Способ изготовления керамической мембраны

Изобретение относится к технологии получения керамической мембраны на пористом носителе, в частности на подложках из оксида алюминия или оксида циркония. Способ изготовления керамической мембраны, включающий получение пористой керамической подложки, нанесение на ее поверхность слоев суспензии цеолита и последующую термообработку, отличающийся тем, что получение пористой керамической подложки включает формование послойно уложенных слоев смесей порошка оксида алюминия или оксида циркония и порообразователя, в качестве которого используют сверхвысокомолекулярный полиэтилен (СВМПЭ), канифоль или парафин, взятых соответственно в соотношении, % масс.: 85:15-25:75, с градиентной пористостью от 15% до 60% по толщине подложки, затем наносят на поверхность подложки со стороны максимальной пористости, по крайней мере, один слой суспензии цеолита и проводят термообработку в интервале температур от 1000 до 1500°C. Технический результат – получение мембраны с высокими прочностными и фильтрационными свойствами. 4 з.п. ф-лы.

 

Изобретение относится к технологии получения керамической мембраны на пористом носителе, в частности на подложках из оксида алюминия или оксида циркония, и может быть использовано при изготовлении керамических фильтрующих элементов, предназначенных для медицины, химии и других отраслей промышленности.

Известен способ изготовления керамической мембраны (RU 2128544, B01D 67/00, опубл. 10.04.1999). Изобретение относится к технологии изготовления полупроницаемых керамических микропористых мембран, используемых в процессах очистки и разделения. Мембрану изготавливают нанесением на пористый носитель слоя суспензии, сушкой и обжигом полученной заготовки. Технический результат: предотвращение образования дефектов при изготовлении мембраны. Нанесение слоя (слоев) осуществляют суспензией, твердая фаза которой состоит из не плавящихся при обжиге частиц наполнителя, из которого формируется мембранный слой, покрытых оболочкой из стеклосвязки. Наполнителем с оболочкой может быть, например, алюмоборосиликатная керамика.

Недостатками этого способа являются: в качестве фильтрующего элемента используют стеклосвязку, которая сужает область использования мембраны. Фильтрационные характеристики мембраны не удовлетворяют в полной мере современным требованиям конструкторов и технологов, занимающихся разработками новых процессов фильтрации.

Наиболее близким техническим решением к заявляемому (прототип) является способ получения цеолитного слоя на подложке (RU 2322390, C01B 39/00, B01D 71/02, опубл. 20.04.2008). Изобретение относится к неорганической химии и используется для получения материалов для фильтрации и мембранного разделения жидких и газовых сред, содержащих цеолитный слой на подложке. Способ получения цеолитного слоя на подложке включает выбор или изготовление пористой подложки, осаждение на пористой подложке дисперсии, содержащей кристаллы цеолита, способные служить центрами кристаллизации цеолитного слоя, приготовление реакционной смеси для синтеза цеолита в слое, приведение в контакт подложки с реакционной смесью и гидротермальную кристаллизацию с образованием цеолитного слоя на подложке, согласно которому в качестве подложки используют структуру, содержащую селективный градиентно-пористый слой из оксидной керамики на крупнопористом субстрате, полученный нанесением на крупнопористый субстрат сухого порошка оксида металла, гелированием оксидного слоя, преобразованием геля в золь, и последующим плакированием частиц в приповерхностном слое дополнительным керамическим оксидным слоем. Изобретение обеспечивает получение высококачественных мембран, содержащих цеолитный слой без использования органических структуронаправляющих агентов.

Недостатками этого способа является то, что способ достаточно трудоемок из-за многостадийности нанесение порошка и недостаточно высокие механические свойства керамической мембраны, в частности подложки.

Технической проблемой предлагаемого изобретения является создание способа изготовления керамической мембраны с высокими прочностными и фильтрационными свойствами. Дополнительный технический результат заявляемого способа заключается в снижении брака при изготовлении керамической мембраны.

Указанный технический результат достигается тем, что способ изготовления керамической мембраны включает получение пористой керамической подложки, нанесение на ее поверхность слоев суспензии цеолита и последующую термообработку, при этом получение пористой керамической подложки включает формование послойно уложенных слоев смесей порошка оксида алюминия или оксида циркония и порообразователя, в качестве которого используют сверхвысокомолекулярный полиэтилен (СВМПЭ), канифоль или парафин, взятых соответственно в соотношении, % масс.: 85:15-25:75, с градиентной пористостью от 15% до 60% по толщине подложки, затем наносят на поверхность подложки со стороны максимальной пористости, по крайней мере, один слой суспензии цеолита и проводят термообработку в интервале температур от 1000 до 1500°C.

Формование послойно уложенных слоев смесей порошка оксида алюминия или оксида циркония и порообразователя осуществляют при давлении прессования от 5 до 13 МПа.

Получение пористой керамической подложки осуществляют холодным формованием. В предлагаемом способе используют суспензию цеолита природного происхождения с размерами частиц от 1,0 до 50,0 мкм. Цеолит предварительно механически активируют в планетарно-шаровой мельнице в интервале времени от 20 до 600 мин.

Раскрытие сущности изобретения

Предлагаемое изобретение применимо для изготовления керамической мембраны с градиентным распределением пористости по толщине подложки и с градиентным распределением пористости по толщине подложки и с градиентным распределением содержания цеолита на керамической подложке. На керамику на основе оксида алюминия или оксида циркония, выполняющую роль подложки, с пористостью от 15% до 60% по толщине, нанесение слоев на поверхность подложки со стороны максимальной пористости осуществляют суспензией, приготовленной на спиртовой основе и порошка природного цеолита с размерами частиц, выбранными из диапазона 1.0-50.0 мкм, и имеющего высокую удельную поверхность.

Керамика на основе оксида алюминия и оксида циркония отличается прочностью, износотермостойкостью, биосовместимостью, способностью поглощать и удерживать в поровом пространстве значительное количество активной жидкости. В предлагаемом изобретении цеолит используется как фильтрующий материал, обладающий высокой пористостью и удельной поверхностью.

Получение пористой керамической подложки осуществляется холодным формованием для получения механически прочной подложки и отличается простотой реализации. Физико-химические свойства пористого оксида алюминия и оксида циркония определяются его структурой и составом и могут быть изменены термообработкой в интервале температур от 1000 до 1500°С. Для увеличения удельной поверхности порошка, цеолит предварительно механически активируют в планетарно-шаровой мельнице в интервале времени от 20 до 600 мин.

Использование порошка цеолита с размерами частиц, выбранными из диапазона 1.0-50.0 мкм, обеспечивает прочную фиксацию цеолитного слоя на керамической подложке и высокие фильтрационные свойства для практического использования керамической мембраны для фильтрации жидкостей.

После нанесения, по крайней мере, одного слоя суспензии порошка цеолита на керамическую подложку, ее сушат и проводят термообработку полученной заготовки в интервале температур от 1000 до 1500°С. При температуре термообработки ниже 1000°С не достигается заявленных прочностных характеристик керамической мембраны (сита). При температуре термообработки выше 1500°С происходит оплавление цеолитных слоев.

Осуществление изобретения

Пористую керамическую подложку получают путем холодного формования послойно уложенных слоев смесей порошка оксида алюминия или оксида циркония и порообразователя, взятых соответственно в соотношении, % мас.: 85:15 – 25:75.

Указанные смеси разных составов последовательно укладывают слоями с пористостью от 15% у основания и до 60% у границы с цеолитным слоем в жесткую матрицу пресс-формы, при этом между каждым слоем механическим воздействием получают волнистый рельеф для придания градиентной структуры материала, затем прессуют при давлении прессования от 5 до 13 МПа. Полученные пористые керамические подложки высушивают и обжигают при температуре в интервале от 1000 до 1500°С. В результате образуется твердая пористая керамическая подложка с пористостью по толщине от 15% до 60%.

Для приготовления суспензии использовали спиртовую основу и природный цеолит. Природный цеолит предварительно механически активируют в планетарно-шаровой мельнице в интервале времени от 20 до 600 мин.

На поверхность пористой керамической подложки со стороны максимальной пористости наносят слой суспензии, приготовленной из порошка цеолита с пористостью 50%, который может проникнуть сквозь поры подложки, для лучшей прочности соединения. Разравнивают вручную зубчатым шпателем слой суспензии в продольном и поперечном направлении. На поверхность слоя суспензии, приготовленной из порошка цеолита с пористостью 50%, наносят слой суспензии, приготовленной из порошка цеолита с пористостью 30%. Далее описанные операции повторяют, при этом в процессе нанесения и выравнивания второго слоя суспензии заполняются дефекты и трещины первого слоя. Описанные циклы операций, включающие последующее нанесение суспензии, приготовленной соответственно из порошка цеолита с меньшей пористостью можно повторять многократно в зависимости от требуемой пористой структуры керамической мембраны. В результате обжига при температуре в интервале от 1000 до 1500°С на поверхности керамической мембраны образуется равномерный блестящий мембранный слой, который формируется с градиентным распределением пористости и с градиентным распределением содержания цеолита.

Пример 1.

Готовят 5 разных смесей из порошка оксида циркония и сверхвысокомолекулярного полиэтилена (СВМПЭ), взятых соответственно в соотношении, % мас.: 85:15; 70:30; 55:45; 40:60, 25:75 на 200 гр. смеси.

Указанные смеси разных количественных составов последовательно укладывают слоями высотой 5 - 10 мм, в матрицу пресс-формы, при этом между каждым слоем механическим воздействием получают волнистый рельеф для придания градиентной структуры материала и прессуют при давлении прессования 13 МПа. Полученную керамическую подложку обжигают при температуре 1200°С. В результате образуется твердая пористая керамическая подложка высотой 30 мм с пористостью по толщине от 15% до 60% с размерами пор от 10 до 20 мкм.

Для приготовления суспензии используют раствор этилового спирта 96% и природный цеолит Токайского месторождения с выбранными размерами частиц и пористостью 50%. Природный цеолит предварительно механически активируют в планетарно-шаровой мельнице в течение 20 мин. Получают суспензию, смешивая 15 мл этилового спирта и 5 г природного цеолита с пористостью 50%.

На поверхность керамической подложки со стороны максимальной пористости наносят слой суспензии. Разравнивают вручную зубчатым шпателем слой суспензии в продольном и поперечном направлении. Полученную керамическую мембрану высушивают и обжигают при температуре 1000°С.

Адгезионная прочность цеолитного слоя к керамической подложке составляет 105 кг/см2. Поверхность фильтрации керамических мембран составляет 4 см2.

Пример 2.

Готовят 4 разные смеси из порошка оксида алюминия марки Г00 и парафина, взятых соответственно в соотношении, % мас.: 85:15; 70:30; 40:60, 25:75 на 200 гр. смеси.

Указанные смеси разных количественных составов последовательно укладывают слоями высотой 8 - 12 мм в матрицу пресс-формы, при этом между каждым слоем механическим воздействием получают волнистый рельеф для придания градиентной структуры материала и прессуют при давлении прессования 5 МПа. Полученную керамическую подложку обжигают при температуре 1000°С. В результате образуется твердая пористая керамическая подложка высотой 35 мм с пористостью по толщине от 15% до 60% с размерами пор от 15 до 30 мкм.

Для приготовления суспензии используют раствор этилового спирта 96% и природный цеолит Токайского месторождения с выбранными размерами частиц и пористостью 50% и 30%. Природный цеолит предварительно механически активируют в планетарно-шаровой мельнице в течение 60 мин. Получают суспензии для первого слоя, смешивая 15 мл этилового спирта и 5 г природного цеолита с пористостью 50% и для второго слоя, смешивая 15 мл этилового спирта и 5 г природного цеолита с пористостью 30%.

На поверхность керамической подложки со стороны максимальной пористости наносят слой суспензии, приготовленной из цеолита с пористостью 50%. Разравнивают вручную зубчатым шпателем слой суспензии в продольном и поперечном направлении. Затем наносят слой суспензии, приготовленной из цеолита с пористостью 30%. Разравнивают второй слой суспензии, заполняются дефекты и трещины первого слоя. Полученную керамическую мембрану высушивают и обжигают при температуре 1200°С.

Адгезионная прочность цеолитного слоя к керамической подложке составляет 100 кг/см2. Поверхность фильтрации керамических мембран составляет 5 см2.

Пример 3.

Готовят 4 разные смеси из порошка оксида алюминия марки Г00 и канифоли, как в примере 2.

Указанные смеси разных количественных составов последовательно укладывают слоями высотой 8 - 12 мм в матрицу пресс-формы, при этом между каждым слоем механическим воздействием получают волнистый рельеф для придания градиентной структуры материала и прессуют при давлении прессования 10 МПа. Полученную керамическую подложку обжигают при температуре 1500°С. В результате образуется твердая пористая керамическая подложка высотой 30 мм с пористостью по толщине от 15% до 60% с размерами пор от 30 до 50 мкм.

Для приготовления суспензии используют раствор этилового спирта 96% и природный цеолит Токайского месторождения с выбранными размерами частиц и пористостью 50%, 30% и 10%. Природный цеолит предварительно механически активируют в планетарно-шаровой мельнице в течение 120 мин.

Получают суспензии для первого слоя, смешивая 15 мл этилового спирта и 5 г природного цеолита с пористостью 50%, для второго слоя, смешивая 15 мл этилового спирта и 5 г природного цеолита с пористостью 30%, и для третьего слоя, смешивая 15 мл этилового спирта и 5 г природного цеолита с пористостью 30%.

На поверхность керамической подложки со стороны максимальной пористости наносят слой суспензии, приготовленной из цеолита с пористостью 50%. Разравнивают вручную зубчатым шпателем слой суспензии в продольном и поперечном направлении. Затем наносят слой суспензии, приготовленной из цеолита с пористостью 30%. Разравнивают второй слой суспензии, заполняются дефекты и трещины первого слоя. Затем наносят слой суспензии, приготовленной из цеолита с пористостью 10%. Разравнивают третий слой суспензии, заполняются дефекты и трещины второго слоя. Полученную керамическую мембрану высушивают и обжигают при температуре 1500°С.

Адгезионная прочность цеолитного слоя к керамической подложке составляет 120 кг/см2. Поверхность фильтрации керамических мембран составляет от 7 см2.

Пример 4.

Получают керамическую подложку, как в примере 1.

Для приготовления суспензии используют раствор этилового спирта 96% и природный цеолит Токайского месторождения с выбранными размерами частиц и пористостью 50%, 30%, 10%, 5%. Природный цеолит предварительно механически активируют в планетарно-шаровой мельнице в течение 600 мин.

Готовят суспензии, полученные из цеолита с пористостью 50%, 30%, 10% и 5%, как в примерах 1-3.

На поверхность керамической подложки со стороны максимальной пористости наносят слой суспензии, приготовленной из цеолита с пористостью 50%. Разравнивают вручную зубчатым шпателем слой суспензии в продольном и поперечном направлении. На поверхность слоя суспензии цеолита с пористостью 50%, наносят слой суспензии, приготовленной из цеолита с пористостью 30%. Разравнивают второй слой суспензии, заполняются дефекты и трещины первого слоя. На поверхность слоя суспензии цеолита с пористостью 30% наносят слой суспензии, приготовленной из цеолита с пористостью 10%. Разравнивают третий слой суспензии, заполняются дефекты и трещины второго слоя. На поверхность слоя суспензии цеолита с пористостью 10% наносят слой суспензии, приготовленной из цеолита с пористостью 5%. Разравнивают четвертый слой суспензии, заполняются дефекты и трещины третьего слоя. Полученную керамическую мембрану высушивают и обжигают при температуре 1300°С.

Адгезионная прочность цеолитного слоя к керамической подложке составляет 130 кг/см2. Поверхность фильтрации керамических мембран составляет от 8 см2.

Таким образом, предлагаемый способ обеспечивает прочную фиксацию цеолитного слоя на пористой керамической подложке и практическому использованию в качестве «сита» для фильтрации жидкостей. Предлагаемый способ изготовления керамической мембраны позволяет в зависимости от конкретного назначения сконструировать ее с различными параметрами: толщиной керамической подложки; пористостью и размерами пор как подложки, так и цеолитного слоя. Предлагаемый способ изготовления керамической мембраны обеспечивает выход годных изделий до 95%.

1. Способ изготовления керамической мембраны, включающий получение пористой керамической подложки, нанесение на ее поверхность слоев суспензии цеолита и последующую термообработку, отличающийся тем, что получение пористой керамической подложки включает формование послойно уложенных слоев смесей порошка оксида алюминия или оксида циркония и порообразователя, в качестве которого используют сверхвысокомолекулярный полиэтилен (СВМПЭ), канифоль или парафин, взятых соответственно в соотношении, % масс.: 85:15-25:75, с градиентной пористостью от 15% до 60% по толщине подложки, затем наносят на поверхность подложки со стороны максимальной пористости, по крайней мере, один слой суспензии цеолита и проводят термообработку в интервале температур от 1000 до 1500°C.

2. Способ по п. 1, отличающийся тем, что формование послойно уложенных слоев смесей порошка оксида алюминия или оксида циркония и порообразователя осуществляют при давлении прессования от 5 до 13 МПа.

3. Способ по любому из пп. 1 или 2, отличающийся тем, что получение пористой керамической подложки осуществляют холодным формованием.

4. Способ по п. 1, отличающийся тем, что используют суспензию цеолита природного происхождения с размерами частиц от 1,0 до 50,0 мкм.

5. Способ по любому из пп. 1 или 4, отличающийся тем, что цеолит предварительно механически активируют в планетарно-шаровой мельнице в интервале времени от 20 до 600 мин.



 

Похожие патенты:

Изобретение относится к мембране на подложке, к способу получению мембраны и способу выделению с помощью указанной мембраны твердых частиц и катионов металлов, более точно, к способу фильтрации твердых частиц и экстракции катионов металлов, в частности радиоактивных, содержащихся в жидкости.

Изобретение относится к технологии получения пористых мембран на основе диоксида циркония, которые могут быть использованы в качестве фильтров для очистки и разделения жидкостей и газов, носителей катализаторов в различных химических процессах.

Изобретение относится к созданию селективных мембран, функционирующих за счет «сродства» гидридообразующего наполнителя к водороду. Описан способ получения композиционных мембранных материалов для выделения водорода из газовых смесей на основе гидридообразующих интерметаллических соединений и полимерных связующих, включающий механоактивационную обработку порошка гидридообразующего интерметаллического соединения в шаровой мельнице, последующую кратковременную совместную механоактивационную обработку порошка гидридообразующего интерметаллического соединения с добавлением барьерного полимерного материала продолжительностью 1-5 мин, прессование металлополимерных композиционных порошков и последующую прокатку полученного металлополимерного компакта.

Изобретение раскрывает полимерные формы ионных жидкостей PFIL на основе полибензимидазола (РВТ) и способ синтеза таких полимерных форм ионных жидкостей. Изобретение также относится к использованию полимерных форм ионных жидкостей на основе PBI и мембран из них для сорбции, фильтрации и разделения газов.

Изобретение относится к созданию структур на основе полупроводниковых нанокристаллов и органических молекул, которые могут быть использованы в качестве микрофлюидных элементов в оптоэлектронных устройствах.

Изобретение относится к области создания и использования катализаторов дегидрирования углеводородов, представляющего собой пористую подложку из нержавеющей стали, никеля или меди, на одну сторону которой нанесен слой пиролизованного инфракрасным излучением полиакрилонитрила (ИК-ПАН), а на другую сторону - слой, содержащий наночастицы сплавов Pt-Ru, Pt-Re, Pt-Rh или Pd-Ru, распределенные в пленке ИК-ПАН.
Изобретение относится к легкой промышленности и касается разработки комбинированного материала - ламината. .

Изобретение относится к технологии получения модифицированных ионообменных мембран на основе серийно выпускаемых катионообменных гомогенных мембран МФ-4СК для использования в камерах концентрирования электродиализатора.

Изобретение относится к нанопористым металлическим материалам и может быть использовано для изготовления ультрафильтрационных мембран и получения нанопористых изделий со сквозными порами.

Изобретение относится к области биотехнологии и касается способа получения бислойных липидных мембран. .

Изобретение относится к мембране на подложке, к способу получению мембраны и способу выделению с помощью указанной мембраны твердых частиц и катионов металлов, более точно, к способу фильтрации твердых частиц и экстракции катионов металлов, в частности радиоактивных, содержащихся в жидкости.

Изобретение относится к мембране на подложке, к способу получению мембраны и способу выделению с помощью указанной мембраны твердых частиц и катионов металлов, более точно, к способу фильтрации твердых частиц и экстракции катионов металлов, в частности радиоактивных, содержащихся в жидкости.

Изобретение относится к технологии получения пористых мембран на основе диоксида циркония, которые могут быть использованы в качестве фильтров для очистки и разделения жидкостей и газов, носителей катализаторов в различных химических процессах.

Изобретение относится к технологии получения пористых мембран на основе диоксида циркония, которые могут быть использованы в качестве фильтров для очистки и разделения жидкостей и газов, носителей катализаторов в различных химических процессах.

Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в химическом синтезе.
Изобретение относится к способам изготовления фильтрующих мембранных материалов. Способ изготовления включает формирование на пористой подложке из нержавеющей стали, имеющей толщину 150-250 мкм и средний размер пор 2-10 мкм, селективного слоя из титана толщиной 1-10 мкм.

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом синтезе.
Изобретение относится к мембранной технологии, в частности к фильтрующим материалам для ультра- и нанофильтрации. Предложен материал, состоящий из пористой металлической подложки с размером пор 1,2-5,5 мкм, изготовленной из нержавеющей стали, керамического слоя ТiO2 с размером пор 0,2-0,25 мкм и толщиной 10-15 мкм и слоя металлического титана толщиной 0,1-0,6 мкм с размером пор 3-150 нм, напыленного на поверхность керамического слоя.

Изобретение относится к области мембранного газоразделения. Способ фракционирования смесей низкомолекулярных углеводородов, характеризующийся тем, что разделение сырьевой смеси на пермеат и ретентат осуществляют на микропористой мембране, обладающей однородной пористостью с диаметром пор в диапазоне 5-250 нм, при этом температуру мембраны и пермеата, а также давление на стороне пермеата поддерживают ниже температуры и давления подаваемой сырьевой смеси с обеспечением капиллярной конденсации компонентов смеси в микропорах мембраны.

Изобретение относится к области мембранных технологий и касается устройств, осуществляющих выделение кислорода из смеси газов на керамических мембранах со смешанной ионно-электронной проводимостью.
Наверх