Установка очистки и обеззараживания воды

Изобретение относится к технике очистки и обеззараживания воды из природных сильно загрязненных источников. Установка очистки и обеззараживания воды содержит фильтр предварительной очистки воды, подключенный входом к источнику исходной воды и выходом к контактной емкости, к которой подключен источник озона, а выходом обработанной озоном воды контактная емкость сообщена с ультрафильтрационным модулем с установленной в нем ультрафильтрационной мембраной, а выходом очищенной воды ультрафильтрационный модуль сообщен с модулем обратного осмоса, при этом контактная емкость снабжена насосом подачи обработанной озоном воды и эжектором, сопло которого подключено к выходу насоса подачи обработанной озоном воды, эжектор подключен к контактной емкости в зоне, ниже заданного уровня воды в контактной емкости, при этом контактная емкость подключена к источнику озона через эжектор, который сообщен с источником озона входом в его камеру смешения, ультрафильтрационный модуль подключен входом к выходу насоса подачи обработанной озоном воды из контактной емкости посредством трубопровода подачи обработанной озоном воды, причем на последнем последовательно по ходу обработанной озоном воды установлены обратный клапан и регулировочный клапан подачи обработанной озоном воды, полость ультрафильтрационного модуля перед ультрафильтрационной мембраной через сбросной кран сообщена с канализацией, а полость после ультрафильтрационной мембраны подключена через второй обратный клапан и регулятор соотношения обессоленной и необессоленной воды к накопительной емкости и через угольный фильтр и перепускной кран к входу насоса подачи очищенной воды, последний выходом подключен к модулю обратного осмоса, который выходом пермеата подключен к накопительной емкости и выходом воды, составляющей от 38 до 42% (объемн.) от поступившей на обратный осмос воды и не прошедшей через мембрану обратного осмоса с концентрированными в ней примесями, сообщен через сбросной кран с канализацией, через третий обратный клапан - с входом в модуль обратного осмоса и через запорный кран - с емкостью реагентов для промывки мембраны обратного осмоса, которая посредством насоса для промывки подключена к входу в модуль обратного осмоса, а ультрафильтрационный модуль выходом очищенной воды подключен к промежуточной накопительной емкости с промывным насосом. Технический результат - увеличение глубины очистки воды с возможностью получения на выходе установки воды, которая удовлетворяет требованиям, предъявляемым к питьевой воде. 1 ил.

 

Изобретение относится к технике очистки и обеззараживания воды из природных сильно загрязненных источников и может быть использовано для очистки и обеззараживания для получения питьевой воды и для других целей, где необходимо использовать очищенную от примесей воду.

Известна установка для очистки воды, содержащая реакционную камеру озона, подключенную выходом к установке аэрации воздухом очищаемой воды, которая выходом подключена к биологическому фильтру, а последний выходом подключен к ультрафильтрационному устройству, которое выходом очищенной воды подключено к фильтровальному устройству обратного осмоса (см. патент JP №7-185546, кл. C02F 1/44, опубл. 25.07.1995).

Однако данная установка не обеспечивает требуемую глубину очистки, что сужает область ее использования.

Наиболее близкой к изобретению по технической сущности и достигаемому результату является установка очистки и обеззараживания воды, содержащая фильтр предварительной очистки воды, подключенный входом к источнику исходной воды и выходом к контактной емкости, к которой подключен источник озона, а выходом обработанной озоном воды контактная емкость сообщена с ультрафильтрационным модулем с установленной в нем ультрафильтрационной мембраной, а выходом очищенной воды ультрафильтрационный модуль сообщен с модулем обратного осмоса (см. патент RU №2404140, кл. C02F 9/04, опубл. 20.11.2010).

Однако данная установка предназначена для обработки оборотной воды для последующего ее использования в технологическом цикле на предприятиях цветной металлургии или для сброса использованной воды на рельеф, что сужает возможности использования данной установки.

Технической проблемой является расширение возможностей использования установки для очистки и обеззараживания воды.

Технический результат заключается в том, что достигается возможность увеличения глубины очистки воды с возможностью получения на выходе установки воды, которая удовлетворяет требованиям, предъявляемым к питьевой воде.

Указанная проблема решается, а технический результат достигается за счет того, что установка очистки и обеззараживания воды содержит фильтр предварительной очистки воды, подключенный входом к источнику исходной воды и выходом к контактной емкости, к которой подключен источник озона, а выходом обработанной озоном воды контактная емкость сообщена с ультрафильтрационным модулем с установленной в нем ультрафильтрационной мембраной, а выходом очищенной воды ультрафильтрационный модуль сообщен с модулем обратного осмоса, при этом контактная емкость снабжена насосом подачи обработанной озоном воды и эжектором, сопло которого подключено к выходу насоса подачи обработанной озоном воды, эжектор подключен к контактной емкости в зоне, ниже заданного уровня воды в контактной емкости, при этом контактная емкость подключена к источнику озона через эжектор, который сообщен с источником озона входом в его камеру смешения, ультрафильтрационный модуль подключен входом к выходу насоса подачи обработанной озоном воды из контактной емкости посредством трубопровода подачи обработанной озоном воды, причем на последнем последовательно по ходу обработанной озоном воды установлены обратный клапан и регулировочный клапан подачи обработанной озоном воды, полость ультрафильтрационный модуля перед ультрафильтрационной мембраной через сбросной кран сообщена с канализацией, а полость после ультрафильтрационной мембраны подключена через второй обратный клапан и регулятор соотношения обессоленной и не обессоленной воды к накопительной емкости и через угольный фильтр и перепускной кран к входу насоса подачи очищенной воды, последний выходом подключен к модулю обратного осмоса, который выходом пермеата подключен к накопительной емкости и выходом воды, составляющей от 38 до 42% (объемн.) от поступившей на обратный осмос воды и не прошедшей через мембрану обратного осмоса с концентрированными в ней примесями, сообщен через сбросной кран с канализацией, через третий обратный клапан - с входом в модуль обратного осмоса и через запорный кран - с емкостью реагентов для промывки мембраны обратного осмоса, которая посредством насоса для промывки подключена к входу в модуль обратного осмоса, а ультрафильтрационный модуль выходом очищенной воды подключен к промежуточной накопительной емкости с промывным насосом.

На чертеже представлена принципиальная схема установки для очистки и обеззараживания воды.

Установка очистки и обеззараживания воды содержит фильтр предварительной очистки воды 1, подключенный входом к источнику исходной воды и выходом через электромагнитный клапан 2 к контактной емкости 3, к которой подключен источник озона (на чертеже не показан). Выходом обработанной озоном воды контактная емкость 3 сообщена с ультрафильтрационным модулем 4 с установленной в нем ультрафильтрационной мембраной (не показана на чертеже), а выходом очищенной воды ультрафильтрационный модуль 4 сообщен с модулем обратного осмоса 5 (модуль RO на чертеже).

Контактная емкость 3 снабжена насосом 6 подачи обработанной озоном воды и эжектором 7, сопло которого подключено к выходу насоса 6 подачи обработанной озоном воды, выходом эжектор 7 подключен к контактной емкости 3 в зоне уровня воды в последней, но под уровнем воды. Контактная емкость 3 подключена источнику озона через эжектор 7, который сообщен с источником озона входом в его камеру смешения (не показана на чертеже).

Ультрафильтрационный модуль 4 подключен входом к выходу насоса 6 подачи обработанной озоном воды из контактной емкости 3 посредством трубопровода 8 подачи обработанной озоном воды, причем на последнем последовательно по ходу обработанной озоном воды установлены обратный клапан 9 и регулировочный клапан 10 подачи обработанной озоном воды.

Полость ультрафильтрационного модуля 4 перед ультрафильтрационной мембраной через сбросной кран 11 сообщена с канализацией, а полость после ультрафильтрационной мембраны подключена через второй обратный клапан 12 и регулятор 13 соотношения обессоленной и не обессоленной воды к накопительной емкости 14 и через угольный фильтр 15 и перепускной кран 16 к входу насоса 17 подачи очищенной воды, последний выходом подключен к модулю обратного осмоса 5, который выходом пермеата подключен к накопительной емкости 14 и выходом воды, составляющей около 40% от поступившей на обратный осмос воды и не прошедшей через мембрану обратного осмоса с концентрированными в ней примесями, сообщен через сбросной кран 18 с канализацией, через третий обратный клапан 19 - с входом в модуль обратного осмоса 5 и через запорный кран 20 - с емкостью реагентов 21 для промывки мембраны обратного осмоса, которая посредством насоса 22 для промывки подключена к входу в модуль обратного осмоса 5, а ультрафильтрационный модуль 4 выходом очищенной воды подключен к промежуточной накопительной емкости 23 с промывным насосом.

Установка работает следующим образом.

Исходная вода проходит через фильтр предварительной очистки воды 1, например сетчатый фильтр, и поступает через электромагнитный клапан 2 в контактную емкость 3. Объем контактной емкости 3 рассчитывают таким образом, чтобы в ней контакт с озоном был не менее 20 мин. Заданный уровень воды в контактной емкости 3 поддерживают при помощи пьеза датчика, блока управления (не показаны на чертеже) и электромагнитного клапана 2. Когда уровень воды в контактной емкости 3 поднимается выше эжектора 7, включают насос 6 подачи обработанной озоном воды, забирающий воду из контактной емкости 3 и подающий ее в сопло эжектора 7 и таким образом формируют циркуляцию исходной воды через эжектор 7. В эжекторе 7 вода смешивается с озоно-воздушной или озоно-кислородной смесью, которая окисляет все поддающиеся окислению примеси исходной воды. Таким образом, после эжектора 7 исходная вода возвращается в контактную емкость 7, завершая циркуляционный контур. Посредством трубопровода 8 подачи обработанной озоном воды часть обработанной озоном воды из контура ее циркуляции отбирается через обратный клапан 9 и регулировочный клапан 10 подачи обработанной озоном воды на ультрафильтрационную мембрану ультрафильтрационного модуля 4. Обратный клапан 9 служит для исключения попадания воды в контактную емкость 3 во время промывки ультрафильтрационной мембраны, а посредством регулировочного клапана 10 регулируют соотношение количества воды, подающейся на ультрафильтрационную мембрану, к количеству воды, идущей на повторную обработку озоном в контактной емкости 3, при этом регулировочный клапан 10 отрегулирован таким образом, чтобы на ультрафильтрационную мембрану поступала вода с полностью окисленными веществами, растворенными в воде. В ультрафильтрационном модуле 4 задерживают все коллоидные частицы размером более 0,01 мкм, в результате чего достигается глубокая очистка исходной обработанной озоном воды от растворенных и взвешенных, органических и неорганических веществ. В связи с тем, что на ультрафильтрационную мембрану поступает вода, насыщенная озоном, на ней не образуется органическая слизь и не происходит ее заиливание.

В процессе работы установки проводят периодическую импульсную обратную промывку ультрафильтрационной мембраны чистой водой, которую осуществляют следующим образом.

Насос 6 подачи обработанной озоном воды выключают и открывают сбросной кран 11 ультрафильтрационной мембраны, а затем включают промывной насос и под избыточным давлением подают чистую воду, которая проходит через поры ультрафильтрационной мембраны, и все коллоидные частицы размером более 0,01 мкм сбрасываются в канализацию через сбросной кран 11. Промывка проходит после 2-10 мин работы установки во время ее работы в течение 10-25 с. Концентрат примесей, не прошедший через мембрану ультрофильтрации, в количестве 0,6-20% (данный процент зависит от химического состава исходной воды) от потока очищаемой воды, уходит в канализацию при промывке.

В больших установках после проведения промывки часть очищенной воды подают в промежуточную накопительную емкость 23 с промывным насосом, в которой хранят запас обеззараженной чистой воды под необходимым давлением и за счет которого осуществляют следующую обратную промывку ультрафильтрационной мембраны ультрафильтрационного модуля 4.

Далее для уменьшения солесодержания воды, после озоно-ультрафильтрационной очистки и обеззараживания воду подают через угольный фильтр 15 на модуль обратного осмоса 5. Угольный фильтр 15 позволяет удалить из воды остаточный озон, который растворился в воде. Далее поток воды разделяют на два потока. Первый поток воды подают в накопительную емкость 14, минуя модуль обратного осмоса 5, а второй поток – воды, подают на модуль обратного осмоса 5.

После модуля обратного осмоса 5 пермеат, составляющий порядка 60% от количества поступившей воды, подают в накопительную емкость 14, а воду с концентрированными примесями (порядка 40% от поступившего количества воды), которая не прошла через мембрану модуля обратного осмоса 5, сбрасывают в канализацию через сбросной кран 18, а количество обессоленной воды к общему количеству очищенной воды регулируется регулятором 13 соотношения обессоленной и не обессоленной воды.

Промывку мембран модуля обратного осмоса 5 осуществляют в ручном режиме, при падении производительности более чем на 10%.

Промывка состоит из двух стадий:

1. Режим мойки мембран лимонной кислотой, когда из емкости реагентов 21 раствор лимонной кислоты подают для промывки мембраны модуля обратного осмоса 5 посредством насоса 22 в модуль обратного осмоса 5.

2. Режим промывки мембран от кислоты, который осуществляют очищенной от примесей водой.

После промывки лимонная кислота подается обратно в емкость реагента 21.

Когда отсутствует потребление очищенной воды и накопительная емкость заполнена, установка переходит в ждущий режим.

Установка очистки и обеззараживания воды, содержащая фильтр предварительной очистки воды, подключенный входом к источнику исходной воды и выходом к контактной емкости, к которой подключен источник озона, а выходом обработанной озоном воды контактная емкость сообщена с ультрафильтрационным модулем с установленной в нем ультрафильтрационной мембраной, а выходом очищенной воды ультрафильтрационный модуль сообщен с модулем обратного осмоса, отличающаяся тем, что контактная емкость снабжена насосом подачи обработанной озоном воды и эжектором, сопло которого подключено к выходу насоса подачи обработанной озоном воды, эжектор подключен к контактной емкости в зоне, ниже заданного уровня воды в контактной емкости, при этом контактная емкость подключена к источнику озона через эжектор, который сообщен с источником озона входом в его камеру смешения, ультрафильтрационный модуль подключен входом к выходу насоса подачи обработанной озоном воды из контактной емкости посредством трубопровода подачи обработанной озоном воды, причем на последнем последовательно по ходу обработанной озоном воды установлены обратный клапан и регулировочный клапан подачи обработанной озоном воды, полость ультрафильтрационного модуля перед ультрафильтрационной мембраной через сбросной кран сообщена с канализацией, а полость после ультрафильтрационной мембраны подключена через второй обратный клапан и регулятор соотношения обессоленной и необессоленной воды к накопительной емкости и через угольный фильтр и перепускной кран к входу насоса подачи очищенной воды, последний выходом подключен к модулю обратного осмоса, который выходом пермеата подключен к накопительной емкости и выходом воды, составляющей от 38 до 42% (объемн.) от поступившей на обратный осмос воды и не прошедшей через мембрану обратного осмоса с концентрированными в ней примесями, сообщен через сбросной кран с канализацией, через третий обратный клапан - с входом в модуль обратного осмоса и через запорный кран - с емкостью реагентов для промывки мембраны обратного осмоса, которая посредством насоса для промывки подключена к входу в модуль обратного осмоса, а ультрафильтрационный модуль выходом очищенной воды подключен к промежуточной накопительной емкости с промывным насосом.



 

Похожие патенты:

Изобретение относится к интегрированной установке для переработки отходов медицинской лаборатории. Установка содержит, по меньшей мере, контейнер для сбора отходов и загрузочный насос, который переносит отдельные порции отходов в резервуар, таким образом, что установка работает благодаря гравитации прерывистыми циклами.

Изобретение относится к процессам очистки сточных вод, содержащих растворенные органические загрязнения, методом мокрого окисления, конкретно методом сверхкритического водного окисления, и может использоваться для очистки бытовых, технологических, поверхностных, сельскохозяйственных сточных вод.

Изобретение относится к очистке воды. Устройство для очистки соленой воды включает в себя минимум один резервуар (10) для приема перемешанной с минимум одним флокулянтом воды для отделения содержащихся в воде органических и биологических компонентов.

Изобретение относится к области создания наводороженных водных растворов с антиоксидантными свойствами и отрицательным окислительно-восстановительным потенциалом и может быть использовано в медицине.

Изобретение может быть использовано на предприятиях цветной металлургии, в золотодобывающей промышленности и в гальваническом производстве для очистки сточных вод и пульп, содержащих цианиды, тиоцианаты, тяжелые металлы, мышьяк и сурьму.

Изобретение может быть использовано для очистки городских сточных вод, а также сточных вод предприятий пищевой и целлюлозно-бумажной промышленности от сульфатов и фосфатов.

Изобретение может быть использовано для очистки природных и сточных вод промышленных предприятий от сероводорода, ионов сульфидов и гидросульфидов. Способ включает обработку исходной воды соединениями железа с последующей их регенерацией кислотой.

Изобретение может быть использовано в горнодобывающей промышленности для очистки и утилизации слабокислых металлоносных карьерных вод в условиях болотно-горного рельефа.

Изобретение относится к очистке отработанной производственной воды и может быть использовано для защиты окружающей среды. Способ очистки сточных вод от нитроэфиров включает предварительную обработку загрязненной воды 43-46% раствором гидроксида натрия до pH 12.

Изобретение относится к области очистки воды, в частности, к устройствам для очистки от взвешенных и коллоидных примесей, а также растворенных устойчивых органических соединений.
Изобретение относится к очистке производственно-дождевых сточных вод. Установка очистки сточных вод содержит накопительную емкость 1 с вводом сточных вод и средством аэрации потока сточных вод, соединенную с блоком 2 разделения стоков, и перекачивающие насосы 3, 4, 5.

Изобретение относится к интегрированной установке для переработки отходов медицинской лаборатории. Установка содержит, по меньшей мере, контейнер для сбора отходов и загрузочный насос, который переносит отдельные порции отходов в резервуар, таким образом, что установка работает благодаря гравитации прерывистыми циклами.

Изобретение может быть использовано в системах водоподготовки хозяйственно-бытового и производственного назначения, преимущественно для получения качественной питьевой воды из природных северных источников.

Изобретение относится к области очистных сооружений, а именно к станциям очистки производственно-дождевых сточных вод для переработки дождевых, талых, сточных вод и вод производственного характера.

Изобретение относится к устройству и способу получения обогащенной водородом воды и может быть использовано в медицинском оборудовании для оздоровительно-лечебных процедур и в хозяйственно бытовой деятельности.

Изобретение может быть использовано в водоочистке. Станция очистки сточных вод включает три функциональных блока: предварительной очистки, коагуляции-флотации, доочистки и обеззараживания.

Изобретение относится к устройствам для очистки сточных вод и может быть использована на АЗС и нефтебазах. Установка включает фильтры–отстойники 4, резервуары для сбора сточной 11, чистой воды 21, нефтепродуктов и шлама 13, трубопровод, смотровое устройство 23 для отделения нефтепродуктов от воды, электронасосные установки для откачки нефтепродуктов и загрязненной сточной воды.

Изобретение относится к способу и устройству для обработки сточных вод. Способ включает стадии, на которых подают сточную воду в процессор, выполняют процесс обработки сточной воды в процессоре с получением смешанного раствора, выпускают смешанный раствор из процессора в гравитационный селектор, разделяют частицы в смешанном растворе при помощи гравитационного селектора для отделения твердых веществ с прекрасными параметрами оседания, выпускают из гравитационного селектора отделенные твердые вещества в виде возвратного потока в процессор и выпускают оставшуюся часть смешанного раствора из гравитационного селектора в виде потока сточных вод.

Изобретение относится к способу утилизации регенерационных растворов и может быть использовано в водоподготовке для уменьшения стоков натрий-катионитных фильтров в энергетике, пищевой, химической и металлургической промышленности.

Изобретение относится к процессам очистки сточных вод, содержащих растворенные органические загрязнения, методом мокрого окисления, конкретно методом сверхкритического водного окисления, и может использоваться для очистки бытовых, технологических, поверхностных, сельскохозяйственных сточных вод.

Изобретение относится к многофункциональным системам, оборудованию и соответствующим способам переработки фекальных масс и пищевых отходов. Многофункциональная система переработки отходов для выработки электроэнергии и питьевой воды содержит первую ступень узла сушки топлива, включающую в себя первую емкость под давлением, предназначенную для вмещения ила, содержащего воду и твердые вещества, вторую емкость под давлением, примыкающую к первой емкости под давлением и предназначенную для вмещения изолированного от ила высокотемпературного отработавшего пара, который нагревает и частично сушит ил и генерирует первичную иловую воду в паровой фазе и уплотненный ил, вторую ступень узла сушки топлива, включающую в себя третью емкость под давлением, предназначенную для приема уплотненного ила, и четвертую емкость под давлением, примыкающую к третьей внутренней сушильной емкости и предназначенную для приема и вмещения первичной иловой воды в паровой фазе таким образом, что первичная иловая вода в паровой фазе оказывается отделенной от уплотненного ила и нагревает и сушит уплотненный ил, чтобы получить вторичную иловую воду в паровой фазе и высушенный твердый топливный материал, причем по меньшей мере часть первичной иловой воды конденсируется в жидкую фазу, систему водоподготовки, которая получает первичную и вторичную иловую воду либо в паровой, либо в жидкой фазе, или в обеих фазах, причем система водоподготовки имеет конденсатор, очистительное устройство и фильтр, при этом первичная или вторичная иловая вода в паровой фазе конденсируется и первичная или вторичная иловая вода в жидкой фазе очищается и фильтруется для получения питьевой воды, узел топочной камеры, предназначенный для сжигания высушенного твердого топлива, поступающего из второй ступени узла сушки топлива, для выработки пара в котле, и узел генератора с паровым приводом, приводимый в действие поступающим из котла паром и предназначенный для выработки электроэнергии, причем узел генератора с паровым приводом создает высокотемпературный отработавший пар. Изобретение обеспечивает преобразование органических отходов с высоким содержанием воды, таких как фекальный ил и пищевые отходы, в электричество, при одновременном получении и сборе питьевой воды. 4 н. и 34 з.п. ф-лы, 34 ил.
Наверх