Способ измерения температуры и показателей термической инерции оболочек контактного датчика температуры и устройство для его осуществления

Изобретение относится к измерительной технике и предназначено для использования в океанографии. Заявлен способ измерения температуры и показателей термической инерции оболочек контактного датчика температуры. Для этого используют три датчика, состоящих из чувствительных элементов с разными показателями термической инерции, помещенных во внешние оболочки с одинаковыми значениями теплового фактора и внутренней теплопроводящей средой с разными показателями термической инерции. По значениям текущей температуры чувствительных элементов датчиков θt1, θt2 и 0t3 определяют текущую температуру среды θtc, текущий показатель термической инерции внешней оболочки датчиков εt3, чувствительных элементов ε11, ε21 и ε31, внутренних оболочек ε12, ε22 и ε32 с использованием решений xj системы линейных алгебраических уравнений вида

, ,N≥18, где atj и Ct - коэффициенты, вычисляемые из N значений текущих температур θt1, θt2 и θt3 и их производных до третьей. Технический результат - повышение точности динамических измерений температуры и метрологической долговечности за счет определения показателей термической инерции чувствительных элементов и оболочек датчиков в рабочем режиме. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к измерительной технике, предназначено для применения в океанографии и может быть использовано для точного измерения нестационарных температур и физических параметров среды, влияющих на теплообмен датчиков со средой.

Известны способы Г. Пфрима и их развитие для измерения динамической температуры и коэффициента теплообмена датчика со средой с использованием двух разных по динамическим параметрам датчиков, эквивалентных инерционным звеньям первого и второго порядка [Ярышев Н.А. Теоретические основы измерения нестационарной температуры. - 2-е изд., перераб. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1990. - 256 с.: ил. ISBN 5-283-04474-2].

Однако практическая реализация этих способов затруднена из-за необходимости знания конструктивных параметров датчиков, определяющих их инерционные показатели. Идентификация этих параметров затруднена и не возможна в известных способах. Это ограничивает точность динамических измерений и метрологическую долговечность.

Реальные датчики содержат чувствительный элемент, помещенный в защитную оболочку, заполненную теплопроводящим наполнителем. Моделью таких датчиков является последовательное включение трех инерционных звеньев первого порядка.

Целью предлагаемого изобретения является повышение точности динамических измерений температуры и метрологической долговечности за счет определения показателей термической инерции чувствительных элементов и оболочек датчика в рабочем режиме.

Эта цель достигается тем, что используют три датчика, состоящих из чувствительных элементов с разными показателями термической инерции и помещенных во внешние оболочки с одинаковыми значениями теплового фактора и внутренней теплопроводящей средой (наполнителем) с разными показателями термической инерции, помещают датчики в среде измерения с одинаковыми условиями обтекания потоком для обеспечения равенства коэффициентов конвективного теплообмена внешних оболочек датчиков со средой, измеряют одновременно текущие температуры чувствительных элементов датчиков θt1, θt2 и θt3, определяют текущую температуру среды θtc по формуле

,

текущий показатель термической инерции внешней оболочки датчиков εt3 по формуле

,

показатели термической инерции внутренних чувствительных элементов датчиков

первого ,

второго ,

третьего ,

показатели термической инерции внутренних оболочек (наполнителей) датчиков

первого εl2=x111,

второго ε22=x321,

третьего ε32=x531,

где ,

,

,

,

,

,

,

xj из решения системы линейных алгебраических уравнений вида

, , N≥18,

где ,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

.

Конструкция датчика температуры с тремя чувствительными элементами показана на фиг. 1. Структурная схема устройства измерения температуры и показателя термической инерции оболочек датчиков показана на фиг. 2.

Рассмотрим суть предлагаемого способа. Запишем уравнение теплового баланса для пассивного датчика, имеющего две оболочки вокруг чувствительного элемента (ЧЭ) и три поверхности теплообмена, в показателях термической инерции этих поверхностей. Этим уравнением будет инерционное звено 3-го порядка.

Для инерционного звена 1-го порядка, соответствующего ЧЭ датчика без оболочки, известно [Ярышев Н.А. Теоретические основы измерения нестационарной температуры. - 2-е изд., перераб. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1990. - 256 с.: ил. ISBN 5-283-04474-2] уравнение

где θtc - текущая температура внешней среды, как первой оболочки ЧЭ;

θt1 - текущая температура ЧЭ;

εt1 - показатель термической инерции ЧЭ, зависит от времени, поскольку он зависит от переменного коэффициента теплообмена αt1 ЧЭ со средой, причем , где m1 - масса ЧЭ; c1 - удельная теплоемкость;

S1 - площадь поверхности контакта ЧЭ со средой. Значение является консервативным конструктивным параметром, иногда называемым тепловым фактором [Азизов A.M., Гордов А.Н. Точность измерительных преобразователей. - Л.: Энергия, 1974. - 256 с]. Его нельзя определить экспериментально, в отличии от показателя термической инерции εt1.

При помещении ЧЭ в некую первую оболочку (в нашем случае - наполнитель с показателем тепловой инерции εt2), которая занимает место внешней среды по температуре θt2, и температура θtc внешней среды отсчитывается от температуры θt3 и вместо формулы (1) можем записать

При этом из формулы (1)

с учетом замены εt1 на ε1, поскольку показатель тепловой инерции ε1 ЧЭ стал внутренним консервативным из-за квазипостоянства коэффициента теплообмена αt1→α1 ЧЭ с первой оболочкой.

Дифференцируем выражение (3) и находим

Подставляем выражения для θt2 и в выражение (2) и получим

Помещаем ЧЭ в первой оболочке из наполнителя во вторую оболочку (трубку) с показателем тепловой инерции εt3 и температурой θt3.

Для температуры внешней среды θt4tc по аналогии с выражениями (2-4) запишем

В выражении (8) показатели термической инерции ЧЭ ε1 и наполнителя ε2 являются консервативными и их можно считать постоянными на некотором отрезке времени, показатель термической инерции внешней оболочки εt3 изменяется во времени из-за изменчивости коэффициента αt3 теплообмена с внешней средой и подлежит определению в текущем времени. Запишем выражение (8), выделив неизвестные θtc и εt3

Для достижения поставленной цели используем три датчика, у которых показатели εt3 совпадают, а показатели ε1 и ε2 различаются. Обозначим их ε11, ε12, ε21, ε22, ε31, ε32.

Обозначим вычисляемые из измерений величины

при εi1i2=bi1, εi1εi2=bi2.

- номер датчика.

Для трех датчиков получим систему уравнений относительно неизвестных θtc и εt3

Первое и второе уравнения из системы (12) дают расширенную матрицу вида

и первые значения для неизвестных

Первое и третье уравнение из системы (12) дают расширенную матрицу вида

и вторые значения для неизвестных

Эти пары значений неизвестных для одного и того же момента времени при отсутствии погрешностей измерений температур ЧЭ и определения их производных должны совпадать. Поскольку указанные погрешности всегда имеют место, то совпадения не будет и целесообразно за оценки неизвестных взять средние из двух полученных выше значений

Для нахождения показателей термической инерции внутренних оболочек датчиков после изготовления или в рабочем режиме приравняем выражения для и

Подставляя выражения для At1, At2, At3 и Ct1, Ct2, Ct3 в (21) получим

За счет отсчетов во времени сформируем систему линейных алгебраических уравнений, для чего раскрываем скобки, приводим подобные, группируем неизвестные и коэффициенты при них, вводим обозначения для новых неизвестных

Для коэффициентов при неизвестных получим

Для свободных членов запишем . Получили систему линейных алгебраических уравнений вида

Представляют интерес шесть первых неизвестных xi , остальные неизвестные xj являются избыточными, но могут вычисляться для контроля правильности решений.

После нахождения xi получим

Во второе выражение подставляем ε12=x111 и получаем

По аналогии получим

Таким образом, предложенный способ позволяет измерять без динамической погрешности текущую температуру среды θtc, общий для трех датчиков текущий показатель термической инерции внешней оболочки датчиков εt3, а также квазипостоянные медленно изменяющиеся показатели термической инерции чувствительных элементов ε11, ε21, ε31 и наполнителей ε12, ε22, ε32, что обеспечивает метрологическую долговечность.

Устройство для осуществления предложенного способа, в отличии от известных, должно содержать три датчика температуры из чувствительных элементов в трубках с наполнителем, конструкция которых должна обеспечивать различие показателей термической инерции ε11, ε21, ε31 чувствительных элементов и наполнителей ε12, ε22, ε32 и равенство текущих показателей термической инерции внешних оболочек εt13t13t33t3.

Указанные требования удовлетворяются, если конструкцию датчиков выполнить так, как это показано на чертеже фиг. 1.

Чувствительные элементы 1, 2 и 3 распределены на равных участках внутри общей трубки 4, заполненной теплопроводящей средой (наполнителем) 5. Различие в показателях термической инерции ε11, ε21, ε31 распределенных чувствительных элементов достигается изменением их массы (соответственно и объема), например, за счет укладки разного количества продольных петель пассивного провода 6. Это автоматически, за счет изменения объема в трубке с фиксированным внутренним диаметром обеспечивает различие в показателях термической инерции наполнителей ε11, ε22, ε32. Поскольку внешние оболочки всех чувствительных элементов идентичны и одинаково расположены в потоке во внешней среде, то тепловой фактор и конвективный коэффициент теплообмена с внешней средой αt3(t) для всех датчиков совпадают, следовательно, равны и показатели термической инерции внешних оболочек .

Устройство для осуществления предложенного способа (фиг. 2) кроме трех датчиков 1i с указанными выше отличиями содержит также электронику обрамления, которая может быть выполнена известным образом, например, в составе вторичных измерительных преобразователей 2i, аналого-цифровых преобразователей 3i и микропроцессора 4 . Устройство работает параллельным опросом датчиков, преобразованием их параметров в код и вычислением измеряемых величин по предложенному способу.

1. Способ измерения температуры и показателей термической инерции оболочек контактного датчика температуры, использующий более одного датчика с разными инерционными параметрами, отличающийся тем, что используют три датчика, состоящих из чувствительных элементов с разными показателями термической инерции, помещенных во внешние оболочки с одинаковыми значениями теплового фактора и заполненных теплопроводящей средой (наполнителем) с разными показателями термической инерции, помещают датчики в среде измерения с одинаковыми условиями обтекания для обеспечения равенства коэффициентов конвективного теплообмена внешних оболочек датчиков со средой, измеряют одновременно текущие температуры чувствительных элементов датчиков θt1, θt2 и θt3, определяют текущую температуру среды θtc по формуле

текущий показатель термической инерции внешней оболочки датчиков εt3 по формуле

показатели термической инерции чувствительных элементов датчиков

первого

второго

третьего

показатели термической инерции оболочек (наполнителей) датчиков

первого ε12=x111,

второго ε22=x321,

третьего ε32=x531,

где

из решения системы линейных алгебраических уравнений вида

N≥18,

где

2. Устройство для осуществления способа по п. 1, состоящее из трех контактных датчиков, выходы которых поданы на входы вторичных измерительных преобразователей, соединенных по выходам с входами аналого-цифровых преобразователей, выходы которых поданы на вход микропроцессора, отличающееся тем, что чувствительные элементы датчиков выполнены распределенными с разными объемами, помещены в однородную защитную трубку вдоль оси на разных участках, причем трубка заполнена теплопроводящей средой.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к температурным измерениям, и может быть использовано, например, при градуировке термометров сопротивления, в том числе термопреобразователей сопротивления: металлических и полупроводниковых терморезисторов (терморезисторы, термосопротивления): термисторы, позисторы.

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности беспроводного датчика содержит блок опроса, блок памяти, блок анализа и блок контроля.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности датчика содержит блок приема, блок памяти, блок анализа и блок контроля.

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры при помощи оптического волокна. Заявлено устройство (100) температурной калибровки оптоволоконного температурного датчика, предназначенное для оборудования оптического волокна (10) оптоволоконного температурного датчика.

Изобретение относится к области измерительной техники и может быть использовано для контроля процесса производства. Датчик 10, контролирующий температуру процесса производства, включает температурный сенсор, предусмотренный для подачи выходного сигнала сенсора 18, связанного с температурой процесса производства.

Изобретение относится к измерительной технике и может быть использовано для дистанционного измерения температуры среды или объектов в различных сферах промышленности, в том числе при криогенных температурах.

Изобретение относится к термометрии и может быть использовано для измерения температуры объекта. Термоэлектрический преобразователь содержит защитный чехол (1), термометрическую вставку, направляющую трубку (2) для временного размещения в ней контрольного средства измерения температуры и клеммную колодку.

Группа изобретений предназначена для непрерывного измерения и регистрации температуры наружной поверхности трубопроводов с большой точностью и быстрой заменой датчиков температуры аттестованными датчиками, транспортирующих рабочие жидкие среды или сырье и другие различные текучие агенты.

Изобретение относится к области измерения температур, в частности, измерения температуры резания при точении. Исследование процессов резания предполагает измерение и фиксирование различных явлений, протекающих в технологической системе.
Изобретение относится к способам определения содержания (концентрации) воды в нефтесодержащих эмульсиях и отложениях, в отработанных нефтепродуктах и других нефтесодержащих отходах (нефтешламах), а также в почвах и грунтах с мест розлива нефтепродуктов или территорий с высоким уровнем загрязнения углеводородами по другой причине.

Изобретение относится к электротехнике и предназначено для контроля ресурса электрической изоляции сухих силовых трансформаторов. Сигналы с датчика температуры наиболее нагретой точки трансформатора 5, датчика амплитуды вибрации 6 и блок-контакта 3 автоматического выключателя 1 поступают на входы контроллера 8.

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д.

Изобретение относится к способу измерения температуры намотанного компонента, содержащему подачу известного постоянного тока в калибровочный провод (1) из резистивного материала; причем сопротивление калибровочного провода меняется вместе с температурой согласно известному закону; измерение разности потенциалов между зажимами (7a, 7b) упомянутого калибровочного провода; и этап вычисления, в ходе которого разность потенциалов преобразуется в среднюю температуру калибровочного провода; причем упомянутый калибровочный провод (1) намотан внутри катушки и уложен в ряд витков «Вперед» (5) и в ряд витков «Обратно» (6), объединенных попарно по существу с одинаковыми геометрической формой и местом расположения.

Изобретение относится к системам контроля эффективности работы систем отопления, вентиляции и кондиционирования жилых, общественных и административных зданий и может быть использовано при проектировании, реконструкции и оптимизации режимов работы указанных систем, а также при разработке и внедрении энергосберегающих мероприятий.

Изобретение относится к области измерительной техники и может быть использовано в обрабатывающих установках жидкости и газа. Измерительная система включает в себя модуль (930) построения фильтра, который строит фильтр верхних частот (902) для фильтрации показаний датчика, характеризующих переменную процесса.

Изобретение относится к способам определения термобарических параметров (температуры и давления) образования гидратов в многокомпонентной смеси типа нефтяных или природных газов.

Изобретение относится к области противопожарной защиты и может быть использовано в качестве комбинированного датчика обнаружений возгораний в установках автоматического пожаротушения.

Изобретение относится к области измерительной техники и может быть использовано для определения температуры обмотки статора электрической вращающейся машины, охлаждаемой охлаждающим маслом. Расчетное устройство включает в себя модельный блок, который вычисляет количественный параметр состояния с использованием входного сигнала и реляционного выражения, которое выражает целевую модель, датчик измерения сигнала коррекции, который измеряет корректирующий сигнал для корректирования количественного параметра состояния, блок коррекции, который выдает значение для корректировки количественного параметра состояния на основе сигнала коррекции на модельный блок, и блок изменения модели, который изменяет модельный блок в соответствии со значением, связанным с потоком масла, которое относится к изменению расхода охлаждающего масла. Датчик измерения сигнала коррекции выполнен с возможностью контакта с металлическим элементом, который включает в себя проводящий провод обмотки, которая образует обмотку статора, клемму, соединенную с проводящим проводником обмотки, и линию электропитания, подключенную между проводящим проводом обмотки и клеммой, в точке, в которой не падает охлаждающее масло. Технический результат – повышение точности получаемых данных. 2 н. и 2 з.п. ф-лы, 15 ил.
Наверх