Стенд для акустических испытаний шумопоглощающих панелей

Изобретение относится к метрологии. Cтенд для акустических испытаний шумопоглощающих панелей содержит испытательную камеру, стены которой облицованы исследуемой шумопоглощающей облицовкой в виде шумопоглощающих панелей. Источник шума расположен на плавающем полу, под которым устанавливается вибродемпфирующая панель, а точки измерения фиксируют на измерительной поверхности S, м2, представляющей собой сферическую поверхность. Уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую принята площадь полусферы: , где S=2πr2; r - расстояние от центра источника до точек измерений; S0=1 м2, а корректированный уровень звуковой мощности LpA: , где LAcp - средний уровень звука на измерительной поверхности. Величину снижения уровня звукового давления ΔL в отраженном звуковом поле образца комбинированной шумопоглощающей облицовки с резонансными элементами рассчитывают по известной формуле. Технический результат - расширение технологических возможностей испытаний объектов. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к испытательному оборудованию.

Наиболее близким техническим решением по технической сущности и достигаемому результату является стенд для виброакустических испытаний по патенту РФ №2557332, В06В 1/00, содержащий основания, защищаемый объект, измерительную аппаратуру и генераторы вибрационных, ударных и акустических воздействий (прототип).

Недостатком прототипа являются сравнительно невысокие возможности испытаний многомассовых систем и сравнительно невысокая точность для исследования систем, имеющих несколько упругих связей с корпусными деталями объекта, а также новых конструкций шумопоглощающих элементов облицовки.

Технически достижимый результат - расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями объекта и комбинированных шумопоглощающих элементов облицовки.

Это достигается тем, что в стенде для акустических испытаний шумопоглощающих панелей, содержащим испытательную камеру, стены которой облицованы исследуемой шумопоглощающей облицовкой в виде шумопоглощающих панелей, при этом источник шума расположен на плавающем полу, под которым устанавливается вибродемпфирующая панель, предназначенная для исключения помех при испытаниях шумопоглощающих панелей, а точки измерения при включенном источнике шума фиксируют на измерительной поверхности S, м2, представляющей собой сферическую поверхность, окружающую источник шума, при этом уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую принята площадь полусферы: , где S=2πr2; r - расстояние от центра источника до точек измерений; S0=1 м2, а корректированный уровень звуковой мощности LpA: , где LAcp - средний уровень звука на измерительной поверхности, отличающийся тем, что величину снижения уровня звукового давления ΔL в отраженном звуковом поле образца комбинированной шумопоглощающей облицовки с резонансными элементами рассчитывают по формуле:

На фиг. 1 представлена схема стенда для акустических испытаний шумопоглощающих панелей облицовки, на фиг. 2 - схема комбинированной шумопоглощающей облицовки; на фиг. 3 - общий вид стенда для акустических испытаний.

Стенд для акустических испытаний шумопоглощающих панелей содержит испытательную камеру, стены 1-4 которой облицованы исследуемой шумопоглощающей облицовкой в виде шумопоглощающих панелей 10. Стены 2 и 3 расположены оппозитно, в плоскости чертежа. Источник шума 8 расположен на плавающем полу 7, под которым устанавливается вибродемпфирующая панель 6, предназначенная для исключения помех при испытаниях шумопоглощающих панелей. Точки измерения 9 при включенном источнике 8 шума фиксируют на измерительной поверхности S, м2, представляющей собой сферическую поверхность, окружающую источник 8 шума.

Стенд для акустических испытаний шумопоглощающих панелей работает следующим образом.

Уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую обычно принимают площадь полусферы (фиг. 1), т.е.:

где S=2πr2; r - расстояние от центра источника до точек измерений;

S0=1 м2.

Таким же образом определяется корректированный уровень звуковой мощности LpA:

где LAcp - средний уровень звука на измерительной поверхности.

Величины снижения уровней звукового давления могут быть определены только в зоне отраженного звукового поля (когда rmin≥rnp)

где В - постоянная каюты судна до его акустической обработки, м2;

B1 - постоянная помещения после его акустической обработки, м2, которая определяется по формуле:

где А1=α(Sобщ-Sобл) - эквивалентная площадь звукопоглощения поверхностями, не занятыми звукопоглощающей облицовкой; α=B/(B+Sобщ) - средний коэффициент звукопоглощения в помещении до его акустической обработки; α1 - средний коэффициент звукопоглощения акустически обработанного помещения, определяемый соотношением

ΔА - величина суммарного добавочного поглощения, вносимого конструкцией звукопоглощающей облицовки или штучными звукопоглотителями, определяемого по формуле

где αобл - реверберационный коэффициент звукопоглощения конструкции облицовки;

Sобл - площадь этой конструкции, м2;

Ашт - эквивалентная площадь звукопоглощения одного штучного поглотителя, м2;

n - количество штучных звукопоглотителей в помещении.

Величина снижения уровня звукового давления ΔL зависит от соотношения между прямым звуком, приходящим непосредственно от источника шума, и звуком отраженным и рассчитывается по формуле:

где L - уровень звукового давления в расчетной точке до акустической обработки помещения, дБ; Lобл - уровень звукового давления в расчетной точке после акустической обработки помещения, дБ.

На фиг. 2 представлена схема шумопоглощающей панели облицовки, которая содержит гладкую 11 и перфорированную 12 поверхности, между которыми расположен комбинированный звукопоглощающий слой сложной формы, представляющий собой чередование сплошных участков 13 и пустотелых участков 15, каркас которого выполнен из жесткого звукопоглощающего материала. Причем пустотелые участки 15 образованы призматическими поверхностями, имеющими в сечении, параллельном плоскости чертежа, форму параллелограмма, внутренние поверхности которого имеют зубчатую структуру 16, или волнистую, или поверхность со сферическими поверхностями (на чертеже не показано). При этом вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закреплены соответственно на гладкой 11 и перфорированной 12 поверхностях. Полости 14, образованные гладкой 11 и перфорированной 12 поверхностями, между которыми расположен комбинированный звукопоглощающий слой сложной формы, заполнены мягким звукопоглощающим материалом. Полости 17 пустотелых участков 15, образованные призматическими поверхностями, заполнены вспененным полимером, например полиэтиленом или полипропиленом. Полости 17 пустотелых участков 15, образованные призматическими поверхностями, соединены резонансными отверстиями 18-20 с полостями 14, образованными гладкой 11 и перфорированной 12 поверхностями, между которыми расположен комбинированный звукопоглощающий слой сложной формы.

Шумопоглощающая панель облицовки работает следующим образом.

Звуковая энергия, пройдя через слой перфорированной поверхности 12 и комбинированный звукопоглощающий слой сложной формы, уменьшается, так как осуществляется переход звуковой энергии в тепловую (диссипация, рассеивание энергии), т.е. в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", имеют место потери энергии за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети микропор звукопоглотителя. Резонансные отверстия 18-20 в полостях 17 пустотелых участков 15 выполняют функции горловин резонаторов "Гельмгольца", частотная полоса гашения звуковой энергии которых определяется диаметром и количеством резонансных отверстий 18-20.

1. Стенд для акустических испытаний шумопоглощающих панелей, содержащий испытательную камеру, стены которой облицованы исследуемой шумопоглощающей облицовкой в виде шумопоглощающих панелей, при этом источник шума расположен на плавающем полу, под которым устанавливается вибродемпфирующая панель, предназначенная для исключения помех при испытаниях шумопоглощающих панелей, а точки измерения при включенном источнике шума фиксируют на измерительной поверхности S, м2, представляющей собой сферическую поверхность, окружающую источник шума, при этом уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую принята площадь полусферы: , где S=2 πr2; r - расстояние от центра источника до точек измерений; S0=1 м2, а корректированный уровень звуковой мощности LpA: , где LAcp - средний уровень звука на измерительной поверхности, отличающийся тем, что величину снижения уровня звукового давления ΔL в отраженном звуковом поле образца комбинированной шумопоглощающей облицовки с резонансными элементами рассчитывают по формуле:

где L - уровень звукового давления в расчетной точке до акустической обработки помещения, дБ; Lобл - уровень звукового давления в расчетной точке после акустической обработки помещения, дБ; В - постоянная помещения до его акустической обработки, м2; B1 - постоянная помещения после его акустической обработки, м2, которая определяется по формуле:

где A1 = α(Sобщ-Sобл) - эквивалентная площадь звукопоглощения поверхностями, не занятыми звукопоглощающей облицовкой; α=В/(В+Sобщ) - средний коэффициент звукопоглощения в помещении до его акустической обработки; α1 - средний коэффициент звукопоглощения помещения, обработанного комбинированной шумопоглощающей облицовки с резонансными элементами

ΔА - величина суммарного добавочного поглощения, вносимого конструкцией звукопоглощающей облицовки или штучными звукопоглотителями, определяемого по формуле

ΔА=αоблSоблштn

где αобл - реверберационный коэффициент звукопоглощения конструкции комбинированной шумопоглощающей облицовки; Sобл - площадь этой конструкции, м2; Ашт - эквивалентная площадь звукопоглощения одного штучного поглотителя, м2; n - количество штучных звукопоглотителей в помещении.

2. Стенд для акустических испытаний шумопоглощающих панелей по п. 1, отличающийся тем, что шумопоглощающая панель облицовки содержит гладкую и перфорированную поверхности, между которыми размещен комбинированный звукопоглощающий слой сложной формы, представляющий собой чередование сплошных участков и пустотелых участков, каркас которого выполнен из жесткого звукопоглощающего материала, пустотелые участки образованы призматическими поверхностями, имеющими в сечении, параллельном плоскости чертежа, форму параллелограмма, внутренние поверхности которого имеют зубчатую структуру, при этом вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закреплены соответственно на гладкой и перфорированной поверхностях, причем полости, образованные гладкой и перфорированной поверхностями, между которыми расположен комбинированный звукопоглощающий слой сложной формы, заполнены мягким звукопоглощающим материалом, а полости пустотелых участков, образованные призматическими поверхностями, заполнены вспененным полимером, например полиэтиленом или полипропиленом, при этом полости пустотелых участков, образованные призматическими поверхностями, соединены резонансными отверстиями с полостями, образованными гладкой и перфорированной поверхностями, между которыми расположен комбинированный звукопоглощающий слой сложной формы.



 

Похожие патенты:

Изобретение относится к измерительной техники и может быть использовано для поиска места прохождения и глубины трубопроводов водоснабжения и теплосети, газо- и нефтепроводов, находящихся под землей.

Использование: для выполнения ультразвуковой дефектоскопии на сварном шве трубы. Сущность изобретения заключается в том, что устройство ультразвуковой дефектоскопии содержит: головку датчика ультразвуковой дефектоскопии, установленную дальше после модуля детектирования шва; модуль расчета положения шва, который рассчитывает положение шва и положение среза наплавленного металла трубы, сваренной электрической контактной сваркой, используя тепловое изображение участка сварного шва, снятое модулем детектирования шва; модуль детектирования полосы среза наплавленного металла, который установлен непосредственно перед или непосредственно после головки датчика ультразвуковой дефектоскопии и который детектирует полосу среза наплавленного металла трубы, сваренной электрической контактной сваркой; модуль расчета положения среза наплавленного металла, который рассчитывает положение среза наплавленного металла трубы, сваренной электрической контактной сваркой, на основе полосы среза наплавленного металла, детектированной модулем детектирования полосы среза наплавленного металла; и модуль расчета величины отслеживающего перемещения, который рассчитывает величину отслеживающего перемещения головки датчика ультразвуковой дефектоскопии, используя указанные положение шва и положение среза наплавленного металла, рассчитанные модулем расчета положения шва, и положение среза наплавленного металла, рассчитанное модулем расчета положения среза наплавленного металла.

Использование: для калибровки преобразователей акустической эмиссии. Сущность изобретения заключается в том, что тестовый акустический сигнал от одного источника принимается двумя преобразователями акустической эмиссии, стандартным и калибруемым, первоначально в акустический контакт с передающим блоком вводится стандартный преобразователь акустической эмиссии, обрабатывается и запоминается сигнал от этого преобразователя, затем устанавливается калибруемый преобразователь на место стандартного, записывается и обрабатывается второй сигнал в компьютере, который сравнивается с эталонным, при этом тестовый акустический сигнал воспроизводится ударным воздействием на передающий блок калиброванными металлическими элементами, калибровка системы осуществляется с помощью быстродействующей тензометрической системы и подключенного к ней тензопреобразователя, которые регистрируют абсолютные перемещения объекта в месте ударного воздействия.

Группа изобретений относится к ультразвуковой визуализации объектов.  Устройство ультразвуковой визуализации объектов в жидких средах содержит генератор и блок обработки информации, корпус, лазер, первую и вторую двояковыпуклую оптическую линзы, полупрозрачное оптическое зеркало, отражающее оптическое зеркало, приёмную матрицу, плоско-выпуклую оптическую линзу, диск с первыми сквозными отверстиями, в каждом из которых размещён волновод с входным и выходным торцами, акустическую линзу, акустический излучатель.

Использование: для определения изменяющихся во времени термомеханических напряжений и/или градиентов напряжения по толщине стенок металлических тел, в частности трубопроводов.

Использование: для ультразвукового контроля. Сущность изобретения заключается в том, что для увеличения динамического диапазона сигналов, измеряемых при проведении ультразвукового контроля, восстанавливают исходную форму сигнала, искаженную за счет ограничения его амплитуды по заданным положительному и/или отрицательному уровням (клиппирование), при этом исходная форма сигнала восстанавливается (деклиппируется) итерационным способом, при котором спектр эхосигнала предыдущей итерации ограничивается в заданном частотном диапазоне, выполняется обратное преобразование Фурье, в полученном сигнале его значения на временных интервалах, где сигнал не искажен, заменяются значениями клиппированного сигнала, а на временных интервалах, где сигнал клиппирован, значения сигнала по модулю, меньшие уровня клиппирования, заменяются значениями уровня отсечки, после чего выполняется следующая итерация.

Группа изобретений относится к способу, системе и ее применению для скважинного мониторинга гидравлического разрыва пласта. Способ включает этапы, на которых: опрашивают оптическое волокно, размещенное вдоль траектории ствола скважины, для формирования распределенного акустического датчика; собирают данные от многочисленных продольных участков волокна; и обрабатывают указанные данные для получения индикации вымывания проппанта.

Использование: для определения вклада пластической деформации в величину акустической анизотропии при измерении в деталях машин и элементах конструкций. Сущность изобретения заключается в том, что выполняют ультразвуковое измерение акустической анизотропии, позволяющее определить величину вклада пластической деформации в величину акустической анизотропии путем сравнения значений акустической анизотропии, измеренной в контрольной точке детали или элемента до и после шлифования его поверхности на глубину не менее половины характерного размера зерна металла, при этом, циклы шлифования и последующего измерения акустической анизотропии на шлифованной поверхности в контрольной точке продолжают до тех пор, пока относительная разница значений акустической анизотропии в двух соседних циклах не составит значение, не превышающее 10%.
Изобретение относится к сфере космических исследований и технологий и может быть использовано для экспериментальной отработки технологии ускорения осаждения пыли в марсианской атмосфере.

Использование: для определения структуры дисперсных сред. Сущность изобретения заключается в том, что заполняют сосуд дисперсной средой, которую облучают продольной ультразвуковой волной с частотой, при которой длина волны λ больше размеров частиц R, фиксируют величину импульса А0, прошедшего через дисперсную фазу (жидкость без частиц), затем вносят частицы, фиксируют величину амплитуды Аn импульсов, прошедших расстояние L через исследуемую систему и времена tn, определяют разность А0-Аn величин импульсов в разные моменты времени tn и на основе массива А0-Аn/А0 судят о структуре дисперсной системы.

Изобретение относится к области вибрационной техники, а именно к конструкциям свайных фундаментов зданий и сооружений гражданского и промышленного назначения. Экспериментальная установка состоит из лотка, грунтового массива и моделируемой сваи.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором посредством по крайней мере трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2.

Изобретение относится к испытательному оборудованию и может быть использовано для испытаний систем виброизоляций. Стенд содержит основание, на котором посредством по крайней мере трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2, в качестве генератора гармонических колебаний использован эксцентриковый вибратор, расположенный на переборке.

Изобретение относится к области машиностроения и может быть использовано для измерения резонансной частоты колебаний конструкции испытательных стендов, имитирующих инерционность объекта управления и упругость крепления привода в изделии и предназначенных для контроля динамических характеристик системы привод-объект управления.

Изобретение относится к вибрационной технике. Вибратор содержит корпус и пьезоэлемент.

Изобретение относится к измерительной технике, а именно к устройствам для измерения параметров датчиков ускорений в низкочастотном диапазоне. Стенд состоит из основания, выполненного с возможностью регулирования горизонтальности, подвижной системы в виде качающегося блока, установленного между двух вертикальных стоек, соединенных с основанием, и электронного блока, включающего датчик угла качания, многоканальный усилитель, АЦП и систему цифровой связи.

Изобретение относится к испытательной технике и может быть использовано для вибрационных испытаний различных изделий. .

Изобретение относится к способам испытания элементов конструкции на вибростенде и может быть использовано при усталостных испытаниях или при сравнительной диагностике элементов конструкции.

Изобретение относится к испытательной технике и может быть использовано для тестирования конструкций, в частности венца фюзеляжа с продольной и окружной кривизной.

Изобретение относится к устройству тестирования венца (10) фюзеляжа, например, летательного аппарата с продольной и окружной кривизной, содержащему набор средств (80) приложения сил к венцу фюзеляжа.

Использование: для определения значений параметров потока, обеспечивающих максимальную ориентацию вытянутых и пластинчатых нанообъектов вдоль потока жидкой среды. Сущность изобретения заключается в том, что используют измерительную ячейку в форме кольцевого канала переменного сечения для создания ускоренного потока, содержащую побудитель ламинарного течения и установленный в области сужения кольцевого канала акустический измеритель, с помощью которого в образце жидкой среды измеряют акустические спектры затухания ультразвука, по измеренным спектрам рассчитывают продольную вязкость жидкой среды и определяют зависимость продольной вязкости от скорости потока жидкой среды и от степени сужения сечения потока в области измерений и по измеренной зависимости вычисляют критическое значение скорости потока и критическое значение степени сужения сечения потока, выше которых реализуется состояние максимальной ориентации вытянутых и пластинчатых нанообъектов вдоль потока жидкой среды. Технический результат: обеспечение возможности определения значений параметров потока, обеспечивающих максимальную ориентацию вытянутых и пластинчатых нанообъектов вдоль потока в дисперсиях. 1 з.п. ф-лы, 3 ил.
Наверх