Способ статической балансировки кривошипно-шатунной группы

Изобретение относится к области машиностроения, в частности к статической балансировке кривошипно-шатунной группы. Способ статической балансировки кривошипно-шатунной группы заключается в удалении дисбаланса путем снятия части металла на противовесах коленчатого вала. При статической балансировке собирают кривошипно-шатунную группу, содержащую коленчатый вал с противовесами, шатун, поршень, поршневой палец, поршневые кольца, маховик, и составные части, устанавливаемые на коленчатый вал. Собранную группу помещают на призмы с телами качения, установленными в верхней части призмы таким образом, что упомянутые тела качения располагаются между поверхностью каждой коренной шейки коленвала и поверхностью призмы. Поршень с шатуном устанавливают таким образом, что они располагаются вертикально под действием силы тяжести, затем обеспечивают расположение центра противовесов и оси каждой шатунной шейки коленчатого вала в горизонтальной плоскости, после чего путем снятия части металла с противовесов обеспечивают статическое равновесие указанной кривошипно-шатунной группы. Достигается снижение трудоемкости. 1 ил.

 

Изобретение относится к области двигателестроения, в частности двигателям внутреннего сгорания, и может быть применено при разработке способов статической балансировки вращающихся групп двигателя, в частности кривошипно-шатунной группы.

Дисбаланс - одно из самых опасных явлений, которое действует на все вращающиеся детали в автомобиле, в том числе и на коленчатый вал. Его внешними признаками являются повышенные вибрации, которые при разной частоте вращения могут усиливаться или уменьшаться.

Наибольший вклад вносят несбалансированные детали большого диаметра, вращающиеся с большой угловой скоростью. На практике ими становятся колеса, карданный вал, сцепление или гидротрансформатор автоматической трансмиссии, маховик и коленчатый вал. У любой вращающейся детали по той или иной причине центр массы находится не на оси вращения, а смещен от нее на расстояние R, так называемый эксцентриситет. В этом случае имеется дисбаланс, равный произведению массы детали Μ на величину эксцентриситета R. При вращении детали будет возникать центробежная сила F, вызывающая вибрацию. Эта сила пропорциональна дисбалансу и квадрату угловой скорости детали, а также зависит от жесткости соответствующего узла. Поэтому с теоретической точки зрения балансировка состоит в том, чтобы создать у детали дисбаланс, равный по величине (модулю) и противоположный по знаку исходному дисбалансу. Сумма этих дисбалансов (результирующий дисбаланс) будет равен нулю.

Существуют два способа балансировки: статическая и динамическая.

Статическая балансировка основана на использовании статического неуравновешенного момента, под действием которого деталь поворачивается до тех пор, пока наиболее тяжелая часть окажется вертикально под осью вращения детали и появится возможность осуществить балансировку путем установки дополнительных грузов на диаметрально противоположной стороне детали или путем облегчения наиболее тяжелой части детали. Статическую балансировку выполняют путем установки детали на призмах, вращающихся опорах, весах или непосредственно на месте установки детали. Иногда деталь предварительно закрепляют на оправке. Балансировочные призмы, изготовленные с большой точностью из закаленной стали, устанавливают на балансировочном устройстве параллельно и горизонтально с точностью до 0,02 мм/м.

Методы статической балансировки широко известны, см., например, Колесник Н.В. Статическая и динамическая балансировка. Машгиз, 1954, с. 34-36, Ливит Н.Е., Рыженков В.М. Балансировка деталей и узлов. - М.: Машиностроение, 1986, http://msd.com.ua/mashiny-i-apparaty-pichhevyx-roizvodstv/balansirovka-vrashhayushhixsya-detalej/ и т.д.

Основными недостатками данных способов является то, что для балансировки требуется точное выставление призм по уровню, что приводит к повышенной трудоемкости и стоимости процесса балансировки, невозможности ее проведения без специального оборудования.

Задачей предложенного изобретения является устранение указанных недостатков и создание способа статической балансировки кривошипно-шатунной группы, применение которого позволит значительно упростить сам процесс балансировки и снизить требования по точности к применяемому оборудованию при сохранении качества балансировки.

Решение указанной задачи достигается за счет того, что в предложенном способе статической балансировки кривошипно-шатунной группы, заключающемся в удалении дисбаланса путем снятия части металла на противовесах коленчатого вала, согласно изобретению, при статической балансировке собирают кривошипно-шатунную группу, содержащую коленчатый вал с противовесами, шатун, поршень, поршневой палец, поршневые кольца, маховик, и составные части, устанавливаемые на коленчатый вал, после чего собранную группу помещают на призмы с телами качения, установленными в верхней части призмы таким образом, что упомянутые тела качения располагаются между поверхностью каждой коренной шейки коленвала и поверхностью призмы, при этом поршень с шатуном устанавливают таким образом, что они располагаются вертикально под действием силы тяжести, затем обеспечивают расположение центра противовесов и оси каждой шатунной шейки коленчатого вала в горизонтальной плоскости, после чего путем снятия части металла с противовесов обеспечивают статическое равновесие указанной кривошипно-шатунной группы.

Предложенный способ может быть реализован следующим образом при помощи следующего устройства.

При проведении статической балансировки согласно предложенному способу собирают кривошипно-шатунную группу, содержащую коленчатый вал 1 с противовесами 2 и коренными шейками 3, шатун 4, поршень5, поршневой палец 6, поршневые кольца 7, составные части, устанавливаемые на коленчатый вал, диск сцепления, шкив (не обозначены), после чего собранную группу помещают на призмы 8 с шарикоподшипниками 9. Шарикоподшипники 9 установлены в верхней части призмы 8 таким образом, что их наружное подвижное кольцо располагается между поверхностью каждой коренной шейки 3 коленвала 1 и поверхностью призмы 8. Поршень 5 с шатуном 4 устанавливают таким образом, что они располагаются вертикально под действием силы тяжести. Обеспечивают расположение центра противовесов оси каждой шатунной шейки (не обозначена) коленчатого вала 1 в горизонтальной плоскости, после чего путем снятия части металла с противовесов 2 обеспечивают статическое равновесие указанной кривошипно-шатунной группы.

Указанные действия повторяют до получения требуемой точности балансировки.

Проведенные заявителем и авторами неоднократные статические балансировки кривошипно-шатунных групп подтвердили правильность заложенных конструкторско-технологических решений.

Применение предложенного статического способа балансировки позволит увеличить ресурс двигателя, снизить расход топлива за счет улучшения его работы и уменьшить шум при работе двигателя.

Способ статической балансировки кривошипно-шатунной группы, заключающийся в удалении дисбаланса путем снятия части металла на противовесах коленчатого вала, характеризующийся тем, что при статической балансировке собирают кривошипно-шатунную группу, содержащую коленчатый вал с противовесами, шатун, поршень, поршневой палец, поршневые кольца, маховик, и составные части, устанавливаемые на коленчатый вал, после чего собранную группу помещают на призмы с телами качения, установленными в верхней части призмы таким образом, что упомянутые тела качения располагаются между поверхностью каждой коренной шейки коленвала и поверхностью призмы, при этом поршень с шатуном устанавливают таким образом, что они располагаются вертикально под действием силы тяжести, затем обеспечивают расположение центра противовесов и оси каждой шатунной шейки коленчатого вала в горизонтальной плоскости, после чего путем снятия части металла с противовесов обеспечивают статическое равновесие указанной кривошипно-шатунной группы.



 

Похожие патенты:

Диск (221) первой ступени компрессора газотурбинного двигателя (100) и способ балансировки ротора (230) компрессора газотурбинного двигателя (100). Диск (221) первой ступени компрессора газотурбинного двигателя (100) содержит корпус (240).

Изобретение относится к стендам испытательной техники и может быть использовано при проектировании и изготовлении стендов для испытания гидроэлектромеханических агрегатов летательных аппаратов.

Группа изобретений относится к испытаниям гидравлических машин и предназначена для измерения рабочих характеристик погружных газосепараторов, используемых при добыче нефти.

Изобретение относится к испытательной технике, в частности к стендам для испытания форсунок, предназначенных для распыления воды под высоким давлением при тушении пожара, и может быть использовано для определения расхода воды через форсунку.

Изобретение относится к балансировочной технике и может быть использовано в горизонтальных балансировочных станках. Устройство содержит опоры, опорные мостики, привод ротора, причем опорный мостик каждой опоры соответственно соединен с соответствующей опорой через две плоские пружины для первой опоры и две для второй опоры, на каждой из которых закреплен тензорезистор, на каждой плоской пружине симметрично тензорезистору относительно ее плоскости установлен дополнительный тензорезистор, все тензорезисторы ориентированы по вертикальной оси чувствительности, выводы каждого из тензорезисторов соединены с входом соответствующего согласующего усилителя, выходы которых соединены с входами блока вычисления веса, амплитуд и фаз дисбалансов, дополнительный вход которого соединен с выходом датчика фазовой метки, а привод связан с балансируемым ротором ременной передачей.

Изобретение относится к испытательной технике и может быть использовано для испытаний как объектов, содержащих взрывчатые и токсичные вещества, так и товаров народно-хозяйственного назначения на различные тепловые воздействия, включая воздействие открытого пламени очага пожара.

Изобретение относится к способам проверки работоспособности и настройки внутритрубных инспекционных приборов и может быть использовано для испытаний с целью утверждения типа средства измерений, калибровки и поверки внутритрубных инспекционных приборов на трубопроводном испытательном полигоне.

Устройство (1) предназначено для зажима держателя сверлильного, фрезерного или абразивного инструмента в балансировочном станке и включает посадочный блок (2) с посадочным отверстием (9) для соединительного хвостовика инструмента и зажимную цангу (10).

Изобретение относится к испытательной технике, в частности к имитационным камерам для имитации биологических, химических и/или физических воздействий окружающей среды.

Изобретение относится к измерительной технике, в частности к средствам и методам балансировки различных деталей. В способе с помощью весов, образованных для определения центра тяжести, измеряется положение центрирующей поверхности тела в отношении их базирующего элемента с помощью электрических датчиков перемещения.

Изобретение относится к многоцилиндровому рядному двигателю внутреннего сгорания для моторного транспортного средства, содержащему коленчатый вал (10), вращающийся вокруг оси (15) коленчатого вала во время работы двигателя внутреннего сгорания, и множество колен (11, 12, 13) кривошипа, следующих друг за другом по оси коленчатого вала, причем каждое колено (11, 12, 13) кривошипа связано с соответствующим цилиндром (1, 2, 3) в двигателе внутреннего сгорания, и компенсирующее устройство для по меньшей мере частичной компенсации инерционных сил, образуемых на коленчатом валу (10) вращающимися массами.

Изобретение может быть использовано в рядных двигателях внутреннего сгорания, применяемых для моторных транспортных средств. Многоцилиндровый рядный двигатель внутреннего сгорания для моторного транспортного средства содержит коленчатый вал (10), выполненный с возможностью вращения вокруг своей оси (15) во время работы двигателя, совокупность колен (11, 12, 13) кривошипа, расположенных друг за другом вдоль оси коленчатого вала.

Система (131) масс противоположного вращения предназначена для использования с рядным четырехцилиндровым двигателем внутреннего сгорания, содержащим масляный поддон (134) и имеющим последовательность работы цилиндров 1-3-4-2 (4.1, 4.3, 4.4, 4.2), для уравновешивания знакопеременных усилий второго порядка, образуемых на ведущем валу двигателя.

Изобретение относится к поршневым двигателям, в частности к балансировочному валу поршневого двигателя. Уравновешивающий вал (1) включает опорную шейку (2), на которой уравновешивающий вал (1) установлен в подшипнике, участок (10), на котором зубчатое колесо (5) соединено с уравновешивающим валом без возможности проворота или на котором уравновешивающий вал (1) и зубчатое колесо (5) выполнены монолитно, и участок (8) дисбаланса, на котором расположен дисбаланс, причем зубчатое колесо выполнено из чугуна с шаровидным графитом с незакаленными зубьями (11).

Изобретение относится к поршневым двигателям, в частности к двигателям внутреннего сгорания. .

Изобретение относится к области машиностроения и может быть использовано как стационарный двигатель для дизель-электрической станции и как энергетическая установка для судна.

Изобретение относится к устройствам, предназначенным для проведения научно-прикладных исследований в области разработки и эксплуатации газовых и газоконденсатных месторождений, проведения экспериментов, связанных с имитацией динамических процессов, происходящих в газовой или газоконденсатной скважине, работающей с пескопроявлениями и/или жидкостями, в т.ч. находящимися во взаимодействии с поверхностно-активными вспенивающимися веществами и другими неагрессивными химическими веществами. Технический результат заключается в расширении функциональных возможностей установки и повышении эксплуатационной безопасности и надежности. Экспериментальная установка для имитации движения газожидкостной смеси и динамических процессов в стволе газовой скважины содержит основную и внутреннюю колонны прозрачных труб, колонну обратного потока, систему подачи и регулирования расхода газа, термостатируемую систему подачи и регулирования расхода воды и имитатора нефти, систему подачи и регулирования расхода реагента, гидравлическую систему для многократного использования воды и углеводородной жидкости. Основная колонна в верхней части соединена с колонной обратного потока, выход которой соединен с сепаратором, оборудованным выходами для жидкости и газа. Установка снабжена контрольно-измерительными приборами, устройствами видео- и фоторегистрации. Основная колонна труб и колонна обратного потока закреплены к мачте. Для обеспечения возможности подачи реагента в затрубное пространство введена капиллярная трубка с возможностью изменения положения по всей длине основной колонны труб. 9 з.п. ф-лы, 1 табл., 5 ил.
Наверх