Способ определения поверхностного потенциала и знака заряда поверхности контактных линз



Способ определения поверхностного потенциала и знака заряда поверхности контактных линз
Способ определения поверхностного потенциала и знака заряда поверхности контактных линз
Способ определения поверхностного потенциала и знака заряда поверхности контактных линз
Способ определения поверхностного потенциала и знака заряда поверхности контактных линз

Владельцы патента RU 2653101:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО УГМУ Минздрава России) (RU)

Использование: для оценки поверхностного потенциала и знака заряда поверхности контактных линз. Сущность изобретения заключается в том, что способ основан на исследовании электрофоретического поведения диспергированного материала в водной среде, в качестве материала используют контактные линзы, которые сушат при температуре 80°С, охлаждают в среде жидкого азота, измельчают, а затем диспергируют в водной среде ультразвуком, величину поверхностного потенциала частиц оценивают с помощью прибора Brookhaven ZetaPlus с использованием опции электрофоретического рассеяния света, а знак заряда поверхности контактных линз определяют с помощью программного обеспечения вышеуказанного прибора, для чего в кювету с суспензией помещают электродную систему, на которую подают электрический ток, и по допплеровскому смещению частоты рассеянного света определяют направление движения частиц, то есть знак их заряда, и скорость движения, пропорциональную величине заряда частицы. Технический результат - обеспечение возможности измерения поверхностного потенциала и знака заряда поверхности контактных линз методом электрофоретического рассеяния света. 4 табл.

 

Изобретение относится к области медицины, в частности к офтальмологии.

Изобретение раскрывает способ оценки поверхностного потенциала и знака заряда поверхности контактных линз и может быть использовано для контроля их физико-химических свойств на стадии производства, а также в процессе взаимодействия с различными лекарственными препаратами и биологическими средами.

Физико-химические свойства полимерных контактных линз зависят от природы полимеров, различных добавок и технологии изготовления.

По характеру базового материала контактные линзы подразделяются на четыре группы: ионные (с низкой и высокой гидрофильностью) и неионные (с низкой и высокой гидрофильностью) [1]. Ионные линзы, по сравнению с неионными, в большей степени способны к адсорбции веществ из растворов и биологических жидкостей.

Наличие заряда на поверхности контактных линз делает их химически более активными, что учитывается уже на стадии производства. Для корректировки поверхностных свойств изделий на стадии производства вводятся различные добавки. Так, в патенте №2488863 на изобретение «Способ изготовления контактных линз» предложено добавление фосфолипидов, которые распределяются на поверхности сформированной линзы, что способствует лучшему отделению от формы и обеспечивает высокий производственный выход [2].

Патент №2497160 на изобретение "Силикон-гидрогелевые контактные линзы с пониженной адсорбцией белков" [3] направлен на создание силикон-гидрогелевых линз с пониженной адсорбцией белков за счет введения эффективного количества соединения, снижающего адсорбцию белков. Кроме того, указано, что предлагаемая добавка существенно упрощает технологию изготовления изделий. Однако, под термином "белок" анализировались отдельные составляющие слезной жидкости: лизоцим, липокалин, гликопротеины, альбумин и т.д. Кроме того, отмечено снижение адсорбции только на 10-20%.

Структура поверхности мягких контактных линз влияет не только на отложение на них элементов слезной жидкости (белков, липидов и др.), но и на сорбцию лекарственного препарата и его диффузию из контактной линзы в ткани глаза [4].

Известен метод определения знака заряда коллоидных частиц методом электрофореза [5, 6, 7]. Дисперсные системы могут быть получены различными способами: конденсационным, диспергационным, гидролизом, пептизацией.

Таким образом, измерение поверхностного потенциала и знака заряда поверхности контактных линз необходимо для анализа и корректировки ряда процессов, которые имеют место на стадии производства изделий и при их эксплуатации.

Ближайший аналог - это способ определения поверхностного потенциала и знака заряда поверхности, основанный на исследовании электрофоретического поведения диспергированного материала в водной среде, изложенный подробно в литературе [5, 7].

Задача изобретения - разработка способа определения поверхностного потенциала и знака заряда поверхности новых объектов - контактных линз - с целью использования для контроля их физико-химических свойств на стадии производства, а также в процессе взаимодействия с различными лекарственными препаратами и биологическими средами при различных видах заболеваний глаз с учетом возрастных особенностей пациентов.

Технический результат состоит в измерении поверхностного потенциала и знака заряда поверхности контактных линз методом электрофоретического рассеяния света. Сочетание высушивания и замораживания позволяет механически измельчить линзы до необходимого уровня дисперсности.

Заявляется способ определения поверхностного потенциала и знака заряда поверхности, основанный на исследовании электрофоретического поведения диспергированного материала в водной среде, отличающийся тем, что в качестве материала используют новые объекты - контактные линзы, которые сушат при температуре 80°С, охлаждают в среде жидкого азота, измельчают, а затем диспергируют в водной среде ультразвуком и величину поверхностного потенциала частиц оценивают с помощью прибора Brookhaven ZetaPlus с использованием опции электрофоретического рассеяния света, а знак заряда поверхности контактных линз определяют с помощью программного обеспечения вышеуказанного прибора, для чего в кювету с суспензией помещают электродную систему, на которую подают электрический ток, и по допплеровскому смещению частоты рассеянного света определяют направление движения частиц, т.е. знак их заряда, и скорость движения, пропорциональную величине заряда частицы.

Изобретение осуществляют следующим образом.

Методика подготовки материала: вынутую из блистера с раствором линзу помещали на стеклянную подложку и сушили в шкафу при температуре 80°С в течение одного часа. Сухие линзы оставались эластичными, поскольку в их состав входили силиконовые эластомеры. Их измельчение проводили путем растирания в агатовой ступке в среде жидкого азота. Измельченные образцы в виде пасты переносили скальпелем в бюксы с 5 мл дистиллированной воды и диспергировали суспензию в ультразвуковой ванне при комнатной температуре в течение 30 мин. Полученные суспензии имели вид опалесцирующих седиментационно устойчивых в течение измерений систем.

Для примера представлены результаты анализа трех образцов силикон-гидрогелевых контактных линз производства США со следующими характеристиками:

Выбор дистиллированной воды в качестве дисперсионной среды связан, прежде всего, с недостаточным количеством жидкости, содержащейся в блистерах. Эта жидкая среда, чаще всего, представляет собой фосфатный буфер. Иногда производитель вводит в буферную среду дополнительные компоненты, в случае образца 1 жидкость представляет собой 1%-ный раствор сополимера 845. Измеренные показатели преломления находящейся в блистерах жидкости, представленные в таблице 2, близки между собой. Меньшее значение для образца №1, по-видимому, обусловлено содержанием сополимера в растворе.

Суспензии измельченных линз переливали в измерительные кюветы прибора Brookhaven ZetaPlus и производили измерения среднего размера частиц методом динамического светорассеяния. Суть метода заключается в том, что интенсивность рассеяния света системы большого числа частиц - флуктуирующий параметр и характер флуктуаций - определяется подвижностью рассеивающих частиц. Подвижность, в свою очередь, определяется их размером и вязкостью среды. Измеряемым параметром в методе динамического светорассеяния является коэффициент диффузии частиц D, который связан с размером частицы уравнением Стокса - Эйнштейна:

где kB - постоянная Больцмана, Т - абсолютная температура (в Кельвинах), η - вязкость дисперсионной среды, dh - гидродинамический диаметр частицы. Все расчеты выполняются программным обеспечением прибора.

С помощью прибора Brookhaven ZetaPlus, используя опцию электрофоретического рассеяния света, оценивали величину поверхностного потенциала частиц. В стандартную кювету с суспензией помещали электродную систему, на которую подавался электрический ток. По допплеровскому смещению частоты рассеянного света определяли направление движения частиц, то есть знак их заряда, и скорость движения, пропорциональную величине заряда частицы. Все расчеты выполняются с помощью программного обеспечения прибора. Результаты измерений приведены в таблице 3.

Исследования суспензии, полученной диспергированием линзы №3 в жидкости из блистеров, показали, что при проведении электрофоретических измерений происходит необратимое изменение системы: пожелтение жидкости и коагуляция суспензии.

Как следует из таблицы, разработанная методика диспергирования линз позволяет получать суспензии, пригодные для анализа методом электрофоретического рассеяния.

Образец №3 относится к III группе контактных линз (по классификации FDA), т.е. является низкогидрофильной линзой ионного характера. Для этого образца зафиксирован отрицательный и значительный по абсолютной величине поверхностный потенциал. Образец №2 относится к низкогидрофильным линзам неионного типа. Для него значение поверхностного потенциала близко к нулю.

Линзы №1, как и линзы №2, - представители I группы. Полученные данные по линзам №1 свидетельствуют об отрицательном заряде поверхности этих линз, что может быть связано с наличием определенных добавок или с особенностями отмывки линз на стадии производства.

В таблице 4 приведены результаты измерения поверхностного потенциала для линз 2 и 3 после адсорбции антибиотика и его десорбции. Линзы №2 были изъяты у пациентов разного возраста (после использования). Из данных следует, что десорбция и адсорбция антибиотика существенно изменяет поверхностный потенциал контактной линзы. У пациентов более старшего возраста снижение заряда примерно в 2 раза больше.

Технология производства контактных линз непрерывно совершенствуется, объединяя достижения материаловедения, фармокинетики и других смежных дисциплин. Предлагаемый способ определения поверхностного потенциала и знака заряда поверхности контактных линз открывает широкие перспективы в оценке их свойств на стадии производства, а также при проведении исследований взаимодействия вышеуказанных изделий с биологическими средами при различных видах заболеваний глаз с учетом возрастных особенностей пациентов.

Источники информации

1. Бондаренко П.И., Цветкова Е.А., Пинчук Л.С., Замараева А.В. Контактные линзы: классификация, материалы, бренды. Медицинские новости, 5, 2012. С. 25-29.

2. Пруит Д.Д., Уинтертон Л.К., Зайферлинг Б., Фогт Ю., Боте X. Способ изготовления контактных линз. Патент №2488863, 27.07.2013, бюл. №21.

3. Пинсли Д.Б, Адамс Д.П., Кханолкар А., Занини Д., Фадли З., Кларк М., Тернер Д.С., Форд Д.Д., Мэджио Т.Л. Силикон-гидрогелевые контактные линзы с пониженной адсорбцией белков. Патент №24497160, 27.10.2013, бюл. №30.

4. Нугуманова A.M., Самойлов А.Н. Лечение воспалительных заболеваний роговой оболочки глаза с применением терапевтических контактных линз. Казанский журнал. Т. 92. №6, 2011.

5. Фридрихсберг Д.А. Курс коллоидной химии. Учеб. для вузов. 2-е изд., перераб. и доп. - Л.: Химия, 1984. - 368 с.

6. Зимон А.Д. Коллоидная химия. Учебник для вузов. - 3-е изд., доп и исправл. - М.: Агар. 2003. - 320 с.

7. Щукин Е.Д., Перцев А.В., Амелина Е.А. Коллоидная химия. Учебник для бакалавров. - 7-е изд., испр. и доп. М.: Издательство Юрайт, 2014. – 444.

Способ определения поверхностного потенциала и знака заряда поверхности, основанный на исследовании электрофоретического поведения диспергированного материала в водной среде, отличающийся тем, что в качестве материала используют контактные линзы, которые сушат при температуре 80°C, охлаждают в среде жидкого азота, измельчают, а затем диспергируют в водной среде ультразвуком, величину поверхностного потенциала частиц оценивают с помощью прибора Brookhaven ZetaPlus с использованием опции электрофоретического рассеяния света, а знак заряда поверхности контактных линз определяют с помощью программного обеспечения вышеуказанного прибора, для чего в кювету с суспензией помещают электродную систему, на которую подают электрический ток, и по допплеровскому смещению частоты рассеянного света определяют направление движения частиц, то есть знак их заряда, и скорость движения, пропорциональную величине заряда частицы.



 

Похожие патенты:

Группа изобретений относится к медицине. Офтальмологическое устройство имеет систему анализа глазной жидкости и содержит многоэлементную кольцевую несущую вставку, содержащую передний элемент вставки и задний элемент вставки, соединённые и вместе герметизированные; источник энергии, герметизированный внутри несущей вставки; микрожидкостную аналитическую систему, герметизированную внутри несущей вставки и находящуюся в электрическом соединении с источником энергии, причем микрожидкостная аналитическая система при функционировании выполнена с возможностью измерения одного или более свойств пробы глазной жидкости; процессор, образующий часть упомянутой несущей вставки и выполненный с возможностью выполнения программы, включающей в себя предварительно запрограммированные пороговые значения для одного или более свойств глазной жидкости, и вывода сигнала, когда результаты измерений находятся за пределами соответствующих предварительно запрограммированных пороговых значений; и искусственную пору, соединяющую микрожидкостную аналитическую систему с глазной жидкостью, внешней по отношению к офтальмологическому устройству.

Группа изобретений относится к медицине. Многоэлементное вставное устройство для офтальмологической линзы содержит: задний криволинейный элемент вставки; передний криволинейный элемент вставки, имеющий клеевую канавку, образованную в нем; проводящий материал на одном или обоих из переднего криволинейного элемента вставки и заднего криволинейного элемента вставки; электронный компонент, прикрепленный к одному или обоим из переднего криволинейного элемента вставки и заднего криволинейного элемента вставки, причем прикрепление выполнено к проводящему материалу; герметизирующий материал на поверхности любого или обоих из переднего криволинейного элемента вставки и заднего криволинейного элемента вставки.

Изобретение относится к офтальмологическим линзам. Система для обеспечения сигнала предупреждения пользователю офтальмологической линзы на глазу, содержащая: таймерную цепь, выполненную с возможностью отслеживания течения времени; систему связи, выполненную с возможностью осуществления, по меньшей мере, однонаправленной связи для получения данных; механизм уведомления, выполненный с возможностью обеспечения уведомления; системный контроллер, электрически подключенный к указанной таймерной цепи, указанной системе связи и указанному механизму уведомления, причем указанный системный контроллер выполнен с возможностью управления указанной таймерной цепью, указанной системой связи и указанным механизмом уведомления.

Группа изобретений относится к медицине. Офтальмологическое устройство, расположенное на глазу или в глазу, для проецирования света в глаз, содержит: первый фотонный излучатель для приема света и передачи по меньшей мере части принятого света; источник света для обеспечения света; электронный компонент, который обеспечивает приложение электрического потенциала к источнику света; и элемент питания, который обеспечивает энергией электронный компонент, причем размер и форма элемента питания позволяют ему при использовании занимать положение между поверхностью глаза и веком пользователя.
Офтальмологическое линзовое устройство содержит трехмерно сформированное офтальмологическое вставное устройство, питающий элемент, неподвижно прикрепленный к офтальмологическому вставному устройству, тонкопленочный транзистор, содержащий органический полупроводниковый слой, также неподвижно прикрепленный к офтальмологическому вставному устройству, и проводящую дорожку, обеспечивающую электрическую связь между питающим элементом и тонкопленочным транзистором.

Способ формирования офтальмологического устройства содержит формирование органического полупроводникового транзистора на плоской подложке, деформирование плоской подложки с органическим полупроводниковым транзистором в трехмерную офтальмологическую вставку, прикрепление первой проводящей дорожки к органическому полупроводниковому транзистору, формирование герметизирующего слоя вокруг офтальмологической вставки и формирование офтальмологического устройства, герметизируя офтальмологическую вставку.

Офтальмологическая линза содержит участок мягкой линзы, содержащий полимеризованную реакционную смесь мономера, механизм окрашивания на основе событий, обеспечивающий визуальную индикацию в оптической зоне, и несущую вставку, контактирующую с участком мягкой линзы и механизмом окрашивания.

Группа изобретений относится к медицине. Офтальмологическое устройство содержит устройство вставки, в котором часть поверхности на устройстве вставки имеет на себе металлические элементы, формирующие метаповерхность.

Изобретение относится к медицине. Офтальмологическое устройство с энергообеспечением выполнено с возможностью расположения в глазу или на глазу и содержит: один или более модулируемых фотонных излучателей; вставку-среду, поддерживающую первый процессор и один или более источников света; при этом указанные один или более источников света выполнены с возможностью генерировать свет, причем по меньшей мере часть генерируемого света от одного или более источников света излучается одним или более фотонными излучателями; и датчик, первый процессор выполнен с возможностью: принимать от датчика указание для проецирования визуального представления, управлять, в ответ на принятое указание, по меньшей мере одним из одного или более модулируемым фотонных излучателей и одним или более источниками света на основе одного или более запрограммированных параметров; и генерировать визуальное представление в глазу.

Устройство кольцеобразной многоэлементной вставки содержит задний и передний криволинейные элементы вставки, имеющие форму части кольцеобразного элемента, имеющего внутренний и внешний периферические края, электронный компонент, прикрепленный к переднему и/или заднему криволинейному элементу вставки, и герметизирующий материал, размещенный на поверхности переднего и/или заднего криволинейного элемента вставки с возможностью формирования герметичной полости между ними, при этом внутренние периферические края заднего и переднего криволинейных элементов вставки формируют внутреннее кольцеобразное уплотнение и внешние периферические края заднего и переднего криволинейных элементов вставки формируют внешнее кольцеобразное уплотнение.

Изобретение относится к биотехнологии и охране окружающей среды в области контроля загрязненности воды органическими веществами. Биосенсор для определения наличия органических веществ в воде состоит из пустотелого цилиндрического корпуса, в нижнем основании которого расположен анод, а в верхнем основании цилиндра - катод, которые через токоотводящие провода соединены с измерительным электронным блоком.

Использование: для создания электрохимического датчика. Сущность изобретения заключается в том, что устанавливаемое на глазу устройство для измерения концентрации аналита в слезной пленке содержит прозрачный полимерный материал, имеющий обращенную к глазу поверхность и обращенную наружу поверхность, причем прозрачный полимерный материал выполнен съемно устанавливаемым спереди от поверхности глаза; подложку, по меньшей мере частично заделанную внутри упомянутого полимерного материала; антенну, расположенную на подложке; двухэлектродный электрохимический датчик, расположенный на подложке и включающий в себя: рабочий электрод, имеющий по меньшей мере один размер менее чем 25 микрометров; и электрод сравнения, имеющий по меньшей мере в пять раз большую площадь, чем площадь рабочего электрода; и контроллер, электрически соединенный с электрохимическим датчиком и антенной, причем контроллер выполнен с возможностью: (i) прикладывания напряжения между рабочим электродом и электродом сравнения, достаточного для генерации амперометрического тока, связанного с концентрацией аналита в текучей среде, воздействию которой подвергается устанавливаемое на глазу устройство; (ii) измерения этого амперометрического тока и (iii) использования антенны для выдачи показаний измеренного амперометрического тока, причем часть прозрачного полимерного материала по меньшей мере частично окружает рабочий электрод и электрод сравнения, так что электрический ток, переносимый между рабочим электродом и электродом сравнения, проходит через эту по меньшей мере частично окружающую часть прозрачного полимерного материала.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств, а именно для количественного определения фенибута методом капиллярного электрофореза.Способ количественного определения фенибута в микрокапсулах методом капиллярного электрофореза включает выполнение анализа в кварцевом капилляре эффективной длиной 0,5 м, внутренним диаметром 75 мкм, под действие электрического поля с использованием раствора ведущего электролита, с последующим спектрофотометрическим определением продуктов реакции, в качестве ведущего электролита используется 10 мМ раствор натрия тетраборнокислого 10-водного с рН 9,2, анализ проводится при напряжении +20 кВ, температуре 30°С и длине волны детектирования 193 нм.

Изобретение относится к электрохимическому сенсору для мониторинга воздуха на содержание летучих органических токсичных веществ, состоящему из планарной электродной группы, фонового электролита, пористой гидрофильной мембраны, полимерной газопроницаемой мембраны, герметичной емкости.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля водно-химического режима для тепловой, атомной и промышленной энергетики.

Изобретение относится к области гидрофизики и биохимии, а именно к способам обнаружения изменений электропроводимости водной среды в результате изменения структуры (концентрации) исследуемого раствора.

Группа изобретений относится к медицине, а именно к лабораторной диагностике, и может быть использована для различения между образцом крови и водным образцом, отличным от крови.

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет определения антиоксидантной активности. Изобретение может быть использовано в научно-исследовательских лабораториях для изучения антиоксидантных свойств различных природных, синтетических и биологических объектов.

Изобретение относится к биологии, в частности к биохимии и молекулярной биологии, и может найти применение при разделении белков сыворотки крови и молока на фракции в полиакриламидном геле.

Способ изготовления оптического набора офтальмологических устройств для объемного восприятия стереоскопического носителя содержит формирование офтальмологических устройств для размещения на правом и левом глазах пользователя или в них, и устройств-вставок для добавления их в офтальмологические устройства. Устройства-вставки содержат преобразующий фильтр, активационную нагрузку, управляющую преобразующим фильтром, и источник питания, электрически связанный с преобразующим фильтром. Преобразующие фильтры обеспечивают правому и левому глазам отфильтрованное преобразование стереоскопического изображения. Одно или оба из устройств-вставок содержат датчик стереоскопического носителя для обнаружения стереоскопического носителя посредством обнаружения частоты его обновления и активации активирующих нагрузок. Отфильтрованные преобразования при одновременном просмотре составляют объемное восприятие. Технический результат - улучшение объемного восприятия стереоскопических носителей. 9 з.п. ф-лы, 9 ил.
Наверх