Устройство трехмерного сканирования

Изобретение относится к точной механике и может быть использовано для контроля качества изготовления изделий; оцифровки созданного вручную дизайн-макета изделия, как основы для дальнейшей проработки; представления удаленных экспертов результатов разрушающих испытаний, последствий аварий и катастроф, воздействий взрывов; визуализации участков местности с естественными формами рельефа; криминалистов, археологов. Заявленное устройство трехмерного сканирования содержит первую платформу, вторую платформу, первый шаговый двигатель с первым вращающимся валом, второй шаговый двигатель со вторым вращающимся валом, первый кронштейн и дальномер. При этом первый вращающийся вал первого шагового двигателя установлен на первой платформе, второй шаговый двигатель установлен на второй платформе посредством первого кронштейна. Первый шаговый двигатель механически сопряжен со второй платформой. Устройство трехмерного сканирования содержит также зеркало, сопряженное со вторым вращающимся валом второго шагового двигателем, при этом дальномер установлен на второй платформе Зеркало оптически сопряжено с дальномером. Также устройство содержит первый энкодер с первой вращающейся частью, установленный между второй платформой и первым шаговым двигателем, причем первая вращающаяся часть первого энкодера механически сопряжена с первым вращающимся валом первого шагового двигателя, и второй энкодер со второй вращающейся частью, установленный между первым кронштейном и вторым шаговым двигателем, причем вторая вращающаяся часть второго энкодера механически сопряжена со вторым вращающимся валом второго шагового двигателя. В заявленное устройство введен редуктор с вращающимся центром, установленный между второй платформой и первым энкодером, при этом вращающийся центр редуктора механически сопряжен с первой вращающейся частью первого энкодера. Технический результат - повышение качества трехмерного изображения. 1 ил.

 

Устройство относится к точной механике и может быть использовано для: реверсивного или обратного проектирования; обнаружения, регистрации и идентификации незадокументированных изменений при изготовлении опытных образцов продукции; контроля качества изготовления изделий; оцифровки созданного вручную дизайн-макета изделия, как основы для дальнейшей проработки; изготовления факсимильной упаковки для готового изделия; представления удаленным экспертам результатов разрушающих испытаний, последствий аварий и катастроф, воздействий взрывов; визуализации участков местности с естественными формами рельефа; создания наглядного представления применительно к обучению на примерах и совершенствования деятельности медиков, криминалистов, археологов (сканирование повреждений и дегенеративных изменений костей, суставов, черепа, мягких тканей); оцифровки физических макетов для мультимедиа-приложений (например, компьютерных игр), создания в натуральную величину или в уменьшенном масштабе копий (при использовании 3D принтера) уникальных объектов (произведений искусства, ювелирных изделий, предметов материальной культуры различных эпох, возможно, со следами износа, повреждений, ремонта); воссоздания по сохранившимся фрагментам цельных форм произведений прикладного искусства; создания цифровых музеев скульптуры и архитектуры, макетов городов.

Известно устройство трехмерного сканирования, содержащее первую платформу, вторую платформу, первый шаговый двигатель с первым вращающимся валом, второй шаговый двигатель со вторым вращающимся валом, первый кронштейн и дальномер, при этом первый вращающийся вал первого шагового двигателя установлен на первой платформе, второй шаговый двигатель установлен на второй платформе посредством первого кронштейна, причем первый шаговый двигатель механически сопряжен со второй платформой, а дальномер сопряжен с вторым вращающимся валом [http://riggershop.ru/catalog/lazernye_dalnomery/leica_3d_disto?r1=yandext&r2=&ymclid=798255766976714137500001].

Недостаток этого устройства заключается в том, что для сканирования пространства второму шаговому двигателю необходимо поднять на определенный угол дальномер с помощью вала и остановить, и продолжать делать такие итерации до окончания сканирования. В результате образования люфта и колебаний во время остановки качество трехмерного изображения ухудшается. Технический результат изобретения заключается в повышении качества трехмерного изображения.

Указанный технический результат достигается тем, что в устройство трехмерного сканирования, содержащее первую платформу, вторую платформу, первый шаговый двигатель с первым вращающимся валом, второй шаговый двигатель со вторым вращающимся валом, первый кронштейн и дальномер, при этом первый вращающийся вал первого шагового двигателя установлен на первой платформе, второй шаговый двигатель установлен на второй платформе посредством первого кронштейна, причем первый шаговый двигатель механически сопряжен со второй платформой, введено зеркало, сопряженное со вторым вращающимся валом второго шагового двигателем, дальномер установлен на второй платформе, при этом зеркало оптически сопряжено с дальномером.

Существует вариант, в котором в устройство введен первый энкодер с первой вращающейся частью, установленный между второй платформой и первым шаговым двигателем, при этом первая вращающаяся часть первого энкодера механически сопряжена с первым вращающимся валом первого шагового двигателя.

Существует вариант, в котором в устройство введен второй энкодер со второй вращающейся частью, установленный между первым кронштейном и вторым шаговым двигателем, при этом вторая вращающаяся часть второго энкодера механически сопряжена со вторым вращающимся валом второго шагового двигателя.

Существует вариант, в котором в устройство введен редуктор с вращающимся центром, установленный между второй платформой и первым энкодером, при этом вращающийся центр редуктора механически сопряжен с первой вращающейся частью первого энкодера.

На прилагаемом чертеже представлена компоновочная схема устройства трехмерного сканирования.

Устройство трехмерного сканирования содержит первую платформу 1, сопряженную со второй платформой 2. Содержит также первый шаговый двигатель 5 с первым вращающимся валом 6, второй шаговый двигатель 7 со вторым вращающимся валом 8, первый кронштейн 9 и дальномер 10. В качестве первого шагового двигателя 5 и второго шагового двигателя 7 могут быть использованы шаговые двигатели PL39H26-D5, сервомоторы RDS 3128, бесколекторные двигатели МТ2216. В качестве дальномера 10 можно использовать лазерный дальномер Lightware SF30/C, световой дальномер Sharp (20-150). При этом первый вращающийся вал 6 первого шагового двигателя 5 установлен на первой платформе 1 посредством элемента 3, в качестве которого можно использовать различные крепежные элементы (например, запрессованная втулка, болт, гайка, шуруп и т.п.). Второй шаговый двигатель 7 установлен на второй платформе 2 посредством первого кронштейна 9. Первый шаговый двигатель 5 механически сопряжен со второй платформой 2. В устройство введено зеркало 15, сопряженное со вторым вращающимся валом 8 второго шагового двигателем 7. Дальномер 10 установлен на второй платформе 2 посредством второго кронштейна 11. Зеркало 15 оптически сопряжено с дальномером 10.

В одном из вариантов в устройство введен первый энкодер 17 с первой вращающейся частью 18, установленный между второй платформой 2 и первым шаговым двигателем 5. Первая вращающаяся часть 18 первого энкодера 17 механически сопряжена с первым вращающимся валом 6 первого шагового двигателя 5. В качестве первого энкодера 17 можно использовать энкодер ЛИР-238А-3-Н, энкодер ES3-01PN6941.

В одном из вариантов в устройство введен второй энкодер 20 со второй вращающейся частью 21, установленный между первым кронштейном 9 и вторым шаговым двигателем 7. Вторая вращающаяся часть 21 второго энкодера 20 механически сопряжена со вторым вращающимся валом 8 второго шагового двигателя 7. В качестве второго энкодера 20 можно использовать энкодер ЛИР-238А-3-Н, энкодер ES3-01PN6941.

В одном из вариантов в устройство введен редуктор 22 с вращающимся центром 23, установленный между второй платформой 2 и первым энкодером 17. Вращающийся центр 23 редуктора 22 механически сопряжен с первой вращающейся частью 18 первого энкодера 17. В качестве редуктора 22 можно использовать червячный редуктор, планетарный редуктор и др.

Устройство трехмерного сканирования работает следующим образом.

Дальномер 10 испускает лазерный луч в направлении наклонной отражающей поверхности зеркала 15, образующей с лазерным лучом угол равный 45 градусам. В результате отражения лазерный луч оказывается отклоненным на 90 градусов (на чертеже условно направленным вверх). Далее лазерный луч распространяется по прямой до ближайшего препятствия. Часть энергии луча образует отраженный лазерный луч, направленный под углом 180 градусов от препятствия (отраженный луч двигается по той же траектории, что и до отражения, но в обратном направлении - к устройству, на чертеже условно вниз по направлению к наклонной отражающей поверхности зеркала 15). Достигнув наклонной отражающей поверхности зеркала 15, отраженный луч снова отклоняется на 90 градусов и, в результате, оказывается направленным к дальномеру 10. Достигнув дальномера 10, отраженный луч регистрируется дальномером 10, в результате чего дальномер 10 определяет пройденное лучом расстояние. Искомое же расстояние до препятствия, при столкновении с которым произошло отражение луча, оказывается равным измеренному дальномером расстоянию за вычетом кратчайшего расстояния между дальномером 10 и наклонной отражающей поверхностью зеркала 15. Большинство представленных на современном рынке дальномеров способны производить вышеописанные измерения с частотой 100 Гц и более.

В процессе сканирования происходит вращение зеркала 15 по оси вращения вращающегося вала 8 (посредством шагового двигателя 7), за счет чего достигается измерение расстояний до точек окружающего пространства в вертикальной плоскости (получение своеобразного среза окружающего пространства). Также происходит вращение устройства по оси вращения вращающегося вала 6 (посредством шагового двигателя 5), за счет чего достигается вращение в горизонтальной плоскости и, таким образом, измерение расстояний до точек во всей сфере пространства вокруг устройства. На оси вращения вращающегося вала 6 также расположен редуктор 22 с вращающимся центром 23, позволяющий замедлить и сделать более равномерным и плавным вращение шагового двигателя 5 (скорость вращения устройства вокруг этой оси заметно ниже, чем скорость вращения в оси вращения вращающегося вала 8, на котором расположено зеркало 15, что позволяет использовать редуктор).

На валах 8 и 6 находятся энкодеры 20 и 17 соответственно. С их помощью с определенной периодичностью осуществляется измерение текущих угловых координат вращающихся валов 8 и 6. Вместе с поступающими от дальномера данными о расстоянии до препятствий получаются тройки значений, образующих координаты точек окружающего устройство пространства в сферической системе координат. Также выполняется необходимая синхронизация считывания данных, предоставляемых дальномером 10, энкодерами 20 и 17.

Сферическая система координат предполагает тройки значений (r, θ, ϕ), где r - кратчайшее расстояние до начала координат, θ - зенитный угол, ϕ - азимутальный угол. В контексте устройства r - показания дальномера, θ - показания второго энкодера в 20, ϕ - показания первого энкодера 17.

То, что в устройство трехмерного сканирования, содержащее первую платформу 1, вторую платформу 2, первый шаговый двигатель 5 с первым вращающимся валом 6, второй шаговый двигатель 7 со вторым вращающимся валом 8, первый кронштейн 9 и дальномер 10, при этом первый вращающийся вал 6 первого шагового двигателя 5 установлен на первой платформе 1, второй шаговый двигатель 7 установлен на второй платформе 2 посредством первого кронштейна 9, причем первый шаговый двигатель 5 механически сопряжен со второй платформой 2, введено зеркало 15, сопряженное со вторым вращающимся валом 8 второго шагового двигателем 7, дальномер 10 установлен на второй платформе 2, при этом зеркало 15 оптически сопряжено с дальномером 10 приводит к повышению качества трехмерного изображения.

То, что в устройство введен первый энкодер 17 с первой вращающейся частью 18, установленный между второй платформой 2 и первым шаговым двигателем 5, при этом первая вращающаяся часть 18 первого энкодера 17 механически сопряжена с первым вращающимся валом 6 первого шагового двигателя 5 приводит к повышению качества трехмерного изображения.

То, что в устройство введен второй энкодер 20 со второй вращающейся частью 21, установленный между первым кронштейном 9 и вторым шаговым двигателем 7, при этом вторая вращающаяся часть 21 второго энкодера 20 механически сопряжена со вторым вращающимся валом 8 второго шагового двигателя 7 приводит к повышению качества трехмерного изображения.

То, что в устройство введен редуктор 22 с вращающимся центром 23, установленный между второй платформой 2 и первым энкодером 17, при этом вращающийся центр 23 редуктора 22 механически сопряжен с первой вращающейся частью 18 первого энкодера 17 приводит к повышению качества трехмерного изображения.

Устройство трехмерного сканирования, содержащее первую платформу (1), вторую платформу (2), первый шаговый двигатель (5) с первым вращающимся валом (6), второй шаговый двигатель (7) со вторым вращающимся валом (8), первый кронштейн (9) и дальномер (10), при этом первый вращающийся вал (6) первого шагового двигателя (5) установлен на первой платформе (1), второй шаговый двигатель (7) установлен на второй платформе (2) посредством первого кронштейна (9), причем первый шаговый двигатель (5) механически сопряжен со второй платформой (2), содержащее также зеркало (15), сопряженное со вторым вращающимся валом (8) второго шагового двигателем (7), при этом дальномер (10) установлен на второй платформе (2), причем зеркало (15) оптически сопряжено с дальномером (10), содержащее также первый энкодер (17) с первой вращающейся частью (18), установленный между второй платформой (2) и первым шаговым двигателем (5), при этом первая вращающаяся часть (18) первого энкодера (17) механически сопряжена с первым вращающимся валом (6) первого шагового двигателя (5), содержащее также второй энкодер (20) со второй вращающейся частью (21), установленный между первым кронштейном (9) и вторым шаговым двигателем (7), при этом вторая вращающаяся часть (21) второго энкодера (20) механически сопряжена со вторым вращающимся валом (8) второго шагового двигателя (7), отличающееся тем, что в него введен редуктор (22) с вращающимся центром (23), установленный между второй платформой (2) и первым энкодером (17), при этом вращающийся центр (23) редуктора (22) механически сопряжен с первой вращающейся частью (18) первого энкодера (17).



 

Похожие патенты:

Изобретение относится к информационно измерительным комплексам и системам управления боевыми летательными аппаратами (ЛА). Технический результат - расширение функциональных возможностей прицельных систем путем синтеза автоматической процедуры прицеливания по подвижной наземной цели для обеспечения эффективного применения неуправляемых авиационных средств поражения (АСП).

Изобретение относится к области геодезического контроля и может быть использовано для определения и восстановления положения горизонтальной оси любого сложного инженерного линейного объекта.

Изобретение относится к области судостроения и касается, в частности, монтажа блоков остова корабля в судовом плавучем доке. Предложена система управления степенью проведения монтажа в судовом плавучем доке, которая включает в себя: узел наблюдения, включающий в себя датчик осадки, расположенный в доке и измеряющий степень изгибания днища дока, и узел фотографирования, расположенный снаружи дока и измеряющий состояние боковых стенок дока; узел измерения, который размещается в доке и измеряет состояние блоков остова корабля, смонтированных в доке, в реальном времени; узел управления степенью монтажа, который размещается в доке и управляет степенью проведения монтажа в доке, которая изменяется согласно воздействию блоков остова корабля, смонтированных в доке; и контроллер, который анализирует текущую ситуацию дока и текущую ситуацию степени монтажа на основе информации, измеренной посредством узла наблюдения и узла измерения, и управляет узлом управления степенью монтажа, чтобы управлять степенью проведения монтажа в доке согласно результату анализа.

Изобретение относиться к устройствам контроля дальности действия и чувствительности лазерных дальномеров без полевых испытаний и оценки предельных отклонений этих характеристик.

Изобретение относится к области геодезического контроля и может быть использовано для определения координат контрольной точки любых сложных конструкций, используя в качестве геодезической марки любой участок, принадлежащий этим конструкциям.

Изобретение относится к методике измерения расстояния до предмета с использованием стереоскопических изображений. Стереоскопическая камера включает в себя две камеры и блок вычисления, который вычисляет расстояние до предмета на основе изображений, полученных двумя камерами.

Изобретение относится к аппаратуре лазерного целеуказания и дальнометрии. Лазерный целеуказатель-дальномер содержит источник первичного питания, лазерный излучатель с лампой накачки, блок управления, блок питания лазерного излучателя, включающий источник заряда емкостного накопителя энергии и источник дежурной дуги для лампы накачки, которые содержат схемы управления, и обратноходовые импульсные преобразователи напряжения, включающие силовые ключи с датчиками тока индуктора, контроллеры преобразователей напряжения с узлами управления амплитудой тока силовых ключей, силовые трансформаторы и высоковольтные выпрямители.

Изобретение относится к военной технике, а именно к аппаратуре лазерного целеуказания и дальнометрии. Лазерный целеуказатель-дальномер содержит приемопередатчик с выходным зрачком излучающего канала, разъемом питания внешних абонентов, блоком накачки излучающего канала и элементом регулировки энергии накачки, датчиком стартового сигнала, устройством фотоприемным с фотодиодом и формирователем стопового сигнала в виде светодиода, блоком управления с измерителем временных интервалов, формирователем контрольного времени задержки, импульсным генератором питания формирователя стопового сигнала, строб-генератором, узлом опорной частоты, тестер энергии лазерного излучения, включающий фотоприемный блок с входным объективом, оптически сопрягаемым с выходным зрачком излучающего канала, и пульт управления и индикации, тестер частоты, включающий тактовый генератор, блок частотомера с индикаторами соответствия или несоответствия частоты повторения или кодовой последовательности импульсов лазерного излучения нормированным значениям с фотоприемником, оптически сопрягаемым с выходным зрачком излучающего канала.

Изобретение относится к области определения взаимного положения объектов, один из которых служит источником электромагнитного излучения в оптическом диапазоне, а второй - ее измерителем, и может использоваться для создания оптических дальномеров, пеленгаторов и другой оптической аппаратуры аналогичного назначения.

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. Техническим результатом изобретения является определение достоверных и точных значений геометрических параметров поверхности покрытия автомобильной дороги с помощью наземного лазерного сканера.

Изобретение относится к области измерительной техники, в частности к устройствам для оптического бесконтактного измерения профиля поверхности, и может быть использовано для измерения параметров неровности, шероховатости поверхности, например дорожного покрытия, поверхности металлов и изделий сложной формы.

Изобретение относится к приборостроению и предназначено для автоматического контроля размеров, шероховатости поверхности и температуры изделий. Технический результат – повышение точности измерений.

Изобретение относится к области обработки изображений. Технический результат – определение реального расстояния на основе изображения без сравнения с эталонным объектом, имеющимся в изображении.

Изобретение относится к области измерительной техники. Датчик угла поворота, выполненный в виде фотоэлектрического автоколлиматора, содержит объектив, в фокальной плоскости которого установлен матричный приемник излучения, выходом подключенный к электронному блоку, светоделитель, расположенный перед матричным приемником излучения, осветитель с источником света, предназначенный для подсветки сигнальной маски с прозрачным штрихом, установленной перед светоделителем в фокальной плоскости объектива, и двойное зеркало, представляющее собой контролируемый объект - призму БР-180°, обращенную прозрачной входной гранью к объективу.

Изобретение относится к области оптических измерений. Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора заключается в освещении прозрачной наледи и фиксации видеокамерой изображения искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух.

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения неоднородного сложного объемного динамического напряженного состояния, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления.

Изобретение относится к измерительной технике и предназначено для измерения напряжений и перемещений, связанных с деформацией объектов. Волоконно-оптический тензометрический датчик состоит из оптического волокна, покрытого металлом, двух волоконных брэгговских решеток (ВБР), защитной трубки и корпуса датчика.

Изобретение относится к неразрушающему контролю заготовок. Способ контроля заготовки включает сохранение данных модели, связанных с заготовкой, в систему контроля и определение относительного положения измерителя удаленности по отношению к заготовке.

Изобретение относится к панорамному телевизионному наблюдению для технологического контроля внутренней поверхности труб и трубопроводов большого диаметра. Контроль осуществляется компьютерной системой при помощи монохромной или цветной телевизионной камеры кругового обзора в области, близкой к полусфере, с принудительной подсветкой.

Изобретение относится к панорамному телевизионному наблюдению для технологического контроля внутренней поверхности труб и трубопроводов большого диаметра. Контроль осуществляется компьютерной системой при помощи монохромной (черно-белой) телевизионной камеры кругового обзора в области, близкой к полусфере, которая принудительно подсвечивается для получения оптимальной чувствительности изображения.

Система управления направлением движения транспортного средства включает в себя два отдельных устройства привязки; лазерное сканирующее устройство, выполненное с возможностью испускать сигналы лазерного луча и сканировать секторную область лазерным лучом, с тем чтобы измерять расстояние по прямой соединительной линии для соединения лазерного сканирующего устройства с любым из по меньшей мере двух отдельных устройств привязки и угол между соответствующей прямой соединительной линией и корпусом транспортного средства у транспортного средства или угол между прямыми соединительными линиями; процессор, выполненный с возможностью обрабатывать и сохранять данные и определять, является или нет ориентация корпуса транспортного средства в реальном времени отклоняющейся от начальной ориентации корпуса транспортного средства сразу после того, как система начинает работать, в соответствии с результатами, считанными лазерным сканирующим устройством. Упрощается управление направлением движения транспортного средства. 2 н. и 12 з.п. ф-лы, 4 ил.
Наверх