Подложка для способа селективного синтеза высококачественной керосиновой фракции из синтез-газа, катализатор этого способа и способ их изготовления

Изобретение относится к технической области каталитического синтеза жидких топливных фракций. Описан носитель для селективного синтеза керосиновой фракции из синтез-газа, данный носитель содержит следующие компоненты в частях по массе: 5-50 частей мезопористого диоксида циркония (ZrO2), 10-55 частей силикоалюмофосфатного (SAPO) молекулярного сита, 5-50 частей модифицированного мезопористого молекулярного сита Al-SBA-16, 1-3 части порошка смолы сесбании и 10-70 частей глинозема. Способ приготовления указанного носителя для селективного синтеза керосиновой фракции из синтез-газа включает: 1) отвешивание SBA-16 и триэтоксида алюминия в соответствии с массовым отношением 1:3,0-4,5 и разделение триэтоксида алюминия на две равные порции; 2) добавление SBA-16 к н-гексану и равномерное перемешивание при комнатной температуре, чтобы получить смешанный раствор; добавление одной части триэтоксида алюминия к н-гексану и перемешивание при комнатной температуре до растворения триэтоксида алюминия; и добавление триэтоксида алюминия, растворенного в н-гексане, к смешанному раствору и перемешивание в течение ночи при комнатной температуре, чтобы получить раствор образца; 3) перемещение раствора образца, полученного на стадии 2), в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить первичный фильтрационный осадок; 4) добавление первичного фильтрационного осадка к н-гексану и перемешивание при комнатной температуре; добавление другой части триэтоксида алюминия; перемешивание в течение ночи при комнатной температуре, перемещение в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить вторичный фильтрационный осадок; 5) обжиг вторичного фильтрационного осадка при 500-650°C в течение 6-10 ч, чтобы получить модифицированное сито Al-SBA-16 для применения; 6) равномерное перемешивание микропористого глинозема с разбавленным раствором азотной кислоты при массовом отношении 1:0,5-1,5, чтобы приготовить вязкую пасту для применения, в которой концентрация разбавленного раствора азотной кислоты составляет 5-20 масс.%; и 7) отвешивание, в частях по массе, 5-50 частей мезопористого диоксида циркония, 10-55 частей силикоалюмофосфатного молекулярного сита, 5-50 частей модифицированного сита Al-SBA-16, 1-3 частей порошка смолы сесбании и 10-70 частей вязкой пасты на основе глинозема; и их равномерное смешивание, прокатывание, экструзионное формование, сушка в течение 6-12 ч при 90-120°C, последующий обжиг в течение 4-10 ч на воздухе при 500-600°C и охлаждение до комнатной температуры, чтобы получить носитель. Раскрыт катализатор для селективного синтеза керосиновой фракции из синтез-газа, содержащий растворимую соль кобальта и вышеуказанный носитель, данная растворимая соль кобальта загружена на поверхность носителя. Способ изготовления данного катализатора включает: импрегнирование носителя водным раствором, содержащим растворимую соль кобальта, посредством изообъемного импрегнирования, выдерживание в течение ночи при комнатной температуре, последующую сушку в течение 4-12 ч при 90-120°C при нормальном давлении, обжиг в течение 4-10 ч на воздухе при 500-600°C и охлаждение до комнатной температуры, чтобы получить катализатор. Технический результат – получение носителя и катализатора для селективного синтеза высококачественной керосиновой фракции из синтез-газа, обладающими характеристиками, заключающимися в низкой селективности в отношении метана, высокой селективности в отношении средней фракции и высокой способности к выполнению изомеризации, причем высококачественная керосиновая фракция может быть получена непосредственным и селективным образом посредством реакции синтеза Фишера-Тропша синтез-газа. 4 н. и 12 з.п. ф-лы, 12 пр., 5 табл.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Данное изобретение относится к технической области каталитического синтеза жидких топливных фракций и, более конкретно, к носителю и катализатору для селективного синтеза высококачественной керосиновой фракции из синтез-газа и способу их изготовления.

УРОВЕНЬ ТЕХНИКИ, ПРЕДШЕСТВУЮЩИЙ ДАННОМУ ИЗОБРЕТЕНИЮ

[0002] Синтез-газ может быть преобразован в углеводородные соединения посредством реакции синтеза Фишера-Тропша в присутствии катализатора. Данные углеводородные соединения состоят главным образом из линейных углеводородов, олефинов и небольшого количества кислородсодержащих соединений и характеризуются отсутствием серосодержащих, азотсодержащих и ароматических соединений, соответственно являясь благоприятными для окружающей среды жидкими топливами и химикалиями.

[0003] Наращивание цепи продукта синтеза Фишера-Тропша подчиняется механизму полимеризации, и селективность для продукта соответствует распределению Андерсона-Шульца-Флори. Наиболее значительными характерными чертами реакции синтеза Фишера-Тропша являются широкое распределение продуктов, низкая селективность для продуктов и низкое содержание изопродуктов. В соответствии с распределением, за исключением метана и тяжелых углеводородов (C21+), селективность для других продуктов является менее высокой. Например, селективность для бензиновой фракции (C5-C11) составляет примерно 45% самое большее, и селективность для фракции дизельного топлива (C12-C20) составляет примерно 30% самое большее. Кроме того, большинство продуктов являются углеводородами с неразветвленной молекулярной цепью, и содержание изопродуктов является очень низким.

[0004] По вышеуказанным причинам, бензиновая фракция, полученная от синтеза Фишера-Тропша, имеет довольно низкое октановое число, и температуры замерзания керосиновой фракции и фракции дизельного топлива являются сравнительно высокими, что ограничивает до некоторой степени их применение в качестве жидкого топлива. Поэтому, синтез Фишера-Тропша обычно комбинируют с процессом гидрокрекинга в промышленности в настоящее время. Посредством селективного разрыва цепи и изомеризации линейных алканов, произведенных посредством синтеза Фишера-Тропша, содержание изоалканов в продукте увеличивают, и низкотемпературную текучесть жидкого топлива, полученного от синтеза Фишера-Тропша, улучшают. Однако, при обычных обстоятельствах, как инвестиции, так и эксплуатационные расходы для устройства для гидрогенизации являются очень высокими. Эти факторы также ограничивают до некоторой степени оптимизацию и модернизацию качества продуктов от синтеза Фишера-Тропша.

[0005] Соответственно, все больше и больше внимания уделяется разработке катализатора для селективного получения высококачественной топливной фракции непосредственно с помощью синтез-газа таким образом, чтобы углеводороды с длинной молекулярной цепью, произведенные во время синтеза Фишера-Тропша, подвергались разрыву молекулярной цепи и изомеризации in situ, на поверхности катализатора, при получении тем самым жидкого топлива посредством одностадийного процесса.

[0006] В литературе (Y. Li et al. Energy Fuel 2008, 22, 1897) сообщается, что катализатор может быть приготовлен посредством смешивания SiO2 и ZSM-5, чтобы получить сложный оксид, и последующей загрузки на него кобальта, посредством чего могут быть достигнуты высокая каталитическая эффективность, степень конверсии CO более чем 80%, селективность для C5-C12, составляющая 55%, доля изоалканов лишь примерно 10% и селективность для средней топливной фракции (C12+) менее чем 15%.

[0007] В литературе (Kang. J.C. et al. Angew. Chem. Int. Ed. 2011, 50, 5200) сообщается, что цеолит H-ZSM-5 обрабатывают гидроксидом натрия, чтобы получить мезопористое молекулярное сито ZSM-5 в качестве носителя, чтобы поддерживать катализатор Фишера-Тропша на базе рутения. С помощью данного катализатора может быть получена селективность для продукта в виде бензиновой фракции (C5-C11) 79,0% и селективность для продукта в виде средней топливной фракции (C12+) лишь 0,5%.

[0008] Публикация заявки на патент Китая № CN1403536A описывает катализатор для синтезирования высококачественного дизельного топлива, который содержит молекулярное сито в качестве носителя и металлический кобальт, где молекулярное сито является ситом Y, Bata или MOR. При тех же условиях испытания, содержание компонентов дизельного топлива (C10-C20) в жидком продукте составляет примерно 72 масс.%, содержание н-алканов составляет примерно 20 масс.%, и селективность для метана в продукте является такой высокой как 28,1 масс.%.

[0009] Публикация заявки на патент Китая № CN1417291A описывает способ селективного получения в основном алканов фракции дизельного топлива из синтез-газа посредством синтеза Фишера-Тропша. Катализатор для синтеза Фишера-Тропша является катализатором, содержащим металлический кобальт, поддерживаемый на активированном угле в качестве носителя, и результирующий продукт в виде фракции дизельного топлива содержит по меньшей мере 95 масс.% алканов, при этом отношение изоалканов к н-алканам находится в интервале от 0,03 до 0,3.

[0010] Публикация заявки на патент Китая № CN103252238A описывает катализатор для селективного синтеза бензина и дизельного топлива с помощью синтез-газа. Данный катализатор включает кобальт в качестве активного ингредиента, никель в качестве промотора катализатора и носитель, который является многостенными углеродными нанотрубками. Хотя катализатор может эффективным образом уменьшать взаимодействие между носителем и активным компонентом и улучшать использование активного компонента, и он обладает преимуществами, заключающимися в высокой каталитической активности и хорошей селективности в отношении бензина и дизельного топлива, компоненты полученных при этом бензина и дизельного топлива являются в основном нормальными алканами с неразветвленной цепью, поскольку катализатор не обладает способностью к выполнению изомеризации.

[0011] Технические документы, представленные выше, направлены все на катализаторы для высокоэффективного получения бензина или дизельного топлива с помощью синтез-газа посредством синтеза Фишера-Тропша, в котором ZSM, Y, β, MOR и другие молекулярные сита или активированный уголь и углеродные нанотрубки применяют в качестве носителей. С одной стороны, эти носители содержат сильнокислотные центры, вызывая чрезмерное вторичное расщепление углеводородов с длинной молекулярной цепью в продукте, получаемом от синтеза Фишера-Тропша, что производит больше метана. С другой стороны, эти носители имеют очень слабой способностью к выполнению изомеризации, приводя к низкому содержанию изоалканов в продукте. Хотя катализатор с углеродным материалом в качестве носителя значительно ослабляет взаимодействие между активным компонентом и носителем и улучшает активность катализатора, доля изоалканов в топливной фракции очень ограничена, поскольку носитель почти не обладает способностью к выполнению изомеризации.

[0012] Поэтому, крайне необходима разработка катализатора с умеренной кислотностью и высокой способностью к выполнению изомеризации в одностадийном процессе производства высококачественной топливной фракции с помощью синтез-газа посредством синтеза Фишера-Тропша, посредством чего углеводороды с длинной молекулярной цепью, произведенные во время синтеза Фишера-Тропша, могут быть селективным образом подвергнуты разрыву молекулярной цепи in situ посредством гидрогенизации, и изомеризация линейных алканов может быть выполнена на поверхности катализатора. Однако до настоящего времени удовлетворительный технический эффект не был достигнут с помощью результатов исследований.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0013] Одной целью данного изобретения является предоставление носителя и катализатора для селективного синтеза высококачественной керосиновой фракции из синтез-газа, и способа их изготовления. Катализатор, приготовленный посредством применения данного носителя, обладает характеристиками, заключающимися в низкой селективности в отношении метана, высокой селективности в отношении средней фракции и высокой способности к выполнению изомеризации, и высококачественная керосиновая фракция может быть получена непосредственным и селективным образом посредством реакции синтеза Фишера-Тропша синтез-газа, тем самым эффективно решая проблему со сложными последующими процессами обработки, существующую в традиционной реакции синтеза Фишера-Тропша.

[0014] Для того, чтобы достигнуть вышеуказанной цели, в соответствии с одним вариантом осуществления данного изобретения, предоставлен носитель для селективного синтеза керосиновой фракции из синтез-газа. Данный носитель содержит следующие компоненты в частях по массе: 5-50 частей мезопористого диоксида циркония (ZrO2), 10-55 частей силикоалюмофосфатного молекулярного сита, 5-50 частей модифицированного мезопористого молекулярного сита Al-SBA-16, 1-3 части порошка смолы сесбании и 10-70 частей глинозема.

[0015] В объеме этого варианта изобретения, носитель содержит следующие компоненты в частях по массе: 10-30 частей мезопористого диоксида циркония, 25-45 частей силикоалюмофосфатного молекулярного сита, 10-30 частей модифицированного сита Al-SBA-16, 1-3 части порошка смолы сесбании и 30-55 частей глинозема.

[0016] В объеме этого варианта изобретения, носитель содержит следующие компоненты в частях по массе: 20 частей мезопористого диоксида циркония, 30 частей силикоалюмофосфатного молекулярного сита, 25 частей модифицированного сита Al-SBA-16, 1 часть порошка смолы сесбании и 30 частей глинозема.

[0017] В объеме этого варианта изобретения, исходный материал модифицированного сита Al-SBA-16 содержит SBA-16 и триэтоксид алюминия (Al(OC2H7)3), в котором массовое отношение SBA-16 к триэтоксиду алюминия составляет 1:3,0-4,5.

[0018] В объеме этого варианта изобретения, молярное отношение n кремния к алюминию в модифицированном сите Al-SBA-16 находится между 5 и 55, содержание кислоты Бренстеда (B кислоты) в нем составляет 39-92 мкмоль·г-1, содержание кислоты Льюиса (L кислоты) в нем составляет 71-105 мкмоль·г-1, и содержание Na2O в нем составляет ≤0,1 масс.%.

[0019] В объеме этого варианта изобретения, модифицированное сито Al-SBA-16 имеет молярное отношение n кремния к алюминию 10-25, удельную поверхность 550-930 м2·г-1, средний размер пор 4,0-7,5 нм и общий объем пор 0,45-0,70 см3·г-1.

[0020] В объеме этого варианта изобретения, модифицированное сито Al-SBA-16 приготавливают способом, включающим следующие стадии:

[0021] 1) отвешивание в отдельности SBA-16 и триэтоксида алюминия в соответствии с вышеуказанным массовым отношением и разделение триэтоксида алюминия на две равные порции для применения;

[0022] 2) добавление SBA-16 к н-гексану и равномерное перемешивание при комнатной температуре, чтобы получить смешанный раствор; добавление одной части триэтоксида алюминия к н-гексану и перемешивание при комнатной температуре до растворения триэтоксида алюминия; и добавление триэтоксида алюминия, растворенного в н-гексане, к смешанному раствору и перемешивание в течение ночи при комнатной температуре, чтобы получить раствор образца;

[0023] 3) перемещение раствора образца, полученного на стадии 2), в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить первичный фильтрационный осадок;

[0024] 4) добавление первичного фильтрационного осадка к н-гексану и равномерное перемешивание при комнатной температуре; добавление другой части триэтоксида алюминия; перемешивание в течение ночи при комнатной температуре, перемещение в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить вторичный фильтрационный осадок; и

[0025] 5) обжиг вторичного фильтрационного осадка при 500-650°C в течение 6-10 ч, чтобы получить модифицированное сито Al-SBA-16.

[0026] В объеме этого варианта изобретения, мезопористый диоксид циркония имеет удельную поверхность 190-350 м2·г-1, средний размер пор 5,0-8,5 нм и общий объем пор 0,40-0,55 см3·г-1.

[0027] В объеме этого варианта изобретения, силикоалюмофосфатное молекулярное сито имеет общее содержание кислоты 0,1-0,35 ммоль NH3·г-1; молярное отношение кремния к алюминию 0-1,0; удельную поверхность ≥150 м2·г-1, содержание Na2O ≤0.2 масс.% и общий объем пор 0,10-0,30 см3·г-1.

[0028] В объеме этого варианта изобретения, силикоалюмофосфатное молекулярное сито имеет молярное отношение кремния к алюминию 0,21-0,38, удельную поверхность ≥180 м2·г-1, содержание Na2O ≤0.2 масс.% и общий объем пор 0,10-0,30 см3·г-1. В качестве альтернативы, силикоалюмофосфатное молекулярное сито имеет молярное отношение кремния к алюминию 0-1,0, удельную поверхность ≥150 м2·г-1, содержание Na2O ≤0,2 масс.% и общий объем пор 0,13-0,26 см3·г-1.

[0029] Данное изобретение дополнительно предоставляет способ приготовления носителя для применения в селективном синтезе высококачественной керосиновой фракции из синтез-газа, который включает следующие стадии:

[0030] 1) отвешивание SBA-16 и триэтоксида алюминия в соответствии с массовым отношением 1:3,0-4,5 и разделение триэтоксида алюминия на две равные порции;

[0031] 2) добавление SBA-16 к н-гексану и равномерное перемешивание при комнатной температуре, чтобы получить смешанный раствор; добавление одной части триэтоксида алюминия к н-гексану и перемешивание при комнатной температуре до растворения триэтоксида алюминия; и добавление триэтоксида алюминия, растворенного в н-гексане, к смешанному раствору и перемешивание в течение ночи при комнатной температуре, чтобы получить раствор образца;

[0032] 3) перемещение раствора образца, полученного на стадии 2), в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить первичный фильтрационный осадок;

[0033] 4) добавление фильтрационного осадка к н-гексану и равномерное перемешивание при комнатной температуре; добавление другой части триэтоксида алюминия; перемешивание в течение ночи при комнатной температуре, перемещение в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить вторичный фильтрационный осадок;

[0034] 5) обжиг вторичного фильтрационного осадка при 500-650°C в течение 6-10 ч, чтобы получить модифицированное сито Al-SBA-16 для применения;

[0035] 6) равномерное перемешивание микропористого глинозема с разбавленным раствором азотной кислоты при их массовом отношении 1:0,5-1,5, чтобы приготовить вязкую пасту для применения, в которой концентрация разбавленного раствора азотной кислоты составляет 5-20 масс.%; и

[0036] 7) отвешивание, в частях по массе, 5-50 частей мезопористого диоксида циркония, 10-55 частей силикоалюмофосфатного молекулярного сита, 5-50 частей модифицированного сита Al-SBA-16, 1-3 частей порошка смолы сесбании и 10-70 частей вязкой пасты на основе глинозема; и равномерное смешивание вышеуказанных компонентов, прокатывание, экструзионное формование, сушка в течение 6-12 ч при 90-120°C, последующий обжиг в течение 4-10 ч на воздухе при 500-600°C и охлаждение до комнатной температуры, чтобы получить носитель.

[0037] В соответствии с предпочтительным вариантом осуществления, носитель находится в форме цилиндрической ленты, трилистника или четырехлистника. Носитель в форме цилиндрической ленты имеет размер частиц 1,2-1,6 мм и длину 5-10 мм; и носитель в форме трилистника или четырехлистника имеет расстояние между двумя листами 1,1-1,8 мм и длину 5-10 мм.

[0038] Данное изобретение дополнительно предоставляет катализатор для селективного синтеза высококачественной керосиновой фракции из синтез-газа, который содержит растворимую соль кобальта и носитель, где растворимая соль кобальта загружена на поверхность носителя.

[0039] Кроме того, в катализаторе, растворимая соль кобальта составляет 5-20 масс.% катализатора.

[0040] В объеме этого варианта изобретения, растворимая соль кобальта является нитратом кобальта, ацетатом кобальта или карбонилом кобальта.

[0041] Данное изобретение также предоставляет способ приготовления катализатора, который включает стадии импрегнирования носителя водным раствором, содержащим растворимую соль кобальта, посредством изообъемного импрегнирования, выдерживания в течение ночи при комнатной температуре, затем сушки в течение 4-12 ч при 90-120°C при нормальном давлении, и заключительного обжига в течение 4-10 ч на воздухе при 500-600°C и охлаждения до комнатной температуры, чтобы получить катализатор.

[0042] Эксплуатационные качества катализатора в соответствии с данным изобретением оценивают в реакторе с неподвижным слоем, и операции являются следующими. Катализатор восстанавливают в высокочистом водороде. Условия восстановления включают температуру слоя катализатора 300-500°C, давление при восстановлении 0,1-1,3 мПа, часовую объемную скорость водорода 500-1200 ч-1 и время восстановления 4-24 ч. Условия реакции включают объемное отношение синтез-газа к азоту 1,0, молярное отношение H2/CO в синтез-газе 1,2-2,1, часовую объемную скорость синтез-газа 500-2000 ч-1, температуру слоя катализатора 180-215°C и реакционное давление 1,0-3,5 мПа.

[0043] Преимущества носителя и катализатора в соответствии с вариантами осуществления данного изобретения обобщены следующим образом:

[0044] 1. Носитель катализатора, предоставленный в данном изобретении, имеет умеренную кислотность и трехмерную структуру поровых каналов, в которой мезопористые поровые каналы являются большими и униформными, и эффект массопередачи и диффузии является хорошим, посредством чего образование метана во время реакционного процесса может быть уменьшено эффективным образом, в то время как селективность в отношении керосиновой фракции увеличена.

[0045] 2. Носитель катализатора, предоставленный в данном изобретении, обладает высокой способностью к выполнению изомеризации, посредством чего низкотемпературная текучесть керосиновой фракции может быть значительно увеличена посредством изомеризации линейных алканов с длинной молекулярной цепью, что увеличивает долю изоалканов в продукте.

[0046] 3. По сравнению с другими кислотными носителями, носитель катализатора, предоставленный в данном изобретении, обладает умеренным взаимодействием с активным компонентом; и активный компонент является высоковосстановительным, так что катализатор поддерживается таким образом, что имеет высокую реакционную способность, наряду с тем, что получают высококачественную керосиновую фракцию.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[0047] Для лучшего пояснения данного изобретения, основное описание данного изобретения дополнительно представлено ниже при ссылках на конкретные варианты осуществления. Однако, данное изобретение не ограничивается представленными ниже вариантами осуществления.

[0048] Приготовление исходных материалов, необходимых в носителе по данному изобретению

[0049] I. Приготовление модифицированного сита Al-SBA-16

[0050] 1. Приготовление модифицированного сита Al-SBA-16 (5)

[0051] 1). 30 г SBA-16 отвешивали, добавляли к 100 мл н-гексана и перемешивали в течение 2 ч при комнатной температуре.

[0052] 2). 45 г Al(OC2H7)3 отвешивали, добавляли к 100 мл н-гексана и перемешивали при комнатной температуре до его растворения. Затем раствор Al(OC2H7)3 в н-гексане добавляли в лабораторный стакан, содержащий SBA-16, и перемешивали в течение ночи при комнатной температуре.

[0053] 3). Результирующий образец перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза, чтобы получить первичный фильтрационный осадок.

[0054] 4). Первичный фильтрационный осадок перемещали в лабораторный стакан и затем добавляли 100 мл н-гексана и перемешивали в течение 1 ч при комнатной температуре. Затем добавляли 45 г Al(OC2H7)3 и перемешивали в течение ночи при комнатной температуре. Фильтрационный осадок перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза. В заключение, результирующий вторичный фильтрационный осадок обжигали в течение 10 ч при 550°C, чтобы получить модифицированное сито Al-SBA-16 (5) для применения.

[0055] 2. Приготовление модифицированного сита Al-SBA-16 (10)

[0056] 1). 30 г SBA-16 отвешивали, добавляли к 100 мл н-гексана и перемешивали в течение 3 ч при комнатной температуре.

[0057] 2). 41 г Al(OC2H7)3 отвешивали, добавляли к 100 мл н-гексана и перемешивали при комнатной температуре до его растворения. Затем раствор Al(OC2H7)3 в н-гексане добавляли в лабораторный стакан, содержащий SBA-16, и перемешивали в течение ночи при комнатной температуре.

[0058] 3). Результирующий образец перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза, чтобы получить первичный фильтрационный осадок.

[0059] 4). Первичный фильтрационный осадок перемещали в лабораторный стакан и затем добавляли 100 мл н-гексана и перемешивали в течение 1,5 ч при комнатной температуре. Затем добавляли 41 г Al(OC2H7)3 и перемешивали в течение ночи при комнатной температуре. Фильтрационный осадок перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза. В заключение, результирующий вторичный фильтрационный осадок обжигали в течение 8 ч при 550°C, чтобы получить модифицированное сито Al-SBA-16 (10) для применения.

[0060] 3. Приготовление модифицированного сита Al-SBA-16 (20)

[0061] 1). 30 г SBA-16 отвешивали, добавляли к 100 мл н-гексана и перемешивали в течение 4 ч при комнатной температуре.

[0062] 2). 37 г Al(OC2H7)3 отвешивали, добавляли к 100 мл н-гексана и перемешивали при комнатной температуре до его растворения. Затем раствор Al(OC2H7)3 в н-гексане добавляли в лабораторный стакан, содержащий SBA-16, и перемешивали в течение ночи при комнатной температуре.

[0063] 3). Результирующий образец перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза, чтобы получить первичный фильтрационный осадок.

[0064] 4). Первичный фильтрационный осадок перемещали в лабораторный стакан и затем добавляли 100 мл н-гексана и перемешивали в течение 2 ч при комнатной температуре. Затем добавляли 37 г Al(OC2H7)3 и перемешивали в течение ночи при комнатной температуре. Фильтрационный осадок перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза. В заключение, результирующий вторичный фильтрационный осадок обжигали в течение 6 ч при 580°C, чтобы получить модифицированное сито Al-SBA-16 (20) для применения.

[0065] 4. Приготовление модифицированного сита Al-SBA-16 (25)

[0066] 1). 30 г SBA-16 отвешивали, добавляли к 100 мл н-гексана и перемешивали в течение 4 ч при комнатной температуре.

[0067] 2). 35 г Al(OC2H7)3 отвешивали, добавляли к 100 мл н-гексана и перемешивали при комнатной температуре до его растворения. Затем раствор Al(OC2H7)3 в н-гексане добавляли в лабораторный стакан, содержащий SBA-16, и перемешивали в течение ночи при комнатной температуре.

[0068] 3). Результирующий образец перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза, чтобы получить первичный фильтрационный осадок.

[0069] 4). Первичный фильтрационный осадок перемещали в лабораторный стакан и затем добавляли 100 мл н-гексана и перемешивали в течение 2 ч при комнатной температуре. Затем добавляли 35 г Al(OC2H7)3 и перемешивали в течение ночи при комнатной температуре. Фильтрационный осадок перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза. В заключение, результирующий вторичный фильтрационный осадок обжигали в течение 6 ч при 580°C, чтобы получить модифицированное сито Al-SBA-16 (25) для применения.

[0070] 5. Приготовление модифицированного сита Al-SBA-16 (40)

[0071] 1). 30 г SBA-16 отвешивали, добавляли к 100 мл н-гексана и перемешивали в течение 4,5 ч при комнатной температуре.

[0072] 2). 33 г Al(OC2H7)3 отвешивали, добавляли к 100 мл н-гексана и перемешивали при комнатной температуре до его растворения. Затем раствор Al(OC2H7)3 в н-гексане добавляли в лабораторный стакан, содержащий SBA-16, и перемешивали в течение ночи при комнатной температуре.

[0073] 3). Результирующий образец перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза, чтобы получить первичный фильтрационный осадок.

[0074] 4). Первичный фильтрационный осадок перемещали в лабораторный стакан и затем добавляли 100 мл н-гексана и перемешивали в течение 2,5 ч при комнатной температуре. Затем добавляли 33 г Al(OC2H7)3 и перемешивали в течение ночи при комнатной температуре. Фильтрационный осадок перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза. В заключение, результирующий вторичный фильтрационный осадок обжигали в течение 6 ч при 600°C, чтобы получить модифицированное сито Al-SBA-16 (40) для применения.

[0075] 6. Приготовление модифицированного сита Al-SBA-16 (55)

[0076] 1). 30 г SBA-16 отвешивали, добавляли к 100 мл н-гексана и перемешивали в течение 5 ч при комнатной температуре.

[0077] 2). 30 г Al(OC2H7)3 отвешивали, добавляли к 100 мл н-гексана и перемешивали при комнатной температуре до его растворения. Затем раствор Al(OC2H7)3 в н-гексане добавляли в лабораторный стакан, содержащий SBA-16, и перемешивали в течение ночи при комнатной температуре.

[0078] 3). Результирующий образец перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза. Затем фильтрационный осадок перемещали в лабораторный стакан, промывали с применением 100 мл н-гексана и перемешивали в течение 3 ч при комнатной температуре, и 30 г Al(OC2H7)3 добавляли, перемешивали в течение ночи при комнатной температуре, чтобы получить первичный фильтрационный осадок.

[0079] 4). Первичный фильтрационный осадок перемещали в фильтровальную воронку Бюхнера, промывали с применением 50 мл н-гексана и отсасывали. Процесс повторяли 3 раза. В заключение, результирующий вторичный фильтрационный осадок обжигали в течение 6 ч при 650°C, чтобы получить модифицированное сито Al-SBA-16 (55) для применения.

[0080] II. Приготовление вязкой пасты глинозема

[0081] Микропористый глинозем замешивали с разбавленным раствором азотной кислоты при массовом отношении 1:0,5-1,5, при этом концентрация разбавленного раствора азотной кислоты составляла 5-20 масс.%. %.

[0082] При промышленном производстве, адаптируют предпочтительный раствор, который указан ниже.

[0083] 500 г порошка сухого микропористого глинозема отвешивали и добавляли в сырьевой резервуар месильной машины. 750 мл 8 масс.%-ной разбавленной азотной кислоты медленно добавляли в сырьевой резервуар. Месильную машину запускали, и материалы замешивали равномерным образом, чтобы сформировать вязкую пасту для применения.

[0084] III. Выбор силикоалюмофосфатного молекулярного сита

[0085] Силикоалюмофосфатное молекулярное сито является коммерчески доступным, и применяют молекулярное сито SPAO-11, молекулярное сито SPAO-31 или смесь молекулярных сит SPAO-11 и SPAO-31. SPAO-11 имеет молярное отношение кремния к алюминию 0,21-0,38, удельную поверхность ≥180 м2·г-1, содержание Na2O ≤0,2 масс.% и общий объем пор 0,10-0,30 см3·г-1; и SPAO-31 имеет молярное отношение кремния к алюминию 0-1,0, удельную поверхность ≥150 м2·г-1, содержание Na2O ≤0,2 масс.% и общий объем пор 0,13-0,26 см3·г-1.

[0086] Другие исходные материалы, применимые в данном изобретении, являются все коммерчески доступными.

[0087] Носитель для селективного синтеза высококачественной керосиновой фракции из синтез-газа приготавливали с применением вышеуказанных исходных материалов посредством способа, описанного ниже.

[0088] 5-50% по массе (масс.%) мезопористого диоксида циркония, 10-55 масс.% силикоалюмофосфатного молекулярного сита, 5-50 масс.% модифицированного сита Al-SBA-16, 1-3 масс.% порошка смолы сесбании и 10-70 масс.% связующего равномерно смешивали, подвергали прокатке, формовали экструзией, сушили в течение 6-12 ч при 90-120°C и затем обжигали в течение 4-10 ч на воздухе при 500-600°C и охлаждали до комнатной температуры, чтобы получить носитель.

[0089] Применительно к вышеуказанному способу, состав при промышленном производстве представлен в Таблице 1 ниже.

Таблица 1

Исходный материал Пример (г)
1 2 3 4 5 6 7 8 9 10 11 12
Мезопористый диоксид циркония 15 15 10 10 30 30 20 20 5 50 15 5
Силикоалюмофосфатное молекулярное сито SPAO-11 25 25 45 45 10 10 30 30 15 10
SPAO-31 55 10 10
Модифицированное сито Al-SBA-16 (n) 5 (n) 10
10 (n) 5 15
20 (n) 10 5 30 55
25 (n) 20
30 (n) 20
40 (n) 30
55 (n) 20 5
Порошок смолы сесбании 1 1 1 1 1 1 1 1 2 3 1 2
Вязкая паста (глинозем) 167
(50)
167
(50)
133
(40)
133 (40) 100 (30) 100 (30) 100 (30) 100 (30) 67
(20)
34
(10)
233
(70)
100
(30)

[0090] Оптимизированные условия реакции представлены в Таблице 2.

Таблица 2

Пример Температура сушки (°C) Время сушки (ч) Температура обжига (°C) Время обжига (ч)
1 90 12 500 10
2 110 10 550 8
3 90 12 500 8
4 110 10 550 8
5 90 12 600 6
6 110 8 550 8
7 110 8 550 8
8 110 8 500 10
9 120 6 600 4
10 100 8 580 6
11 110 10 550 8
12 90 12 600 10

[0091] Носитель, полученный в вышеприведенных примерах, применяли при приготовлении катализатора посредством способа, включающего следующее.

[0092] Применяли изообъемное импрегнирование. Первоначально, носитель перемещали в колбу грушевидной формы и помещали в роторный испаритель, чтобы поддерживать носитель в постоянно вращаемом состоянии. Носитель импрегнируют водным раствором, содержащим растворимую соль кобальта. Колбу грушевидной формы поддерживали при вращении в течение 20-40 мин и затем выдерживали в течение ночи при комнатной температуре. После этого, продукт сушили в течение 4-12 ч при 90-120°C при нормальном давлении и в заключение обжигали в течение 4-10 ч на воздухе при 500-600°C и охлаждали до комнатной температуры, чтобы получить катализатор.

[0093] При фактическом функционировании, носитель может быть импрегнирован растворимой солью кобальта два раза, чтобы улучшить эффективность загрузки носителя.

[0094] В связи с вышеуказанным способом, количество растворимой соли кобальта, применяемой в составе катализатора в промышленном производстве, представлено в Таблице 3 ниже.

Таблица 3

Пример
1 2 3 4 5 6 7 8 9 10 11 12
Растворимая соль кобальта Нитрат кобальта 12 36 24 45,6 19,2 36 36 48
Ацетат кобальта 42 36
Карбонил кобальта 20 12

[0095] 40 г носителя, приготовленного в вышеуказанных примерах, отвешивали и импрегнировали растворимой солью кобальта посредством приведенного выше способа. Более конкретно, оптимизированные условия реакции представлены в Таблице 4 ниже.

Таблица 4

Пример Температура сушки (°C) Время сушки (ч) Температура обжига (°C) Время обжига (ч)
1 90 10 550 8
2 90 10 550 8
3 90 10 550 8
4 90 10 550 8
5 90 10 550 8
6 90 10 550 8
7 90 10 550 8
8 110 8 500 10
9 120 4 600 4
10 90 12 500 10
11 100 6 600 8
12 110 10 550 4

[0096] Эксплуатационные характеристики катализатора оценивали в реакторе с неподвижным слоем. Катализатор активировали при условиях, включающих температуру 350°C, давление водорода 0,1 мПа, часовую объемную скорость водорода 500 ч-1 и время восстановления 24 ч. Эксплуатационные характеристики катализатора оценивали при условиях, включающих молярное отношение H2/CO, составляющее 2,1, часовую объемную скорость синтез-газа 2000 ч-1, часовую объемную скорость при 205°C и реакционное давление 3,5 мПа. Результаты оценки эксплуатационных качеств катализатора обобщены в Таблице 5.

Таблица 5

Катализатор
Показатель
1 2 3 4 5 6 7 8 9 10 11 12
Степень конверсии CO (%) 48,1 56,4 52,3 59,0 50,1 56,5 59,9 60,7 53,1 49,2 50,5 46,2
Селективность для CH4 (масс.%) 2,3 2,6 3,0 3,1 3,8 4,2 4,9 5,1 3,7 2,9 4,0 3,6
Селективность для фракции, дистиллированной при 155-265°C (масс.%) 73,1 83,5 66,3 64,4 78,0 77,5 85,8 81,1 79,0 67,2 75,3 68,9
Содержание изопродуктов во фракции, дистиллированной при 155-265°C (масс.%) 78,2 83,9 80,2 79,8 76,0 75,1 84,3 84,2 77,2 80,5 81,4 78,8
Температура замерзания фракции, дистиллированной при 155-265°C (°C) -42 -49 -44 -43 -39 -38 -52 -51 -42 -43 -38 -41

[0097] Как показано в Таблице 5, в композиции носителя катализатора, приготовленной в Примере 7, мезопористый диоксид циркония, силикоалюмофосфатное молекулярное сито, модифицированное SBA-16 и глинозем объединены в наиболее предпочтительном отношении, и когда соль металлического кобальта загружают в подходящем количестве, эксплуатационные качества катализатора являются наиболее подходящими. При высокой степени конверсии селективность для керосиновой фракции, дистиллированной при 155-265°C может достигать 85,8%, содержание изопродуктов достигает 84,3%, и керосиновая фракция имеет температуру замерзания -52°C.

[0098] Если не указано иное, интервалы числовых значений, включенные в данное изобретение, включают граничные значения. Наряду с тем, что были представлены и описаны конкретные варианты осуществления данного изобретения, специалистам в данной области техники будет очевидно, что изменения и модификации могут быть сделаны без отклонения от данного изобретения в его более широких аспектах, и поэтому прилагаемая формула изобретения предназначена для охватывания всех таких изменений и модификаций, которые находятся в пределах сущности и объема данного изобретения.

1. Носитель для селективного синтеза керосиновой фракции из синтез-газа, данный носитель содержит следующие компоненты в частях по массе: 5-50 частей мезопористого диоксида циркония (ZrO2), 10-55 частей силикоалюмофосфатного (SAPO) молекулярного сита, 5-50 частей модифицированного мезопористого молекулярного сита Al-SBA-16, 1-3 части порошка смолы сесбании и 10-70 частей глинозема.

2. Носитель по п. 1, содержащий следующие компоненты в частях по массе: 10-30 частей мезопористого диоксида циркония, 25-45 частей силикоалюмофосфатного молекулярного сита, 10-30 частей модифицированного сита Al-SBA-16, 1-3 части порошка смолы сесбании и 30-55 частей глинозема.

3. Носитель по п. 2, содержащий следующие компоненты в частях по массе: 20 частей мезопористого диоксида циркония, 30 частей силикоалюмофосфатного молекулярного сита, 25 частей модифицированного сита Al-SBA-16, 1 часть порошка смолы сесбании и 30 частей глинозема.

4. Носитель по пп. 1, 2 или 3, отличающийся тем, что модифицированное сито Al-SBA-16 содержит SBA-16 и триэтоксид алюминия (Al(OC2H7)3), где массовое отношение SBA-16 к триэтоксиду алюминия составляет 1:3,0-4,5.

5. Носитель по пп. 1, 2 или 3, отличающийся тем, что молярное отношение n кремния к алюминию в модифицированном сите Al-SBA-16 находится между 5 и 55, содержание кислоты Бренстеда (B кислоты) в нем составляет 39-92 мкмоль·г-1, содержание кислоты Льюиса (L кислоты) в нем составляет 71-105 мкмоль·г-1 и содержание Na2O в нем составляет ≤0,1 масс.%.

6. Носитель по пп. 5, отличающийся тем, что молярное отношение n кремния к алюминию в модифицированном сите Al-SBA-16 находится между 10 и 55, удельная поверхность составляет 550-930 м2·г-1, средний размер пор составляет 4,0-7,5 нм и общий объем пор составляет 0,45-0,70 см3·г-1.

7. Носитель по пп. 1, 2 или 3, отличающийся тем, что модифицированное мезопористое молекулярное сито Al-SBA-16 приготовлено следующим образом:

1) отвешивание SBA-16 и триэтоксида алюминия в соответствии с вышеуказанным массовым отношением и разделение триэтоксида алюминия на две равные порции для применения;

2) добавление SBA-16 к н-гексану и равномерное перемешивание при комнатной температуре, чтобы получить смешанный раствор; добавление одной части триэтоксида алюминия к н-гексану и перемешивание при комнатной температуре до растворения триэтоксида алюминия; и добавление триэтоксида алюминия, растворенного в н-гексане, к смешанному раствору и перемешивание в течение ночи при комнатной температуре, чтобы получить раствор образца;

3) перемещение раствора образца, полученного на стадии 2), в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить первичный фильтрационный осадок;

4) добавление первичного фильтрационного осадка к н-гексану и равномерное перемешивание при комнатной температуре; добавление другой части триэтоксида алюминия; перемешивание в течение ночи при комнатной температуре, перемещение в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить вторичный фильтрационный осадок; и

5) обжиг вторичного фильтрационного осадка при 500-650°C в течение 6-10 ч, чтобы получить модифицированное сито Al-SBA-16.

8. Носитель по пп. 1, 2 или 3, отличающийся тем, что мезопористый диоксид циркония имеет удельную поверхность 190-350 м2·г-1, средний размер пор 5,0-8,5 нм и общий объем пор 0,40-0,55 см3·г-1.

9. Носитель по пп. 1, 2 или 3, отличающийся тем, что силикоалюмофосфатное молекулярное сито имеет общее содержание кислоты 0,1-0,35 ммоль NH3·г-1; молярное отношение кремния к алюминию 0-1,0; удельную поверхность ≥150 м2·г-1, содержание Na2O ≤0.2 масс.% и общий объем пор 0,10-0,30 см3·г-1.

10. Носитель по п. 9, отличающийся тем, что силикоалюмофосфатное молекулярное сито имеет молярное отношение кремния к алюминию 0,21-0,38, удельную поверхность ≥180 м2·г-1, содержание Na2O ≤0,2 масс.% и общий объем пор 0,10-0,30 см3·г-1; или силикоалюмофосфатное молекулярное сито имеет молярное отношение кремния к алюминию 0-1,0, удельную поверхность ≥150 м2·г-1, содержание Na2O ≤0,2 масс.% и общий объем пор 0,13-0,26 см3·г-1.

11. Способ приготовления носителя для селективного синтеза керосиновой фракции из синтез-газа, данный способ включает:

1) отвешивание SBA-16 и триэтоксида алюминия в соответствии с массовым отношением 1:3,0-4,5 и разделение триэтоксида алюминия на две равные порции;

2) добавление SBA-16 к н-гексану и равномерное перемешивание при комнатной температуре, чтобы получить смешанный раствор; добавление одной части триэтоксида алюминия к н-гексану и перемешивание при комнатной температуре до растворения триэтоксида алюминия; и добавление триэтоксида алюминия, растворенного в н-гексане, к смешанному раствору и перемешивание в течение ночи при комнатной температуре, чтобы получить раствор образца;

3) перемещение раствора образца, полученного на стадии 2), в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить первичный фильтрационный осадок;

4) добавление первичного фильтрационного осадка к н-гексану и перемешивание при комнатной температуре; добавление другой части триэтоксида алюминия; перемешивание в течение ночи при комнатной температуре, перемещение в фильтровальную воронку Бюхнера, промывка н-гексаном и отсасывание; и повторение вышеуказанных операций от 2 до 4 раз, чтобы получить вторичный фильтрационный осадок;

5) обжиг вторичного фильтрационного осадка при 500-650°C в течение 6-10 ч, чтобы получить модифицированное сито Al-SBA-16 для применения;

6) равномерное перемешивание микропористого глинозема с разбавленным раствором азотной кислоты при массовом отношении 1:0,5-1,5, чтобы приготовить вязкую пасту для применения, в которой концентрация разбавленного раствора азотной кислоты составляет 5-20 масс.%; и

7) отвешивание, в частях по массе, 5-50 частей мезопористого диоксида циркония, 10-55 частей силикоалюмофосфатного молекулярного сита, 5-50 частей модифицированного сита Al-SBA-16, 1-3 частей порошка смолы сесбании и 10-70 частей вязкой пасты на основе глинозема; и их равномерное смешивание, прокатывание, экструзионное формование, сушка в течение 6-12 ч при 90-120°C, последующий обжиг в течение 4-10 ч на воздухе при 500-600°C и охлаждение до комнатной температуры, чтобы получить носитель.

12. Способ по п. 11, отличающийся тем, что носитель имеет форму цилиндрической ленты, трилистника или четырехлистника; носитель в форме цилиндрической ленты имеет размер частиц 1,2-1,6 мм и длину 5-10 мм; и носитель в форме трилистника или четырехлистника имеет расстояние между двумя листами 1,1-1,8 мм и длину 5-10 мм.

13. Катализатор для селективного синтеза керосиновой фракции из синтез-газа, данный катализатор содержит растворимую соль кобальта и носитель по п. 1, данная растворимая соль кобальта загружена на поверхность носителя.

14. Катализатор по п. 13, отличающийся тем, что растворимая соль кобальта составляет 5-20 масс.% катализатора.

15. Катализатор по п. 13 или 14, отличающийся тем, что растворимая соль кобальта является нитратом кобальта, ацетатом кобальта или карбонилом кобальта.

16. Способ изготовления катализатора по п. 13, включающий: импрегнирование носителя водным раствором, содержащим растворимую соль кобальта, посредством изообъемного импрегнирования, выдерживание в течение ночи при комнатной температуре, последующую сушку в течение 4-12 ч при 90-120°C при нормальном давлении, обжиг в течение 4-10 ч на воздухе при 500-600°C и охлаждение до комнатной температуры, чтобы получить катализатор.



 

Похожие патенты:

Изобретение используется в способе синтеза углеводородов С5 и выше из природного газа через промежуточное превращение природного газа в синтез-газ и последующую конверсию СО и Н2 по реакции Фишера-Тропша.

Изобретение относится к способу синтеза углеводородов из сырья, содержащего синтез-газ, в котором применяют твердый катализатор Фишера-Тропша в трехфазной реакционной секции, выполненной таким образом, что упомянутый катализатор поддерживается в суспензии в жидкой фазе за счет циркуляции газовой фазы снизу вверх в упомянутой реакционной секции.

Описан катализатор синтеза Фишера-Тропша на основе кобальта, покрытый мезопористым материалом, и способ его получения. Катализатор содержит кремнеземный носитель, насыщенный на поверхности активным компонентом кобальта и селективным промотором циркония; снаружи активный компонент кобальта и селективный промотор циркония покрыт слоем оболочки мезопористого материала.

Изобретение относится к способу получения защищенного восстановленного нанесенного металлического катализатора в форме гранулы или пасты, применяемого в широком спектре химических реакций, таких как гидрирование углеводородных соединений в нефтехимических процессах; гидрирование ненасыщенных жиров и масел, а также ненасыщенных углеводородных смол, и в процессе Фишера-Тропша.

Настоящее изобретение относится к вариантам способа преобразования исходного топлива во вторичное топливо посредством установки реформинга. Один из вариантов способа включает следующие этапы: подачу исходного топлива в печь установки реформинга, причем исходное топливо содержит отходы в виде сточных вод и/или твердых отходов, содержащих углерод; подачу в печь метана в качестве дополнительного исходного топлива; подачу воды в печь; обеспечение одного или более плазменно-дуговых источников тепла в установке реформинга для расщепления указанных исходных топлив и указанной воды на один или более составляющих компонентов и/или их комбинации; преобразование по меньшей мере части указанного одного или более составляющих компонентов воды и исходных топлив и/или их комбинации в указанное вторичное топливо с использованием одного или более катализаторов; вывод указанного вторичного топлива из установки реформинга.

Настоящее изобретение относится к способу получения высокооктановой синтетической бензиновой фракции из углеводородного газа и к установке для его осуществления.

Изобретение относится к нефте- и газохимии, а именно к способам получения углеводородов путем каталитической конверсии смеси, преимущественно содержащий СО, Н2. Получаемые при этом жидкие углеводородные фракции могут быть использованы в качестве топлив, в том числе автомобильных, характеризующихся высокой экологической чистотой.

Способ получения содержащего кобальт катализатора синтеза углеводородов предусматривает на стадии образования карбида обработку исходного предшественника катализатора, содержащего подложку катализатора, несущую кобальт, содержащим СО газом не более 1 час при температуре T1, где T1 составляет от 200°C до 260°C для превращения кобальта в карбид кальция, таким образом получая содержащий карбид кобальта предшественник катализатора, причем содержащий СО газ (когда он содержит Н2) не характеризуется молярным соотношением СО к Н2, равным или меньшим 33:1, и при этом стадию образования карбида проводят в неокислительных условиях; и на последующей стадии активации содержащий карбид кобальта предшественник катализатора подвергают обработке водородсодержащим газом при температуре T2, где T2 составляет, по меньшей мере, 300°C для превращения карбида кобальта в металлический кобальт, таким образом активируя содержащий карбид кобальта предшественник катализатора и обеспечивая содержащий кобальт катализатор синтеза углеводородов.

Изобретение относится к способу получения углеводородов в непрерывном режиме исходя из синтез-газа в присутствии катализатора, включающий стадию синтеза, на которой синтез-газ приводят во взаимодействие с катализатором в реакторе синтеза Фишера-Тропша (4).

Изобретение относится к способу получения модифицированной подложки катализатора, причем способ предусматривает получение титансодержащего материала подложки катализатора посредством (i) контакта материала подложки катализатора с органическим соединением титана, при этом материал подложки катализатора выбирают из группы, состоящей из (а) предшественника подложки катализатора, содержащего соединение алюминия, который превращается в подложку катализатора в форме одного или нескольких оксидов алюминия при прокаливании, и (b) подложки катализатора, представляющей оксид алюминия в форме одного или нескольких оксидов алюминия, и при этом органическое соединение титана представляет собой соединение титана, в котором титан связан с по меньшей мере одним атомом кислорода по меньшей мере одной органической группы посредством связи, или (ii) совместного гидролиза гидролизуемого органического соединения титана и Al(OR'')3, причем титансодержащий материал подложки катализатора после этого содержит Al, и при этом гидролизуемое органическое соединение титана представляет собой соединение титана, в котором титан связан с по меньшей мере одним атомом кислорода по меньшей мере одной органической группы посредством связи, причем все R'' являются одинаковыми или различными и каждый представляет собой органическую группу.
Изобретение раскрывает сложный оксид, содержащий 60-98 мас.% оксидов церия и по меньшей мере одного элемента, выбранного из группы, состоящей из редкоземельных металлов, отличных от церия, и включающей иттрий, цирконий и кремний из расчета от 85:15 до 100:0 по массе; 1-20 мас.% оксида щелочно-земельного металла и 1-20 мас.% Al2O3, где после прокаливания при 800°С в течение 2 ч указанный сложный оксид имеет удельную площадь поверхности не меньше 40 м2/г при измерении с помощью метода BET, не содержит фазу АЕСеО3 (где АЕ обозначает элемент – щелочно-земельный металл) и имеет размер кристаллита CeO2 в плоскости (111) не больше 15 нм, как определено при помощи рентгеновской дифракции.

Изобретение относится к способу получения катализаторов гидроочистки углеводородного сырья на основе аморфных металлических наночастиц относится к области нефтепереработки и может быть использован для очистки от серосодержащих и азотсодержащих соединений дизельного топлива и дизельно-масляных фракций.

Описан катализатор синтеза Фишера-Тропша на основе кобальта, покрытый мезопористым материалом, и способ его получения. Катализатор содержит кремнеземный носитель, насыщенный на поверхности активным компонентом кобальта и селективным промотором циркония; снаружи активный компонент кобальта и селективный промотор циркония покрыт слоем оболочки мезопористого материала.

Описан катализатор синтеза Фишера-Тропша на основе кобальта, покрытый мезопористым материалом, и способ его получения. Катализатор содержит кремнеземный носитель, насыщенный на поверхности активным компонентом кобальта и селективным промотором циркония; снаружи активный компонент кобальта и селективный промотор циркония покрыт слоем оболочки мезопористого материала.

Изобретение относится к получению ненасыщенных углеводородов, к катализатору селективного гидрирования и к способам его получения и применения. Описана композиция, содержащая экструдированную неорганическую подложку, содержащую оксид металла или металлоида, и по меньшей мере один каталитически активный металл группы 10.
Изобретение относится к катализатору гидродесульфуризации для дизельного топлива, в котором один или несколько металлов, выбранных из группы, состоящей из элементов Группы 6 длинной формы Периодической таблицы, один или несколько металлов, выбранных из группы, состоящей из элементов Группы 9 или 10 длинной формы Периодической таблицы, фосфор и органическая кислота нанесены на носитель на основе смешанного оксида, содержащий 80-99,5 % масс.
Изобретение относится к катализатору гидродесульфуризации для дизельного топлива, в котором один или несколько металлов, выбранных из группы, состоящей из элементов Группы 6 длинной формы Периодической таблицы, один или несколько металлов, выбранных из группы, состоящей из элементов Группы 9 или 10 длинной формы Периодической таблицы, фосфор и органическая кислота нанесены на носитель на основе смешанного оксида, содержащий 80-99,5 % масс.

Изобретение относится к способу получения катализатора, катализатору гидропереработки тяжелого углеводородного сырья и к способу гидропереработки углеводородов.

Изобретение относится к катализатору гидроочистки для обработки тяжелого углеводородного сырья, имеющего значительные концентрации ванадия, где упомянутый катализатор гидроочистки содержит: прокаленную частицу, содержащую совместно перемешанную смесь, приготовленную посредством совместного перемешивания неорганического оксидного порошка, порошка триоксида молибдена и частиц металла VIII группы и затем формования упомянутой совместно перемешанной смеси в частицу, которую прокаливают, чтобы тем самым получить упомянутую прокаленную частицу, где упомянутая прокаленная частица имеет такую структуру пор, что, по меньшей мере, 23% от общего объема пор упомянутой прокаленной частицы находится в виде пор упомянутой прокаленной частицы, имеющих диаметры пор больше чем 5000 ангстрем, и меньше чем 70% от общего объема пор упомянутой прокаленной частицы находится в виде пор упомянутой прокаленной частицы, имеющих диаметры пор в диапазоне от 70 до 250 , как измерено методом ртутной порометрии.
Изобретение относится к способу получения композиции, содержащей оксиды Al-, Ce- и Zr-, и к самой композиции. Способ включает стадии (a) приготовления водного раствора смеси солей металлов церия, циркония и алюминия, причем этот водный раствор содержит одну или несколько солей редкоземельных металлов иных, чем церий, (b) добавления к раствору, полученному на стадии (а), основания в присутствии Н2О2, при температурах от 0°С до 95°С, и осаждения полученных смешанных солей металлов в форме гидроксидов или окси-гидроксидов, (c) необязательного выделения осадка, полученного на стадии (b), (d) обработки водной суспензии, полученной на стадии (b), или выделенного осадка, полученного на стадии (с), с помощью поверхностно-активного вещества, выбранного из группы, состоящей из Triton®, Tergitol®, неионных поверхностно-активных веществ, содержащих единицы этиленоксида/пропиленоксида, этилфенолэтоксилатов, сополимеров этиленоксида/пропиленоксида и лауриновой кислоты, и (e) выделения осадка, полученного на стадии (d) и обработки указанного осадка при температуре от 450°С до 1200°С.

Изобретение относится к способу получения компонентов транспортных топлив углеводородного состава из сырья биологического происхождения. Способ одностадийного получения компонентов транспортного топлива углеводородного состава из липидных фракций базидиальных грибов включает пропускание смеси водорода и указанного сырья биологического происхождения через неподвижный слой катализатора на основе мезопористого алюмосиликата типа Al-HMS в соотношении SiO2/Al2O3 от 5 до 40, площадью поверхности более 600 м2/г, объемом пор в диапазоне от 0,5 до 1,5 см3/г, средним диаметром пор 40 , который модифицирован одним и/или более металлами, выбранными из ряда Pd, Pt, Ni, Ru, Rh, Mo, W, Co, в количестве не более 5 мас.
Наверх