Способ изготовления термоизолированной обсадной колонны и обсадная колонна, выполненная этим способом

Группа изобретений относится к способу изготовления термоизолированной обсадной колонны и термоизолированной обсадной колонне. Техническим результатом является снижение теплопроводности конструкции. Способ изготовления термоизолированной обсадной колонны включает подачу термоизоляционного материала в межтрубное кольцевое пространство, образованное коаксиально установленными внутренней и наружной трубами в каждой секции, выступающие стыки внутренних труб закрепляют сборно-разборным соединительным устройством, наружные трубы перекрывают обечайкой, полость между внутренними трубами и обечайкой заполняют термоизоляцией. Перед сборкой труб в стенке верхней и нижней части наружной трубы каждой секции выполняют сквозные отверстия для выхода газов и снабжают их съемными заглушками для герметизации. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при термоизоляции обсадных колонн и их секций, устанавливаемых в многолетнемерзлых породах (ММП) для предотвращения их оттаивания вокруг скважин при эксплуатации.

Термоизолированные обсадные колонны используют для обеспечения устойчивости приустьевой зоны и поддержания эффективных тепловых режимов для предотвращения осложнений, связанных с образованием провалов вокруг скважин, в том числе приустьевых воронок при оттаивании просадочных, кавернозных ММП (пластов льда, жильных льдов, льдогрунтов, высоко-сильнопросадочных пород), прилегающих к поверхности до глубин не более 100 м:

- при строительстве и эксплуатации газовых и нефтяных скважин;

-при размещении и эксплуатации кустовых скважин для предотвращения смыкания ореолов протаивания ММП соседних скважин в верхней части криолитовой зоны.

Известна термоизолированная колонна по патенту России на изобретение №2197594, МПК E21B 17/01, 43/00, F16L 59/14, опубл. 10.09.2000, включающая концентрично расположенные секции внешних труб с узлом соединения и секции внутренних труб, в кольцевом пространстве между которыми размещены термоизолирующий и экранирующий материалы, компенсаторы температурного расширения, эластичные кольца, установленные между смежными секциями труб в узле их соединения. Компенсаторы температурного расширения расположены на одном из концов внутренней трубы и жестко соединены одним цилиндрическим торцом обечайки с внешней поверхностью внутренней трубы, а другим цилиндрическим торцом обечайки установлены скользяще-подвижно на внутренней трубе и жестко соединены с внутренней поверхностью внешних трубы, радиусы изгибов компенсатора температурного расширения равны одной трети промежутка межтрубного пространства, а расстояние между внутренними стенками основания петлеобразной скобы равно h=2/3R, где h - расстояние между внутренними стенками основания петлеобразной скобы, мм; R - радиус изгиба скобы, мм.

Недостатком известной конструкции термоизолированной трубы является сложность изготовления, увеличенный вес и ограничение глубины спуска, вследствие того что не обеспечивается теплоизоляция и теплозащита направления буровой скважины на больших глубинах. Данный недостаток обусловлен особенностями теплоизоляции трубы, обладающей низкими теплоизолирующими характеристиками.

Известна стальная термоизолированная труба по патенту России на полезную модель №62643, МПК E21B 17/00, опубл. 27.04.2007, содержащая стальную трубу с термоизолирующим покрытием на основе эпоксидных смол с включением стеклянных микросфер в количестве 60% от объема и толщиной 4 мм, а на термоизолирующем покрытии размещен защитный слой в виде отражающего экрана из алюминиевой фольги.

Согласно полезной модели для изготовления конструкции на стальную трубу наносят термоизолирующее покрытие и затем защитное покрытие из алюминиевой фольги.

Недостатком конструкции являются высокие тепловые потери в результате неизбежного повреждения отражающего экрана при транспортировке и монтаже.

Известно также термоизолирующее направление по патенту России на полезную модель №74415, МПК E21B 36/00, опубл. 27.06.2008, принятое за прототип и содержащее последовательно соединенные секции, каждая из которых имеет коаксиально расположенные внутреннюю и наружную трубы с пространством между ними, заполненным термоизоляционным слоем, в зоне стыка секций внутренние трубы выступают из наружных труб и связаны между собой с помощью сборно-разборного соединительного устройства, выполненного в виде фланцев. Зона стыка секций перекрыта обечайкой, при этом полость между внутренними трубами и обечайкой заполнена термоизоляцией.

Согласно этой полезной модели для изготовления термоизолированных труб подают термоизоляционный материал пенополиуритан (ППУ) в межтрубное кольцевое пространство, образованное коаксиально установленными внутренними и наружными трубами в каждой секции, при этом выступающие стыки внутренних труб соединяют с помощью фланцев, а наружные трубы перекрывают обечайкой, полость между внутренними трубами и обечайкой заполняют термоизоляцией.

На практике известно, что при производстве термоизоляционного слоя большой протяженности, например равной длине наружных труб, в процессе подачи термоизоляционного материала (ППУ) по всей длине и объему кольцевого пространства между внутренними и наружными трубами при вспенивании его образуется большое количество продуктов химической реакции компонентов ППУ (углекислого газа и т.д.) и воздуха, которые не успевают полностью вытесняться из межтрубного пространства, из-за отсутствия конструктивной возможности оперативного выхода газов. Это приводит к неполному и неравномерному заполнению межтрубного пространства термоизоляционным материалом и образованию воздушных полостей большого объема, что повышает теплопроводность конструкции, не обеспечивая оптимальную теплоизоляцию и надежную теплозащиту буровой скважины. Кроме того, при неравномерном распределении термоизоляционного слоя по всему объему межтрубного пространства будут соответственно неоднородны и его физико-механические свойства, что снижает надежность и долговечность конструкции.

Технической задачей изобретения является снижение теплопроводности конструкции путем обеспечения полного и соответственно равномерного заполнения межтрубного пространства термоизоляционным материалом, что повышает надежность и долговечность конструкции.

Поставленная задача решена следующим образом.

Способ изготовления термоизолированной обсадной колонны включает подачу термоизоляционного материала в межтрубное кольцевое пространство, образованное коаксиально установленными внутренней и наружной трубами в каждой секции, выступающие стыки внутренних труб закрепляют сборно-разборным соединительным устройством, а наружные трубы перекрывают обечайкой, полость между внутренними трубами и обечайкой заполняют термоизоляцией.

В отличие от прототипа перед сборкой труб в стенке верхней и нижней части наружной трубы каждой секции выполняют сквозные отверстия для выхода газов и снабжают их съемными заглушками для герметизации.

Термоизолированная обсадная колонна содержит последовательно соединенные секции, каждая из которых имеет коаксиально расположенные внутреннюю и наружную трубы с пространством между ними, заполненным термоизоляционным слоем, в зоне стыка секций внутренние трубы выступают из наружных труб и связаны между собой с помощью сборно-разборного соединительного устройства, а зона стыка перекрыта обечайкой, при этом полость между внутренними трубами и обечайкой заполнена термоизоляцией.

В отличие от прототипа в стенке верхней и нижней части наружной трубы каждой секции выполнены сквозные отверстия для выхода газов, снабженные съемными заглушками для герметизации.

Наличие сквозных отверстий для выхода газов обеспечивает полный выход излишков продуктов химической реакции компонентов ППУ (при изготовления термоизоляционного слоя), способствующий качественному (полному и равномерному) заполнению межтрубного пространства термоизоляционным материалом без образования воздушных полостей, что снижает теплопроводность конструкции, обеспечивая оптимальную теплоизоляцию и надежную теплозащиту буровой скважины. Кроме того, при равномерном распределении термоизоляционного слоя обеспечивается однородность его физико-механических свойств по всему объему межтрубного пространства, что повышает надежность и долговечность конструкции. Для обеспечения герметичности конструкции после начала выхода пенополиуретана через сквозные отверстия их закрывают съемными заглушками.

Таким образом, все признаки являются существенными и решают поставленную задачу.

Изобретение представлено на чертеже. Термоизолированная обсадная колонна содержит последовательно соединенные секции, каждая из которых имеет коаксиально расположенные внутреннюю 1 и наружную 2 трубы, пространство между которыми заполнено термоизоляционным слоем 3, (пенополиуританом). В зоне стыка секций внутренние трубы 1 выступают из наружных труб 2 и связаны между собой с помощью известного сборно-разборного соединительного устройства, например фланцевого соединения 4 или муфты (не показано), а зона стыка перекрыта обечайкой 5. Полость между внутренними трубами 1 и обечайкой 5 заполнена известным термоизолирующим материалом 6, например пенополиуританом. В стенке верхней и нижней части наружной трубы 2 каждой секции выполнены сквозные отверстия 7 для выхода газов, снабженные съемными заглушками для герметизации (не показано). В качестве заглушек используют, например, болты, шпильки. Отверстия 7 выполняют, например, с помощью сверления.

Изготавливают термоизолированную обсадную колонну следующим образом. Перед коаксиальной установкой труб 1 и 2 в стенке верхней и нижней части наружной трубы 2 каждой секции сверлят сквозные отверстия 7 для выхода газов. Пенополиуритан подают в кольцевое пространство между трубами 1 и 2 каждой секции и получают термоизоляционный слой 3. Вспенивающийся пенополиуритан оперативно вытесняет образующиеся при этом газы и воздух, которые свободно выходят в отверстия 7, и пенополиуритан беспрепятственно заполняет все межтрубное кольцевое пространство. После начала выхода пенополиуретана через отверстия 7 их закрывают съемными заглушками (не показано), чем обеспечивают герметичность конструкции. Выступающие стыки внутренних труб 1 закрепляют с помощью фланцевого соединения 4. Наружные трубы 2 перекрывают обечайкой 5, полость между внутренними трубами и обечайкой заполняют термоизоляцией 6.

1. Способ изготовления термоизолированной обсадной колонны, включающий подачу термоизоляционного материала в межтрубное кольцевое пространство, образованное коаксиально установленными внутренней и наружной трубами в каждой секции, выступающие стыки внутренних труб закрепляют сборно-разборным соединительным устройством, а наружные трубы перекрывают обечайкой, полость между внутренними трубами и обечайкой заполняют термоизоляцией, отличающийся тем, что перед сборкой труб в стенке верхней и нижней части наружной трубы каждой секции выполняют сквозные отверстия для выхода газов и снабжают их съемными заглушками для герметизации.

2. Термоизолированная обсадная колонна, содержащая последовательно соединенные секции, каждая из которых имеет коаксиально расположенные внутреннюю и наружную трубы с пространством между ними, заполненным термоизоляционным слоем, в зоне стыка секций внутренние трубы выступают из наружных труб и связаны между собой с помощью сборно-разборного соединительного устройства, а зона стыка перекрыта обечайкой, при этом полость между внутренними трубами и обечайкой заполнена термоизоляцией, отличающаяся тем, что в стенке верхней и нижней части наружной трубы каждой секции выполнены сквозные отверстия для выхода газов, снабженные съемными заглушками для герметизации.



 

Похожие патенты:

Группа изобретений относится к способу введения индукционной петли в геологическую формацию для нагрева нефтяного резервуара, а также к соответствующему индукционному устройству.

Изобретение относится к области нефтегазодобывающей промышленности и может найти применение при разработке нефтегазоконденсатных месторождений. Способ аккумуляции холода в пласте включает использование двухтрубной компоновки в двуствольной горизонтальной скважине, спуск первой лифтовой трубы с установкой пакера для отделения затрубного пространства и добычи нефти, спуск второй лифтовой трубы меньшего диаметра.

Группа изобретений относится к подводной обработке или очистке скважинных текучих сред при добыче нефти и газа из подводных скважин. Элемент регулирования парафинов для подводной обработки скважинных текучих сред в потоке скважины содержит пучок промысловых трубопроводов внутри натяжной конструкции, которая образует входные и выходные концы и имеет средства охлаждения и нагрева для использования на промысловых трубопроводах, чтобы способствовать отложению парафинов в трубопроводах и последующему вовлечению парафинов в поток скважины.

Изобретение относится к системе охлаждения. Система подводного охлаждения потока в скважине посредством морской воды содержит вход (А) и выход (В), а также по меньшей мере первый охладитель и второй охладитель .

Группа изобретений относится к устройству и способу для добычи углеродосодержащих веществ, в частности битума, из нефтяных песков. Устройство содержит по меньшей мере два отдельных паровых контура.

Изобретение относится к эксплуатации нефтяных и газовых скважин в районах с многолетнемерзлыми породами и предназначено для сохранения отрицательной температуры вокруг ствола скважины в течение всего срока ее эксплуатации.

Изобретение относится к области добычи нефти и газа, конкретно - к добыче вязкой нефти, керогеносодержащей нефти из глинистых пластов. Устройство для разработки месторождения трудноизвлекаемой нефти содержит бак горючего и систему подачи воздуха на поверхности, скважинный газогенератор, установленный в горизонтальной части обсадной колонны нагнетательной скважины, соединенный колтюбингом горючего с баком горючего.

Изобретение относится к нефтедобывающей промышленности, а именно к устройствам, предназначенным для парогазового воздействия на нефтяной пласт. Установка для получения парогазовой смеси содержит турбокомпрессор, включающий в себя компрессор и турбину, рабочие колеса которых закреплены на одном валу, водяной насос, расположенный со стороны компрессора и вал которого соединен с валом турбокомпрессора.

Изобретение относится к нефтедобывающей промышленности, а именно к устройствам, предназначенным для термогазохимической обработки призабойной зоны нефтяного пласта.

Группа изобретений относится к способам и устройствам для гидравлического разрыва пласта. Устройство гидроразрыва пласта содержит по существу трубчатый корпус, стыковочное устройство подачи нагнетаемой текучей среды и по меньшей мере один парогазогенератор высокого давления.

Изобретение относится к нефтяной и газовой промышленности, в частности для добычи нефти или газа в районах с многолетнемерзлыми породами, и может быть использовано в других отраслях при изоляции труб для транспортировки теплоносителей. Теплоизолированная колонна включает коаксиально расположенные наружную и внутреннюю трубы с теплоизоляцией между ними и муфты. Причем наружная труба установлена с возможностью компенсации линейных расширений. При этом теплоизолированная колонна выполнена с возможностью управления тепловыми потоками внутри скважины. При этом в межтрубном пространстве наружной и внутренней труб установлены термоэлектрические элементы, обмотанные проволокой или лентой для их фиксации относительно внутренней трубы. Концы внутренней и наружной труб смещены относительно друг друга и соединены с помощью переходника, который снабжен кабельным разъемом для питания термоэлектрических элементов и соединен наружным резьбовым соединением с муфтой. При этом конец внутренней трубы, выступающий над торцом наружной трубы, и концевая часть наружной трубы объединены переходником посредством разъемного соединения. Техническим результатом является расширение арсенала технических средств, повышение эффективности теплоизоляции скважин и расширение функциональных возможностей путем управления тепловым потоком и его уменьшения в межтрубном пространстве скважины, для предотвращения оттаивания многолетнемерзлой породы, или, в случае необходимости, нагрева межтрубного пространства скважины. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области капитального и текущего ремонта эксплутационных скважин и может быть использовано в эксплуатации скважин для поддержания в них теплового режима предотвращения образования и ликвидации в них гидратных, гидратопарафиновых и ледяных пробок. Способ включает в себя спуск в скважину до верхней границы пробки локального электронагревателя на каротажном многожильном кабеле, металлическая оболочка которого соединена с корпусом электронагревателя. При этом одну из жил кабеля соединяют с фазой трехфазного источника тока, а бронирующую металлическую оболочку соединяют с его нулевым контактом. Далее электронагреватель опускают до момента, пока он не достигнет пробки, затем его включают и выполняют плавление материала пробки, при этом нижняя часть его электрода контактирует со скважинной электропроводящей жидкостью. После плавления пробки каротажный многожильный кабель фиксируют, подключают каждую его жилу к соответствующей фазе трехфазного источника тока. Включают его, переводя кабель по всей его длине в режим нагревательного устройства, и выполняют полный прогрев затрубного и трубного пространства скважины. Расширяются функциональные возможности, обеспечивается возможность автоматического регулирования температуры электронагревателя за счет применения регуляторов тока и термодатчиков. 2 з.п. ф-лы, 4 ил.
Наверх