Способ получения крупнодисперсного сферического пороха

Изобретение относится к получению сферических порохов для стрелкового оружия и малокалиберной артиллерии. Крупнодисперсный сферический порох получают приготовлением порохового лака, диспергированием его на сферические частицы с последующим удалением из них растворителя. Первоначально в течение 60-90 мин в мешателе готовят пороховой лак, состоящий из 70,0-84,0 мас.% пироксилина 1Пл, 15,0-28,8 мас.% пороховой массы, 1,0-1,2 мас.% стабилизатора химической стойкости и растворителя-этилацетата с модулем 1,5-2,5 (объем.) к загрузке всех компонентов. Затем пороховой лак нагнетают избыточным давлением в гранулятор, где режут на строго заданные размеры порохового элемента. Далее пороховые элементы поступают в реактор, где частицам придают сферическую форму в присутствии 3-4 мас.ч. воды с содержанием 0,6-1,3 мас.% защитного коллоида (мездрового клея) и 0,6-1,3 мас.% сернокислого натрия в течение 60-90 мин, после чего из пороховых частиц удаляют летучий растворитель. Способ обеспечивает получение сферических частиц с диаметром до 4 мм с высоким выходом продукта. 1 табл., 5 пр.

 

Изобретение относится к области получения сферических порохов (СФП).

Известны способы получения крупнодисперсных СФП с диаметром гранул до 3 мм, изготавливаемых по водно-дисперсионной технологии [1-4]. Согласно этим способам для удержания крупных лаковых частиц в гидродинамическом поле аппарата с мешалкой применяют различные приемы:

- использование эффективных загустителей дисперсионной среды;

- порционный ввод обезвоживателя, совмещенный с поэтапным удалением растворителя;

- дозировка после диспергирования порохового лака мелкодисперсных гранул СФП (0,2-0,8 мм) аналогичного состава для удаления избыточного этилацетата, чтобы исключить коагуляцию капель;

- повторное диспергирование порохового лака после остановки процесса.

Недостатками способов являются полидисперность гранул, низкая плотность, невысокий выход продукта.

Наиболее близким техническим решением (прототипом) [5] является способ получения крупнодисперсного СФП, включающий приготовление порохового лака при перемешивании нитратцеллюлозных ингредиентов в воде с этилацетатом, диспергирование лака и удаление растворителя, согласно которому изготовление гранул осуществляется в две стадии следующим образом: приготовление порохового лака осуществляют в 6-10 мас. ч. воды по отношению к нитратцеллюлозным ингредиентам, вводят эмульгатор в количестве 2,0-4,0 мас. % по отношению к воде, проводят диспергирование лака и удаляют растворитель в количестве 40-50% от общего залитого объема, охлаждают содержимое реактора до 50°C, останавливают процесс, декантируют избыток воды в количестве 3-6 мас. ч., затем проводят формообразование гранул в течение 60-180 мин при температуре 50-69°C в присутствии 3-6 мас. % эмульгатора и 4-10 мас. % сернокислого натрия по отношению к воде и последующее удаление остаточного количества растворителя.

Недостатком способа является низкий выход продукта (55-60%) и невозможность получения по водно-дисперсионной технологии гранул с диаметром более 3 мм.

Целью изобретения является увеличение выхода продукта и получение гранул диаметром до 4 мм.

Поставленная цель достигается тем, что экструзионно-дисперсионный способ получения крупнодисперсных сферических порохов, включающий приготовление порохового лака в этилацетате (ЭА) и удаление растворителя, отличается тем, что в мешателе готовят пороховой лак в течение 60-90 мин, состоящий из 70,0-84,0 мас. % пироксилина 1Пл, 15,0-28,8 мас. % пороховой массы, 1,0-1,2 мас. % стабилизатора химической стойкости, а ЭА берется в соотношении 1,5-2,5 (объем.) к загрузке всех компонентов, затем пороховой лак подают в гранулятор, орошаемый водой, где режут на заданные размеры порохового элемента, далее пороховые элементы поступают в реактор, где частицам придают сфероидальную форму в присутствии 3-4 мас. ч. воды, с содержанием 0,6-1,3% мас. защитного коллоида (мездрового клея) и 0,6-3,5% мас. сернокислого натрия по отношению к воде в течение 60-90 мин.

Примеры выполнения способа получения крупнодисперсных сферических порохов, монодисперсных по диаметру пороховых элементов в пределах граничных условий (пример 1, 2, 3) и за пределами граничных условий (пример 4, 5) приведены в таблице.

Пример 1. В мешатель загружают 84,0 мас. % пироксилина 1Пл, 15,0 мас. % пороховой массы. Растворитель добавляется из расчета к загрузке компонентов: модуль 1:1,5 (объем.) Стабилизатор химической стойкости дифениламин (ДФА) в количестве 1,0 мас. % по отношению к 1Пл вводится с растворителем, и проводится перемешивание массы в течение 90 мин. Полученный пороховой лак под давлением орошаемой воды нагнетается в гранулятор где, продавливаясь через фильеры гранулятора диаметром 4 мм, режется на заданные по геометрии пороховые элементы (ПЭ). Далее ПЭ поступают в реактор с содержанием 3,0 мас. ч. воды, 1,3% мас. клея для придания сфероидальной формы и дальнейшего удаления воды из ПЭ путем добавления 3,0 мас. % сернокислого натрия и отгонки этилацетата известным способом. Характеристики полученного пороха приведены в таблице.

Пример 2. В мешатель загружают 78,9 мас. % пироксилина 1Пл, 20,0 мас. % пороховой массы. Растворитель добавляется из расчета к загрузке компонентов: модуль 1:2,0 (объем.). Стабилизатор химической стойкости ДФА в количестве 1,1 мас. % по отношению к пироксилину 1Пл вводится с растворителем, и проводится перемешивание массы в течение 70 мин. Полученный пороховой лак под давлением орошаемой воды нагнетается в гранулятор где, продавливаясь через фильеры гранулятора диаметром 4 мм, режется на заданные по геометрии пороховые элементы. Далее ПЭ поступают в реактор с содержанием 3,5 мас. ч. воды, 0,6% мас. клея для придания сферической формы и дальнейшего удаления воды из ПЭ путем добавления 2,4% мас. сернокислого натрия и отгонки этилацетата известным способом. Характеристики полученного пороха приведены в таблице.

Пример 3. В мешатель загружают 70,0 мас. % пироксилина 1Пл и 28,8 мас. % пороховой массы. Растворитель добавляется из расчета к загрузке компонентов: модуль 1:3,5 (объем.). Стабилизатор химической стойкости ДФА в количестве 1,2 мас. % вводится по отношению к пироксилину 1Пл с растворителем, и проводится перемешивание лака в течение 60 мин. Полученный пороховой лак под давлением орошаемой воды нагнетается избыточным давлением в гранулятор где, продавливаясь через фильеры гранулятора диаметром 4 мм, режется на заданные по геометрии пороховые элементы. Далее ПЭ поступают в реактор с содержанием 4,0 мас. ч. воды, 0,9% мас. клея для придания сферической формы и дальнейшего удаления воды из ПЭ путем добавления 0,6% мас. сернокислого натрия и отгонки этилацетата известным способом. Характеристики полученного пороха приведены в таблице.

Сернокислый натрий, выполняя функцию обезвоживателя лаковых частиц, вводится в количестве 0,6-3,5% мас. Увеличение его более 3,5% мас. нецелесообразно из-за отсутствия дальнейшего эффекта уплотнения двухосновных пороховых гранул. Уменьшение сернокислого натрия менее 0,6% мас. приводит к повышенной пористости гранул, т.е. снижению их плотности и, как следствие, к снижению насыпной плотности менее 0,95 г/см3. Обкатка гранул для придания требуемой формы осуществляется в течение 60-90 мин в зависимости от модуля по воде, т.е. создания необходимого соотношения Д/2e1. Чем меньше модуль по воде и больше время обкатки (пример 1), тем более форма элемента приближается к дискообразной. Увеличение модуля по воде более 4,0 будет приводить к получению сферообразных элементов, что снижает прогрессивность горения пороха. Увеличение времени обкатки более 90 мин экономически нецелесообразно.

Из приведенных результатов таблицы видно, что полученный крупнодисперсный сферический порох по разработанному авторами способу (примеры 1, 2, 3) обеспечивает выход целевой фракции пороха с заданным размером от 98,0 до 99,0%. Геометрические параметры ПЭ определяются диаметром фильеры и скоростью вращения ножей гранулятора. При этом насыпная плотность сферического пороха находится в пределах от 0,95 до 0,996 кг/дм3.

За пределами граничных условий (примеры 4, 5) получить сферический порох невозможно. Уменьшение модуля по ЭА менее 1,5 (объем.) приводит к неоднородности перемешивания лака или из-за высокой концентрации ведет к остановке шнека (пример 5), а увеличение модуля по ЭА более 2,5 (объем.) приводит к образованию жидкого лака, гранулы не сохраняют форму, растекаются при движении суспензии по трубопроводу (пример 4).

Разработанный авторами способ обеспечивает получение крупнодисперсных сферических порохов.

Литература

1. Патент РФ №2382018 от 20.02.2010, МПК C06B 21/00, C06B 25/18. Способ получения сферического пороха.

2. Патент РФ №2386607 от 20.04.2010. МПК C06B 21/00, C06B 25/18. Способ получения сферического пороха.

3. Патент РФ №2379271 от 20.01.2010. МПК C06B 21/00, C06B 25/18. Способ получения сферического пороха.

4. Патент РФ №2256636 от 20.07.2005. МПК C06B 21/00, 25/24. C06D 5/06. Способ получения сферического пороха.

5. Патент РФ №2439042 от 10.01.2012. МПК C06B 21/00. Способ получения крупнодисперсного сферического пороха.

Способ получения крупнодисперсных сферических порохов, включающий приготовление порохового лака, диспергирование его на сферические частицы с последующим удалением растворителя из них, отличающийся тем, что первоначально в мешателе готовят пороховой лак в течение 60-90 мин, состоящий из 70,0-84,0 мас. % пироксилина 1Пл, 15,0-28,8 мас. % пороховой массы, 1,0-1,2 мас. % стабилизатора химической стойкости и растворителя-этилацетата с модулем 1,5-2,5 (объем.) к загрузке всех компонентов, затем пороховой лак нагнетают избыточным давлением в гранулятор, где режут на строго заданные размеры порохового элемента, которые поступают в реактор, где частицам придают сферическую форму в присутствии 3-4 массовых частей воды с содержанием 0,6-1,3% мас. защитного коллоида (мездрового клея) и 0,6-3,5% мас. сернокислого натрия в течение 60-90 мин и последующим удалением летучего растворителя из пороховых частиц.



 

Похожие патенты:

Изобретение относится к твердым топливам для использования в различных изделиях военного и гражданского назначения. Двухосновное твердое топливо содержит нитроцеллюлозу, нитроглицерин, стабилизатор химической стойкости - централит, дифениламин или их смесь, углерод технический, индустриальное масло, стеарат цинка, окись или гидроокись железа с размером частиц 0,1-1,0 мкм, окись меди, химически высаженную на волокна нитроцеллюлозы, полиакриламид.

Изобретение относится к сферическому пороху (СФП) для 5,6 мм спортивно-охотничьих патронов кольцевого воспламенения. Сферический порох для 5,6 мм спортивно-охотничьего патрона кольцевого воспламенения содержит нитрат целлюлозы с содержанием оксида азота не менее 210,5 мл NO/г, дифениламин, влагу, этилацетат, графит, а также композицию ЛД-70, состоящую из динитрат диэтиленгликоля и динитрат триэтиленгликоля.

Изобретение относится к производству сферических порохов (СФП), в частности крупнодисперсных. Способ получения СФП включает приготовление порохового лака при перемешивании пироксилина, пороховой массы или их смесей с возвратно-технологическими отходами с этилацетатом (ЭА) в водной среде, диспергирование порохового лака на сферические частицы, обезвоживание и удаление этилацетата.

Изобретение относится к производству сферических порохов (СФП), в частности крупнодисперсных. Для получения пороха в воде перемешивают полимерное связующее – пироксилин с условной вязкостью 1,0-8,0°Э и поливинилнитрат (ПВН) с молекулярной массой 400000-200000 у.е., соблюдая соотношение между пироксилином и ПВН, равное (85-90):(15-10).

Изобретение относится к производству сферических порохов (СФП) для стрелкового оружия и малокалиберной артиллерии. Для получения сферического пороха первоначально в воду вводят поливинилнитрат (ПВН) и при перемешивании дозируют этилацетат.

Изобретение относится к производству порохов, которые могут быть использованы для снаряжения патронов к стрелковому оружию, а также патронов специального назначения, например строительно-монтажных, индустриальных патронов.

Изобретение относится к способу отгонки растворителя из пороховых элементов при получении сферического пороха для стрелкового оружия. После ввода сернокислого натрия в дисперсионную среду ведут отгонку растворителя путем подъема температуры теплоносителя с 68°С до 86-87°С.

Изобретение относится к получению сферических порохов (СФП) для стрелкового оружия, а именно к регенерации этилацетата после 30-40 циклов его использования в технологическом процессе для дальнейшего использования этилацетата в технологическом цикле.

Изобретение относится к получению одноосновных сферических порохов для стрелкового оружия. Пороховые элементы, состоящие из нитроцеллюлозы, дифениламина, графита и влаги, флегматизируют в аппарате-флегматизаторе флегматизирующей эмульсией.

Изобретение относится к получению сферических порохов (СФП) для стрелкового оружия. При получении пороха в реактор заливают воду, загружают при перемешивании нитроцеллюлозу с содержанием оксида азота 212,7-214,0 мл NO/г, до 30 мас.% возвратно-технологических отходов после мокрой сортировки и от 3,0 до 5,0 мас.% технологических отходов после сухой сортировки сферического пороха от предшествующих операций, загружают дифениламин и проводят перемешивание.

Изобретение относится к устройствам для кристаллизации периодического действия для получения кристаллов, предпочтительно перхлората аммония. Устройство содержит кристаллизатор 1, состоящий из металлического цилиндрического сосуда, внутренняя поверхность которого состоит из материала с твердостью по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ, цилиндрический сосуд имеет овальное или круглое поперечное сечение с коническим или вогнутым днищем 12, оборудованный вдоль его длины двойной рубашкой 4 для охлаждения раствора и/или суспензии раствора и кристаллов и высокоскоростным перемешивающим устройством 8 из материала с твердостью по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ, высокоскоростное перемешивающее устройство 8 оснащено приводом 9, обеспечивающим регулирование скорости и, следовательно, степени воздействия механического действия перемешивающего устройства на округлость кристаллов внутри сосуда вместе с внутренней поверхностью сосуда, содержащего по меньшей мере две перегородки 5 из материала с твердостью по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ, при этом сосуд оборудован по меньшей мере одним отверстием 10 сверху, соединенным по меньшей мере с одним независимым ответвлением контура циркуляции 11 снаружи для ввода нагретого раствора и/или нагретой суспензии раствора и кристаллов с помощью по меньшей мере одного циркуляционного насоса 2 через по меньшей мере один теплообменник 3 для обеспечения вместе с двойной рубашкой 4 регулируемых периодических изменений температур суспензии кристаллов вблизи кривой охлаждения, при этом соединительный трубопровод 13 соединен с днищем 12 сосуда кристаллизатора 1 и по меньшей мере с одним ответвлением контура циркуляции 11.

Изобретение относится к снаряжательной промышленности и может быть использовано для формирования разрывных зарядов из сыпучих взрывчатых составов методом прессования непосредственно в камере артиллерийских осколочно-фугасных боеприпасов.

Изобретение относится к получению газогенерирующих композиций, в частности композиционных порохов, которые могут применяться в пиропатронах различного назначения.
Изобретение относится к способу обработки отработанного твердого ракетного топлива, содержащего перхлорат аммония, порошкообразный алюминий и связующее вещество на основе каучука в качестве трех основных компонентов.

Изобретение относится к горному делу и может быть использовано на предприятиях, ведущих взрывные работы при получении поризованной гранулированной аммиачной селитры на пунктах изготовления взрывчатых веществ.

Патрон // 2643058
Изобретение относится к патронам для стрелкового оружия, а также к патронам специального назначения, применяющимся во всевозможных стреляющих приспособлениях. Патрон содержит гильзу со средством инициирования, метательный заряд и необязательно метаемое снаряжение, причем в качестве метательного заряда используются тонкосводные пороха независимо от их первоначальной формы с удельной теплотой горения не менее 3,97 МДж/кг и толщиной горящего свода не более 0,15 мм.

Изобретение относится к конструкции смесительно-зарядных машин, используемых для механизированного приготовления эмульсионного взрывчатого вещества и заряжания шпуров и скважин при ведении подземных горных работ.

Изобретение относится к производству дисперсно наполненных полимерных композитных материалов, например зарядов энергетических конденсированных систем (ЭКС) - смесевых твердых топлив, пиротехнических составов и др.

Изобретение относится к горному делу и может быть использовано на предприятиях, ведущих взрывные работы на пунктах изготовления взрывчатых веществ для получения поризованной гранулированной аммиачной селитры.
Изобретение относится к технологии изготовления смесевых взрывчатых веществ, содержащих селитру в качестве окислителя, с использованием отработанных жидких нефтепродуктов.

Изобретение относится к области производства сгорающих материалов (СМ) для жестких сгорающих картузов. Материал имитатора жесткого сгорающего картуза включает связующее поливинилацетат, целлюлозу волокнистой формы со степенью размола 42-48°ШР в качестве армирующего компонента, порошкообразный наполнитель в виде древесной муки и влагу не более 3,0 мас.%. Изобретение позволяет снизить удельное давление прессования и гигроскопичность материала. 1 табл.
Наверх