Способ нанесения износостойких покрытий на основе карбида титана, cr3 c2 и алюминия на штамповые стали

Изобретение относится к формированию на стальных поверхностях износостойких покрытий, которые могут быть использованы в штамповочном производстве. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской алюминиевой оболочки массой 60-530 мг и сердечника в виде смеси порошка карбида титана массой равной 0,5-2,0 массы оболочки и порошка Cr3С2 массой равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности штамповой стали при поглощаемой плотности мощности 4,6-4,8 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы TiC-Cr3С2-Al и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30. Изобретение направлено на получение покрытия с высокой адгезией к штамповой стали, высокой микротвердостью и износостойкостью. 1 пр., 2 ил.

 

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности к технологии получения на поверхности штамповых сталей, работающих в тяжелых условиях штамповки, покрытий на основе карбида титана, Cr3С2 и алюминия, которые могут быть использованы в штамповом производстве для штамповки в холодном состоянии с целью формирования поверхностей с высокой твердостью и износостойкостью.

Известен способ [1] электровзрывного напыления композиционных износостойких покрытий системы TiC-Mo на поверхности трения, характеризующийся тем, что размещают порошковую навеску из карбида титана между двумя слоями молибденовой фольги, осуществляют электрический взрыв фольги с формированием импульсной многофазной плазменной струи, проводят оплавление ею поверхности трения при значении удельного потока энергии 3,5…4,5 ГВт/м2 и напыление на оплавленный слой компонентов плазменной струи с последующей самозакалкой и формированием композиционного покрытия, содержащего карбид титана и молибден.

Недостатком способа является высокая шероховатость напыленных покрытий, а также низкая степень гомогенизации структуры, выраженная в неоднородности фазового и элементного состава покрытий. Это ограничивает возможность практического применения изделий с такими покрытиями. После электровзрывного напыления (ЭВН) на поверхности покрытий неравномерно распределены многочисленные деформированные закристаллизовавшиеся микрокапли меди. Это может стать причиной быстрого износа покрытия [2, 3].

Наиболее близким к заявляемому является способ [4] нанесения износостойких покрытий на основе диборида титана и молибдена на стальные поверхности, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской молибденовой оболочки массой 60-530 мг и сердечника в виде порошка диборида титана массой равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею стальной поверхности при поглощаемой плотности мощности 3,5-4,5 ГВт/м2, осаждение на поверхность продуктов взрыва с формированием на ней композиционного покрытия системы TiB2-Mo и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30.

Недостатком способа является низкая адгезия покрытия системы TiB2-Мо со стальной подложкой. В случае применения этого покрытия для штамповки неизбежно произойдет отслаивание покрытия уже на первых циклах штамповки. Это может стать причиной быстрого выхода из строя штампов [2, 3].

Задачей заявляемого изобретения является получение композиционных покрытий карбид титана - Cr3С2 - алюминий с наполненной микрокристаллической структурой, обладающих высокой адгезией покрытия с подложкой из штамповой стали, а также высокой степенью гомогенизации структуры их поверхностного слоя, зеркальным блеском поверхности, высокой микротвердостью и износостойкостью.

Поставленная задача реализуется способом нанесения износостойких покрытий на основе карбида титана, Cr3C2 и алюминия на штамповые стали.

Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской алюминиевой оболочки массой 60-530 мг и сердечника в виде смеси порошков карбида титана массой равной 0,5-2,0 массы оболочки и Cr3С2 массой равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности штамповой стали при поглощаемой плотности мощности 4,6-4,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней композиционного покрытия системы TiC-Cr3C2-Al и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.

Продукты разрушения композиционного электрически взрываемого проводника образуют плазменную струю, служащую инструментом формирования на поверхности штамповой стали композиционного покрытия с наполненной структурой [5], образованного включениями карбида титана в Cr3С2-алюминиевой матрице. Последующая импульсно-периодическая электронно-пучковая обработка (ЭПО) покрытия сопровождается переплавлением его поверхностного слоя толщиной 20-40 мкм. Дефекты в виде микропор и микротрещин, выявляемые после ЭВН [2, 3], в нем не наблюдаются. Импульсно-периодическая ЭПО приводит к формированию в покрытии высокодисперсной и однородной структуры. Размеры включений карбида титана в Cr3С2-алюминиевой матрице уменьшаются в 1,25-40 раз по сравнению с их размерами сразу после ЭВН. Поверхность покрытия приобретает зеркальный блеск. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании поверхностного слоя с высокой адгезией покрытия с подложкой из штамповой стали, низкой шероховатостью и гомогенизированной структурой, что увеличивает срок службы деталей, работающих в условиях штамповки, и расширяет область практического применения.

Способ поясняется чертежами, где на фиг. 1 представлена структура поперечного сечения поверхностного слоя электровзрывного композиционного покрытия системы TiC- Cr3С2-Al без воздействия ЭПО, на фиг. 2 - структура поперечного сечения поверхностного слоя электровзрывного композиционного покрытия системы TiC- Cr3С2-Аl после воздействия ЭПО.

Исследования методом сканирующей электронной микроскопии показали, что при ЭВН на стальных поверхностях, работающих в условиях штамповки, путем электрического взрыва композиционного электрически взрываемого проводника при поглощаемой плотности мощности 4,6-4,8 ГВт/м2 происходит формирование покрытия с композиционной наполненной структурой, когда в Cr3С2-алюминиевой матрице располагаются включения карбида титана с размерами от 0,5 до 4,0 мкм (фиг. 2). Если же использовать режим напыления, указанный в прототипе 3,5-4,5 ГВт/м2, то на границе покрытия со штамповой сталью образуется дефекты в виде пор. В покрытии наблюдаются дефекты в виде микропор и микротрещин. Указанный режим, при котором поглощаемая плотность мощности составляет 4,6-4,8 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 4,6 ГВт/м2 не происходит образование рельефа между покрытием и подложкой из штамповой стали, вследствие чего возможно отслаивание покрытия, а выше 4,8 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы алюминиевой фольги менее 60 мг становится невозможным изготовление из нее композиционного электрически взрываемого проводника. При значении массы алюминиевой фольги более 530 мг покрытие с композиционной наполненной структурой на поверхностях из штамповых сталей, работающих в условиях холодной штамповки, обладает большим количеством дефектов. При значении массы сердечника, состоящего из смеси порошков карбида титана массой менее 0,5 или более 2,0 массы оболочки и Cr3С2 массой менее 0,5 или более 2,0 массы оболочки покрытие с композиционной наполненной структурой на поверхностях штамповых сталей, работающих в условиях холодной штамповки, также обладает дефектной структурой. Граница электровзрывного покрытия с подложкой не является ровной что позволяет увеличить адгезию покрытия с подложкой.

Импульсно-периодическая ЭПО поверхности электровзрывного покрытия с поверхностной плотностью поглощаемой энергии 40-60 Дж/см2, длительностью импульсов 150-200 мкс, количеством импульсов 10-30 приводит к выглаживанию рельефа поверхности до образования зеркального блеска. Толщина модифицированных слоев после ЭПО изменяется в пределах от 20 до 40 мкм и незначительно увеличивается с ростом плотности энергии пучка электронов. Электронно-пучковая обработка, сопровождающаяся переплавлением слоя покрытия и приводит к формированию композиционной наполненной [5] структуры (фиг. 2). Дефекты в виде микропор и микротрещин в нем не наблюдаются. Размеры включений карбида титана в Cr3С2-алюминиевой матрице изменяются в пределах от 0,1 до 0,4 мкм. Импульсно-периодическая ЭПО поверхностного слоя приводит к формированию в нем более дисперсной и однородной структуры. Указанный режим является оптимальным, поскольку при поверхностной плотности энергии меньше 40 Дж/см2, длительности импульсов короче 150 мкс, количестве импульсов менее 10 имп. не происходит образования однородной структуры на основе карбида титана, Cr3С2, алюминия и диспергирования Cr3С2, алюминия и карбида титана в покрытии. При поверхностной плотности энергии больше 60 Дж/см2, длительности импульсов длиннее 200 мкс, количестве импульсов более 30 имп. происходит формирование рельефа поверхности.

Трибологические свойства (износостойкость и коэффициент трения) покрытий изучали в геометрии диск-штифт с помощью трибометра (CSEM) при комнатной температуре и влажности. В качестве контртела использовался алмазную пирамидку, диаметр трека 3,9 мм, скорость вращения - 1,5 см/с, нагрузка - 8 Н, дистанция до остановки - 123 м. Критерием износостойкости являлся удельный объем трека износа материала, который определялся с помощью лазерного оптического профилометра MicroMeasure 3D Station и рассчитывался по формуле

где R - радиус трека, А - площадь поперечного сечения канавки износа, F - величина приложенной нагрузки, L - пройденная шариком дистанция.

В результате проведенных испытаний установлено, что износостойкость покрытий на основе карбида титана, Cr3С2 и алюминия повышается в 2 раза по сравнению с штамповыми сталями 5ХНМ и Х12МФ после изотермического отжига по режиму: нагрев 850-870°С, охлаждение со скоростью 40 град/ч до 700-720°С, выдержка 3-4 ч, охлаждение со скоростью 50 град/ч до 550°С, воздух. Значения коэффициента трения для покрытий на основе карбида титана, Cr3С2 и алюминия составляют 0,5…0,6.

Микротвердость измеряли на микротвердомере HVS-1000A. Значения микротвердости сформированных покрытий находятся в интервале 24000-25000 МПа. Нанотвердость измеряли с использованием системы Agilent U9820A Nano Indenter G200. Значения нанотвердости сформированных покрытий составляет 24500 МПа.

Примеры конкретного осуществления способа.

Пример 1

Обработке подвергали лист из штамповой стали 5ХНМ толщиной 25 мм площадью 4 см2. Использовали композиционный электрически взрываемый проводник, состоящий из оболочки и сердечника в виде порошков карбида титана и Cr3С2, при этом оболочка состояла из двух слоев электрически взрываемой плоской алюминиевой фольги массой 60 мг, а масса порошков карбида титана и Cr3С2 в сердечнике составляла по 30 мг для каждого из порошков. Сформированной плазменной струей оплавляли поверхность листа штамповой стали 5ХНМ при поглощаемой плотности мощности 4,6 ГВт/м2 и формировали на ней композиционное электровзрывное покрытие системы TiC- Cr3С2-Аl. После самозакалки покрытия при теплоотводе в объем стального листа осуществляли импульсно-периодическую ЭПО поверхности электровзрывного покрытия при поверхностной плотности энергии 40 Дж/см2, длительности импульсов - 150 мкс, количестве импульсов - 10 имп.

Получили износостойкое покрытие на основе карбида титана, Cr3С2 и алюминия с высокой адгезией покрытия с подложкой на уровне когезии. На ОАО «Вест-2002» штампы из стали 5ХНМ, упрочненные заявляемым способом, показали увеличенный ресурс работы в 1,2 раза по сравнению со штампами без покрытия на основе карбида титана, Cr3С2 и алюминия.

Пример 2

Обработке подвергали лист из штамповой стали Х12МФ толщиной 25 мм площадью 15 см2. Использовали композиционный электрически взрываемый проводник, состоящий из оболочки и сердечника в виде смеси порошков карбида титана и Cr3С2, при этом оболочка состояла из двух слоев электрически взрываемой плоской алюминиевой фольги массой 530 мг, а масса порошков карбида титана и Cr3С2 в сердечнике составляла по 1060 мг для каждого из порошков. Сформированной плазменной струей оплавляли поверхность листа из штамповой стали Х12МФ при поглощаемой плотности мощности 4,8 ГВт/м2 и формировали на ней композиционное электровзрывное покрытие системы TiC- Cr3С2-Аl. После самозакалки покрытия при теплоотводе в объем основы стального листа осуществляли импульсно-периодическую ЭПО поверхности электровзрывного покрытия при поверхностной плотности энергии 60 Дж/см2, длительности импульсов - 200 мкс, количестве импульсов - 30 имп.

Получили износостойкое покрытие на основе карбида титана, Cr3С2 и алюминия с высокой адгезией покрытия с подложкой на уровне когезии. На ОАО «Вест-2002» штампы из стали Х12МФ, упрочненные заявляемым способом, показали увеличенный ресурс работы в 1,2 раза по сравнению со штампами без покрытия на основе карбида титана, Cr3С2 и алюминия.

Источники информации

1. Патент РФ №2518037 на изобретение «Способ электровзрывного напыления композиционных износостойких покрытий системы TiC-Al на поверхности трения» / Романов Д.А., Олесюк О.В., Будовских Е.А., Громов В.Е.; заявл. 25.03.2013; опубл. 10.06.2014, Бюл. №16. 8 с.

2. Романов Д.А., Будовских Е.А., Громов В.Е. Электровзрывное напыление электроэрозионностойких покрытий: формирование структуры, фазового состава и свойств электроэрозионностойких покрытий методом электровзрывного напыления. - Saarbrucken: LAP LAMBERT Academic Publishing GmbH & Co. KG, 2012. - 170 c.

3. Электровзрывное напыление износо- и электроэрозионностойких покрытий / Д.А. Романов, Е.А. Будовских, В.Е. Громов, Ю.Ф. Иванов. - Новокузнецк: Изд-во ООО «Полиграфист», 2014. - 203 с.

4. Патент РФ №2583227 на изобретение «Способ нанесения износостойких покрытий на основе диборида титана и алюминия на стальные поверхности» / Романов Д.А., Будовских Е.А., Гончарова Е.Н., Громов В.Е.; заявл. 15.12.2014; опубл. 10.05.2016, Бюл. №13. 7 с.

5. Мэттьюз М., Ролингс Р. Композиционные материалы. Механика и технология. - М.: Техносфера, 2004. - 408 с.

Способ нанесения износостойкого покрытия на основе карбида титана, Cr3C2 и алюминия на штамповые стали, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской алюминиевой оболочки массой 60-530 мг и сердечника в виде смеси порошка карбида титана массой равной 0,5-2,0 массы оболочки и порошка Cr3C2 массой равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности штамповой стали при поглощаемой плотности мощности 4,6-4,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней композиционного покрытия системы TiC-Cr3C2-Al и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30.



 

Похожие патенты:

Изобретение относится к способу восстановления шеек стального коленчатого вала двигателей внутреннего сгорания. В способе восстановления шеек стальных коленчатых валов осуществляют демонтаж, мойку, дефектоскопию и шлифование изношенной поверхности, зачистку подложечного слоя от коррозии, подготовку подложечного слоя к наплавке путем дробеструйной обработки и газопламенное напыление.

Изобретение относится к области медицинской техники и приборостроения, а именно к технологии формирования наноструктурированных оксидных покрытий системы Ti-Ta-(Ti,Ta)xOy на изделиях из технического титана, в том числе имплантируемых внутрикостных конструкциях.

Изобретение относится к способу формирования волокнистого композиционного покрытия на изделии из низко- или среднеуглеродистой конструкционной стали. Осуществляют нанесение покрытия на основе промышленного порошка ПР-10Р6М5 электронно-лучевым или плазменно-порошковым методом.

Изобретение относится к способу изготовления нанесенной термическим напылением тонкостенной гильзы цилиндра для установки в блоке цилиндров двигателя и к гильзе цилиндра, изготовленной таким способом.

Изобретение относится к способу изготовлению детали из хромосодержащего жаропрочного сплава на основе никеля и может найти применение при изготовлении деталей газотурбинных двигателей.

Изобретение относится к способам антикоррозионной обработки поверхности изделий из алюминия или алюминиевых сплавов. Поверхность изделия подвергают импульсному энергетическому воздействию излучением импульсного оптоволоконного иттербиевого лазера с длиной волны 1,065 мкм при удельной мощности излучения 4,539⋅1010…8,536⋅1010 Вт/см2, частоте следования импульсов 20…40 кГц и скорости сканирования поверхности лазерным излучением 250…700 мм/с.

Изобретение относится к получению микропористых структур на поверхности изделий из титана или его сплава и может быть использовано в области медицинской техники при изготовлении из титана и его сплавов поверхностно-пористых эндопротезов и имплантатов для травматологии, ортопедии, различных видов пластической хирургии, для подготовки поверхности титановых имплантатов под нанесение биоактивных покрытий.

Изобретение относится к области нанесения покрытий и может быть использовано для упрочнения режущего инструмента и металлических деталей машин. Способ плазменного нанесения покрытия на металлическую заготовку включает нагрев поверхности заготовки и плазменное напыление слоя покрытия на ее поверхность, при этом осуществляют нагрев участка поверхности, на который наносят покрытие, плазменной струей до температуры, при которой размер расширенного тепловым потоком участка поверхности будет равен размеру наносимого покрытия на упомянутом участке при температуре напыления, после нанесения требуемого слоя напыление прекращают и измеряют температуру поверхности покрытия и температуру поверхности заготовки на границе напыленного слоя и устраняют разницу в температурах путем регулирования подачи охлаждающей среды на границу раздела напыленного слоя и заготовки до их остывания.

Изобретение относится к способам получения наноматериалов модификацией поверхности металлсодержащих каркасных соединений, которые могут быть использованы в качестве высокопористых эффективных гетерогенных катализаторов гидрирования непредельных соединений, фотокатализаторов в солнечных батареях.

Изобретение относится к области упрочняющей обработки материалов, в частности к способам химико-термической обработки изделий путем нанесения металлосодержащих покрытий различного назначения.

Изобретение относится к способу восстановления шеек стального коленчатого вала двигателей внутреннего сгорания. В способе восстановления шеек стальных коленчатых валов осуществляют демонтаж, мойку, дефектоскопию и шлифование изношенной поверхности, зачистку подложечного слоя от коррозии, подготовку подложечного слоя к наплавке путем дробеструйной обработки и газопламенное напыление.
Настоящее изобретение относится к способу для нанесения покрытия распылением на поверхности субстратов, в котором: (а) на первом этапе поддающееся термопластичной переработке вещество в экструдере расплавляют и тем самым разжижают, (b) на расплавленное вещество воздействуют давлением при помощи газа-носителя, (с) смесь, образующуюся из указанного расплавленного вещества и указанного газа-носителя, продавливают через одну или несколько форсунок, причем в зоне выходного отверстия форсунки к распыляемой струе подводят газ-распылитель, имеющий температуру, которая по меньшей мере столь же высока, как температура расплава, и (d) образующуюся распыляемую струю с расплавленным поддающимся термопластичной переработке веществом направляют на поверхность субстрата, причем вещество в форме капель в текучем состоянии попадает на поверхность субстрата, образует непрерывное покрытие на поверхности субстрата и затем затвердевает.

Изобретение относится к технологии напыления газотермических покрытий и может быть использовано в машиностроении, авиационной и ракетно-космической технике, станкостроении, нефтегазодобывающей промышленности, энергетике и в городских сетях.

Изобретение относится к способу нанесения покрытия путем термического напыления и может быть использовано для покрытия внутренних поверхностей гильз цилиндра двигателя внутреннего сгорания.

Изобретение относится к способам нанесения покрытий, в частности к способу нанесения покрытий на рабочую поверхность цилиндра блока цилиндров двигателя внутреннего сгорания.

Изобретение относится к способам и устройствам для нанесения износостойкого покрытия. Введение частиц порошкового материала в распылительное сопло.

Изобретение относится к способу нанесения металлического порошкового покрытия на поверхность металлической подложки. Осуществляют обезжиривание, механическую обработку поверхности металлической подложки и электродуговое напыление порошка, который подают из сопла-электрода горелки посредством транспортирующего газа в зону электрической дуги между соплом-электродом и металлической подложкой.

Изобретение относится к трубному производству, в частности к способу обработки ниппельной части резьбового соединения насосно-компрессорной трубы, и может быть использовано при строительстве нефтяных, газовых и газоконденсатных скважин.

Изобретение относится к области машиностроения и предназначено для импульсного дозирования подачи порошка при газотермическом детонационном напылении слоя покрытия на физический объект.

Изобретение относится к лазерному плазмотрону для осаждения композитных алмазных покрытий и может быть использовано в машиностроении, в химической и электронной промышленности, в атомной энергетике.

Изобретение относится к области медицинской техники и приборостроения, а именно к технологии формирования наноструктурированных оксидных покрытий системы Ti-Ta-(Ti,Ta)xOy на изделиях из технического титана, в том числе имплантируемых внутрикостных конструкциях.
Наверх