением -ой степени относительно неизвестного ΔTS.

Соотношение (1) (применительно для следующей (i+1)-ой съемки) получается вычитанием из прогнозируемого по соотношению (5) значения времени значений времени последней съемки ледника и интервала времени для принятия решения по подготовке к катастрофическому событию на наземном объекте

.

Решение системы уравнений (4) и уравнения (6) выполняется с использованием общеизвестных математических методов решения линейных, квадратных и кубических уравнений.

В общем случае движение фронтальной части ледника к наземному объекту рассматривается как криволинейное движение, связанное с рельефом местности. В случае когда движение фронтальной части ледника к наземному объекту может рассматриваться как прямолинейное, удобно использовать понятие контрольного створа, которое можно сформулировать как линию, задаваемую относительно неподвижных характерных наземных точек вокруг ледника перпендикулярно направлению от фронтальной части (языка) ледника на задаваемый наземный объект, достижение которого ледником приведет к катастрофическим последствиям.

В этом случае по получаемым изображениям определяют расстояния от фронтальной части ледника до контрольного створа. Если контрольный створ пересекает изображение ледника, то определяется расстояние от контрольного створа до максимально удаленной крайней точки фронтальной части ледника. В случае отсутствия такого пересечения определяется расстояние от контрольного створа до минимально удаленной точки фронтальной части ледника. Длину перемещения фронтальной части ледника за время между съемками определяют как разность полученных расстояний от контрольного створа до фронтальной части ледника. Текущее расстояние от фронтальной части ледника до задаваемого наземного объекта может быть получено как непосредственным определением данного расстояния по изображению, так и как разность текущего расстояния от контрольного створа до фронтальной части ледника и неизменного расстояния от контрольного створа до задаваемого наземного объекта.

Время, необходимое для принятия решения по подготовке к наступлению катастрофического события на наземном объекте, может быть задано несколькими упорядоченными по времени значениями - например, заданными с учетом разных этапов/уровней подготовки к катастрофическому событию (т.е. с учетом всего возможного перечня необходимых подготовительных операций).

В предлагаемом способе к использованию принимается текущее наибольшее значение из задаваемых значений времени для принятия решения по подготовке к катастрофическому событию на наземном объекте . После истечения данного наибольшего значения - в момент, когда определяемое по соотношению (1) время ΔTi становится отрицательным - к использованию в качестве Δtкр принимается следующее значение и т.д.

Истечение последнего значения из соответствует условию, что при движении фронтальной части ледника с начальной скоростью, определенной на момент времени последней съемки ледника, и с задаваемым ускорением aкр фронтальная часть ледника достигнет заданного наземного объекта через отрезок времени <Δtкр (отсчитывая от момента времени последней съемки ледника).

Таким образом, после истечения последнего значения из необходимо принять весь набор решений по подготовке к наступлению катастрофического события на наземном объекте, при этом дальнейший контроль за фактическим движением ледника может осуществляться как с помощью наземных средств, так и дистанционно с КА.

При использовании предлагаемого способа возможно задание нескольких наземных объектов, достижение каждого из которых ледником приведет к катастрофическим последствиям. В этом случае действия предлагаемого способа применяются к каждому из задаваемых наземных объектов.

Частным случаем является возможность изменения координат наземного объекта, достижение которого ледником приведет к катастрофическим последствиям, - например, когда в качестве наземного объекта выступает подвижный или перемещаемый объект (научная станция, производственная установка и т.д.). При этом новое местоположение такого наземного объекта может выбираться с учетом текущего положения фронтальной части ледника и текущих значений параметров движения ледника.

Опишем технический эффект предлагаемого изобретения.

Предлагаемое техническое решение позволяет осуществлять дистанционный контроль с КА достижения языком ледника задаваемого наземного объекта, достижение которого языком ледника приведет к катастрофическим последствиям, с учетом времени, необходимого для принятия решения по подготовке к наступлению катастрофического события на наземном объекте.

Действительно, выполнение съемки ледника через получаемый по соотношению (1) промежуток времени после предшествующей съемки ледника позволяет получить очередное изображение ледника не позже, чем за время Δtкр до возможного наступления катастрофического события, связанного со сходом ледника на рассматриваемый наземный объект. При этом обеспечивается учет криволинейности движения фронтальной части ледника к наземному объекту.

Таким образом, обеспечивается гарантированный контроль опасного движения фронтальной части ледника относительно задаваемого наземного объекта, в том числе реализуется определение опасного для заданного наземного объекта движения фронтальной части ледника и обеспечивается возможность своевременной подготовки к наступлению потенциального катастрофического события с возможностью учета различных этапов/уровней подготовки к катастрофическому событию.

Получаемый технический результат достигается за счет дополнительного определения предложенных параметров; выполнения предложенных съемок ледника и характерных точек вокруг ледника с КА в предложенные моменты времени, определяемые с использованием предложенных параметров по предложенному соотношению; осуществления предложенного контроля движения фронтальной части ледника относительно наземного объекта по предложенным параметрам, определяемым предложенным образом с использованием получаемых в съемках изображений.

В настоящее время технически все готово для реализации предложенного способа с использованием спутников ДЗЗ и КА типа МКС. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств. В том числе для съемок и фиксации неподвижных характерных точек вокруг ледника и упомянутого контрольного створа могут использоваться применяемые на КА оптические приборы и системы, для определения по полученным снимкам измеряемых расстояний, определения скорости и ускорения движения фронтальной части ледника и определения необходимых моментов времени могут использоваться вычислительные средства КА.

Способ контроля движения наблюдаемого с космического аппарата ледника, включающий съемку с космического аппарата ледника и неподвижных характерных наземных точек в моменты, взятые через задаваемый промежуток времени, и определение скорости движения фронтальной части ледника по получаемым изображениям, отличающийся тем, что дополнительно выполняют одну или более съемку ледника и характерных точек вокруг ледника через отсчитываемое от момента выполнения предшествующей съемки ледника время ΔT, определяемое соотношением,

где S - расстояние от фронтальной части ледника до наземного объекта, достижение которого ледником приведет к катастрофическим последствиям, отсчитываемое вдоль линии движения фронтальной части ледника к наземному объекту, определяемое по расстояниям от характерных наземных точек до фронтальной части ледника, определяемым по изображению, полученному в предшествующей съемке ледника;

V - скорость движения фронтальной части ледника, отсчитываемая вдоль линии движения фронтальной части ледника к наземному объекту, определяемая на момент предшествующей съемки ледника по фиксируемым моментам времени предшествующих съемок ледника и расстояниям от характерных наземных точек до фронтальной части ледника, определяемым по изображениям, полученным в предшествующих съемках ледника;

amax - задаваемое максимальное ускорение движения фронтальной части ледника вдоль линии его движения к наземному объекту;

Δtкр - задаваемое время для принятия решения по подготовке к катастрофическому событию на наземном объекте,

при этом по получаемым изображениям определяют расстояния от характерных наземных точек до фронтальной части ледника, по которым определяют параметры, по которым контролируют движение фронтальной части ледника относительно наземного объекта.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в радиолокаторе с синтезируемой апертурой антенны (РСА). Достигаемый технический результат – измерение рельефа поверхности Земли и формирование цифровой модели рельефа с помощью РСА, установленного на борту носителя РСА.

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения параметров движения фронтальной части ледника.

Изобретение относится к области для контроля экологического загрязнения шельфовых, прибрежных зон. Способ включает зондирование прибрежных акваторий, содержащих эталонные участки средствами, установленными на воздушно-космическом носителе с получением синхронных изображений в ультрафиолетовом и ближнем инфракрасном диапазоне с привязкой изображений по координатам системой позиционирования ГЛОНАСС, контрастирование кадров путем формирования синтезированных матриц из попиксельных отношений этих изображений, выделение контуров на поле синтезированных матриц, вычисление идентифицируемых параметров сигнала внутри контуров: пространственного спектра волнения F, фрактального объема Ω, площади рельефа Sp взволнованной поверхности анализируемого участка, оценка индекса состояния (И) загрязнения в виде зависимости от произведения идентифицируемых параметров Технический результат – повышение достоверности идентификации аномалий морской поверхности, а также увеличение чувствительности измерений.

Изобретение относится к области геодезии и фотограмметрии и может быть использовано при проектировании, создании и восстановлении геодезических сетей. Способ обследования пунктов государственной геодезической сети (ГГС) включает для каждого из пунктов сбор информационных материалов о пункте ГГС и об его характерных внешних признаках, определение местоположения пункта ГГС, его идентификацию, фиксирование изображений районов местонахождения пункта ГГС, документальное оформление результатов обследования пункта ГГС.

Изобретение относится к области геокриологии и может быть использовано в процессе ледникового геоморфологического картографирования. Данные изобретения являются реализациями различных технологий для способа картографирования ледниковой геоморфологии.

Способ дистанционного определения деградации почвенного покрова. Способ включает зондирование подстилающей поверхности, содержащей тестовые участки многоканальным спектрометром, установленнЫм на аэрокосмическом носителе с одновременным получением изображений на каждом канале; расчет методом зональных отношений амплитуд сигналов в каналах частных индексов деградации, а именно процентного содержания гумуса (Н), индекса засоленности (NSI) и индекса влагопотерь (W); определение интегрального показателя деградации D по многопараметрической регрессивной зависимости, вида: D = ( H 0 H ) 1,9 ⋅ ( N S I N S I 0 ) 0,5 ⋅ ( W 0 W ) 0,3 пересчет значениЙ пикселей яркости изображений в масштабе вычисленного показателя деградации каждого пикселя; выделение контуров их результирующих изображений с установленными градациями степени деградации.

Изобретение относится к системам измерения размеров объекта. .

Изобретение относится к области фотограмметрии и может быть использовано для топографической съемки местности путем сравнения двух и более изображений одного и того же участка.

Изобретение относится к оптоэлектронным средствам получения и цифровой обработки изображений и может найти применение в энергетике при обследовании, то есть анализе состояния объектов электрических сетей путем определении источников теплового излучения с помощью тепловидеосъемочного устройства, например, разрушенных тепло- и электроизоляторов, перегруженных участков электропроводки, в авиационной и космической технике при съемке и картографировании природных объектов и инженерных сооружений.
Наверх