Способ автоматизированного неразрушающего контроля качества изделий и устройство для его осуществления

Использование: для автоматизированного неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта по крайней мере одним информационным датчиком физического поля, измеряют величины сигналов излучения физического поля с каждой точки поверхности контролируемого объекта, разбивают весь диапазон величин сигналов излучения физического поля по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале КI, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах ΔКII+1I по всему диапазону значений величин измеренных сигналов, а в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля, при этом измеряют величину сигнала в начале сканирования изделия на эталонном дефекте Un, измеряют значение сигнала на качественном участке изделия вблизи эталонного дефекта U0 в точке i=1, где i - целочисленная координата траектории сканирования на поверхности контролируемого изделия, измеряют изменение сигнала на эталонном дефекте ΔUn=|Un-U0|, измеряют шаг дискретности измерения сигналов по траектории сканирования: Δxi=xi+1-xi, измеряют значение сигнала в текущей точке «i» сканирования изделия (Ui), измеряют разность сигналов между соседними точками: ΔUi=Ui+1-Ui, регистрируют начало j-го дефекта по градиентному признаку, регистрируют координату (xнj) начала j-го дефекта по градиентному признаку, измеряют величину наибольшего сигнала в области j-го дефекта: Ujmax=Uji, если Ui+1>Ui и Ui+2>Ui+1, измеряют величину наибольшего изменения сигнала (ΔUmax∂j) на j-м дефекте, регистрируют окончание j-го дефекта по градиентному признаку, регистрируют координату (xкj) окончания j-го дефекта по градиентному признаку: xкj=Δxixр, где p - целочисленная координата окончания j-го дефекта, измеряют протяженность j-го дефекта по градиентному признаку: Δхдjкjнj, регистрируют наличие j-го дефекта на изделии заданным образом. Технический результат: обеспечение возможности оперативного и достоверного контроля качества сплошности многослойных сложных конструкций и их элементов в процессе производства и в реальных условиях эксплуатации. 2 н.п. ф-лы, 6 ил., 1 табл.

 

Область техники

Изобретение относится к области измерительной техники и может быть использовано для оценки надежности и качества различных изделий. Особенно актуально применение данного изделия для контроля материалов, имеющих большой разброс характеристик (данный разброс определяется разбросом характеристик различных физических полей после их воздействия на контролируемый материал - тепловых, акустических, радиоволновых и т.п.), например, многослойных конструкций из полимерных композиционных материалов (ПКМ).

Изобретение может быть использовано для контроля надежности и качества сложных пространственных многослойных конструкций из ПКМ как в процессе производства, так и в процессе эксплуатации: пространственных сетчатых конструкций, отсеков космических аппаратов, ракетных двигателей, элементов авиационных двигателей, трубопроводов, герметичных сосудов и т.п.

Особенно эффективно применение заявленного изобретения при испытании потенциально опасных и дорогих в изготовлении конструкций, к которым с одной стороны предъявляются высокие требования по надежности и качеству эксплуатации, а с другой стороны они являются достаточно дорогими и трудоемкими в изготовлении для того, чтобы большое количество конструкций можно было заменить другими изделиями, имеющими требуемые параметры. Достоверное выявление дефектов очень актуально для изделий, работающих в потенциально опасных условиях - изделий ракетно-космической техники, трубопроводов (нефтегазопроводов и т.п.), где существуют взаимно исключающие требования: когда, с одной стороны, требуется обеспечить необходимую надежность конструкции (т.е., например, увеличить ее толщину), а, с другой стороны, имеются ограничения по массе и габаритным размерам, которые требуют уменьшить толщину материалов. Немаловажную роль в этом играют и экономические аспекты. При этом требуется определить потенциально опасные места (узлы конструкции), которые в первую очередь могут разрушиться (вследствие наличия дефектов типа нарушения сплошности), что может привести к аварии и которые возможно необходимо укреплять.

Уровень техники

Достоверное определение качества сплошности материала является актуальной задачей в процессе создания эффективных и надежных конструкций из различных материалов.

Существует большое количество методов контроля сплошности материала: рентгеновский, ультразвуковой, визуальный оптический, вихретоковый, а также их комбинации.

Все методы имеют свои особенности и области применения. Но все методы имеют одну общую операцию - процесс обнаружения нарушения сплошности (дефектов), т.е. выделение в контролируемом материале областей, имеющих характеристики, отличные от основного материала. Это могут быть, например, трещины, расслоения и т.п. Задача обнаружения значительно усложняется сложной формой поверхности изделий и сложной внутренней конструкцией, большими габаритными размерами изделий, случайным разбросом характеристик изделий по их поверхности (что особенно характерно для ПКМ).

Перспективным направлением в современной технике является использование композитных материалов, как металлических, так и полимерных, обладающих рядом преимуществ перед традиционными материалами, особенно в авиакосмических отраслях техники, машиностроении, энергетики, нефтегазовой отрасли и др. Это вызвано большим разнообразием видов таких материалов, специфическими особенностями конструкций из них и технологией изготовления, рядом преимуществ перед металлами.

Кроме того, эти материалы в большинстве отраслей промышленности работают в условиях статических и динамических нагрузок.

Повысить качество конструкций невозможно без достоверной оценки критериев качества материалов. Соответственно невозможна разработка мероприятий и технологий по повышению качества конструкций. Признаками качества конструкций, особенно в трубопроводах, ракетно-космической и авиационной отраслях, являются массогабаритная и энергетическая характеристики, которые определяются, в т.ч. качеством сплошности материала

Здесь на первое место выходят методы неразрушающего контроля, основанные на различных физических принципах, и методы достоверного для решаемой задачи обнаружения внутренних нарушений сплошности по анализу изменения результатов взаимодействия физических полей с контролируемым материалом. Они позволяют объективно определять фактическое состояние конструкции, оценить надежность их эксплуатации и дать рекомендации по ее ремонту или восстановлению.

Существует большое количество методов и средств обнаружения нарушений сплошности в процессе неразрушающего контроля материалов (дефектоскопии).

Методы обнаружения дефектов в процессе неразрушающего контроля подробно раскрыты в следующих источниках: И.Н. ЕРМОЛОВ, Н.П. АЛЕШИН, А.И. ПОТАПОВ. Неразрушающий контроль. Акустические методы контроля. Кн. 2. - М.: Высшая школа, 1991, с. 92-95, EP 0486689 A1, SU 1396046 A1, SU 1158919 A, SU 319895, SU 1649414 A1, SU 824032, DE 4031895 A1.

Общий недостаток практически всех существующих методов и средств неразрушающего контроля заключается в следующем: определение порогового значения сигнала осуществляется посредством эталонного образца с эталонным дефектом. Обнаружение дефектных участков осуществляется путем сравнения сигнала по поверхности контролируемого материала с пороговым значением сигнала. Это простой и надежный метод. Однако он обладает принципиальным недостатком: практически невозможно изготовить эталонные образцы со всеми вариантами характеристик внутренних дефектов, а, значит, происходит обнаружение некоторого «усредненного» дефекта и с большой вероятностью возможен пропуск опасных дефектов. Такой метод не учитывает влияния случайных изменений свойств контролируемых материалов на результаты контроля.

Наиболее близким к заявленным способу и устройству являются способ и устройство, охарактеризованные в патенте РФ №2171469.

Известный способ направлен на определение порогового значения сигнала в процессе неразрушающего контроля и включает следующие действия:

- сканируют поверхность контролируемого объекта информационными датчиками физических полей,

- измеряют величины сигналов излучения физического поля с каждой точки поверхности контролируемою объекта,

- разбивают весь диапазон величин сигналов излучения физического поля по их значениям на I интервалов,

- регистрируют измеренные сигналы по принадлежности к соответствующим интервалам,

- определяют количество измеренных сигналов в каждом интервале (Кi),

- рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах (ΔКii+1i) по всему диапазону значений величин измеренных сигналов,

- а в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля.

Данный способ обладает большей достоверностью по сравнению со способами из уровня техники.

Однако он имеет существенные недостатки:

Определение пороговое значение сигнала, а, следовательно, и обнаружение дефектов осуществляется только после завершения сканирования всего изделия. Отсутствует возможность текущей оценки качества изделий в процессе его сканирования. В связи с тем, что свойства материала могут значительно отличаться по одному изделию, такой способ приводит к недостоверному обнаружению дефектов. Поэтому в дефектные зоны, определенные в соответствии с прототипом могут попасть и качественные участки, имеющие характеристики, отличающиеся от средних значений по изделию. При этом, часто сканирование крупногабаритных изделий осуществляется непрерывно в течение длительного времени (до 16-24 часов), что делает невозможным повторное сканирование в случае появления сомнений в результатах контроля.

Заранее нельзя достоверно определить зоны изделия, на которых свойства достаточно равномерны и позволяют использовать способ, выбранный в качестве прототипа.

Известный способ имеет низкую производительность при условии обеспечения высокой вероятности обнаружения дефектов.

Обнаружение дефектов осуществляется только по величине информационного сигнала, например, по амплитуде сигнала, времени сдвига и т.п. Однако изменение величины информационного сигнала может быть обусловлено не только наличием дефекта, но и рядом других случайных факторов, например, случайным изменением на короткий промежуток времени питающего напряжения. Поэтому обнаружение дефектов только по одному параметру, указанному в прототипе, снижает достоверность контроля.

Текущий информационный измеренный сигнал (параметр) по изделию может изменяться случайным образом в зависимости от изменения свойств изделий. При этом величина информационного параметра может изменяться на величину, превышающую изменение на дефекте. Это приводит к ложному обнаружению дефектов, что также снижает достоверность контроля.

Поэтому на сегодняшний день имеется потребность в создании способа контроля реальных конструкций из сложных материалов, который может применяться на практике для широкого круга объектов с различными характеристиками и позволяет обнаруживать различные типы внутренних дефектов.

Настоящее изобретение направлено на обеспечение оперативного достоверного контроля качества сплошности многослойных сложных конструкций и их элементов в процессе производства и в реальных условиях эксплуатации. Т.е. в конечном итоге изобретение направлено на повышение безопасности эксплуатации сложных потенциально опасных конструкций.

Сущность изобретения

Этот технический результат в части способа достигается за счет того, что при автоматическом неразрушающем контроле качества изделий выполняют следующие действия:

- измеряют сигнала в начале сканирования изделия на эталонном дефекте (Un),

- измеряют значение сигнала на качественном участке изделия вблизи эталонного дефекта (U0) в точке i=1,

где i - целочисленная координата траектории сканирования на поверхности контролируемого изделия,

- измеряют изменение сигнала на эталонном дефекте

ΔUn=|Un-U0|,

- измеряют шаг дискретности измерения сигналов по траектории сканирования:

Δxi=xi+1-xi,

- измеряют значение сигнала в текущей точке «i» сканирования изделия (Ui),

- измеряют разность сигналов между соседними точками:

ΔUi=Ui+1-Ui,

- регистрируют начало j-го дефекта по градиентному признаку следующим образом:

,

- регистрируют координату (xнj) начала j-го дефекта по градиентному признаку:

xнj=Δxixk,

где k - целочисленная координата начала j-го дефекта,

- измеряют величину наибольшего сигнала в области j-го дефекта:

Ujmax=Uji если Ui+1>Ui и Ui+2>Ui+1,

- измеряют величину наибольшего изменения сигнала (ΔUmaxj) на j-м дефекте следующим образом:

ΔU j max =(Ujmax-Uk),

- регистрируют окончание j-го дефекта по градиентному признаку следующим образом:

- регистрируют координату (xкj) окончания j-го дефекта по градиентному признаку:

xкj=Δxixp,

где p - целочисленная координата окончания j-го дефекта,

- измеряют протяженность j-го дефекта по градиентному признаку:

Δхдj=xкj-xнj,

- регистрируют наличие j-го дефекта на изделии следующим образом:

где Δxn - протяженность минимального дефекта.

Технический результат в части устройства достигается за счет того, что устройство автоматизированного неразрушающего контроля качества изделий включает блок измерения сигнала, пороговое устройство, сканирующую систем и регистратор, при этом сканирующая система установлена с возможностью обеспечения относительного перемещения изделия и блока измерения сигналов для сканирования поверхности изделия, выход блока измерения сигналов подключен к входу порогового устройства, выход порогового устройства подключен к входу регистратора, в устройство дополнительно введены блок позиционирования, коммутатор, первый-четвертый сумматоры, первый- и второй блоки задержки, инвертор, первый-пятый блоки сравнения, первый-второй умножители, блок памяти, при этом сканирующая система жестко связана с контролируемым изделием, выход сканирующей системы подключен к входу блока позиционирования, блок измерения сигналов выполнен с возможностью регистрации физического поля от контролируемого изделия и выходом подключен к первому входу коммутатора, первый выход блока позиционирования подключен к второму входу коммутатора, второй выход коммутатора подключен к входу первого порогового устройства, выход первого порогового устройства подключен к третьему входу пятого блока сравнения, второй выход блока позиционирования подключен к второму входу регистратора, третий выход блока позиционирования подключен одновременно к первым входам первого и второго умножителей, четвертый выход блока позиционирования подключен к второму входу блока задержки, пятый выход блока позиционирования подключен к одновременно входу второго блока задержки и к второму входу первого сумматора, выход второго блока задержки подключен к первому входу первого сумматора, выход первого сумматора подключен одновременно к вторым входам первого и второго умножителей, первый выход коммутатора подключен одновременно: к первому входу первого блока задержки, к первому входу второго сумматора и ко второму входу четвертого блока сравнения, выход первого блока задержки подключен к входу инвертора, выход инвертора подключен к второму входу второго сумматора, выход второго сумматора подключен одновременно к входу первого блока сравнения, к первому входу второго блока сравнения и первому входу третьего блока сравнения, первый выход первого блока сравнения подключен одновременно к второму входу второго блока сравнения и к второму входу третьего блока сравнения, второй выход первого блока сравнения подключен к первому входу четвертого блока сравнения, выход четвертого блока сравнения подключен к входу третьего сумматора, выход третьего блока сравнения подключен одновременно к третьему входу первого умножителя и к третьему входу пятого блока сравнения, первый выход второго блока сравнения подключен одновременно к третьему входу второго умножителя и к пятому входу пятого блока сравнения, второй выход второго блока сравнения подключен к входу третьего сумматора, выход первого умножителя подключен к первому входу четвертого сумматора, выход второго умножителя подключен к второму входу четвертого сумматора, выход четвертого сумматора подключен к четвертому входу пятого блока сравнения, выход блока памяти, в который заложены параметры контролируемого изделия и минимальные размеры допустимого дефекта, подключен к первому входу пятого блока сравнения, выход пятого блока сравнения подключен к первому входу регистратора, второй выход блока памяти подключен одновременно к третьим входам второго и третьего блоков сравнения, а выход третьего сумматора подключен к шестому входу пятого блока сравнения.

Краткое описание чертежей

Сущность изобретения и возможность достижения технического результата будут более понятны из последующего описания со ссылками на позиции чертежей, где:

фиг. 1 представляет типовое распределение формы сигнала по поверхности изделия,

фиг. 2 представляет реальное исходное распределение сигналов по поверхности изделия из ПКМ,

на фиг. 3 приведена структурная схема устройства,

на фиг. 4 приведена фотография установки и аппаратной части устройства автоматизированного контроля,

на фиг. 5 приведены две дефектограммы с обнаружением дефектов по известному (дефектограмма «а») и представленному (дефектограмма «б») способам (эталонный дефект на дефектограмме не показан),

фиг. 6 изображает блок измерения сигнала, совмещенный с пороговым устройством.

На фигурах используются следующие обозначения:

U0 - сигнал на качественном (бездефектном) участке вблизи эталонного дефекта,

Un - пороговое значение сигнала на эталонном дефекте,

Ujmax - максимальное значение информационного сигнала на j-ом дефекте,

k - целочисленная координата начала j-го дефекта,

p - целочисленная координата окончания j-го дефекта,

Ui - ось значения сигнала,

I - ось целочисленной координаты сканирования изделия,

А - дефекты, определенные по известному способу,

Б - дефекты, выявленные по изобретению,

В - типовой дефект,

1 - контролируемое изделие,

2 - дефект в контролируемом изделии,

3 - блок измерения,

4 - пороговое устройство,

5 - регистратор,

6 - сканирующая система,

7 - блок позиционирования,

8 - коммутатор,

9 - первый сумматор,

10 - первый блок задержки,

11 - инвертор,

12 - второй сумматор,

13 - первый блок сравнения,

14 - второй блок сравнения,

15 - третий блок сравнения,

16 - четвертый блок сравнения,

17 - первый умножитель,

18 - второй умножитель,

19 - третий сумматор,

20 - блок памяти,

21 - четвертый сумматор,

22 - пятый блок сравнения.

23 - второй блок задержки.

Предпочтительный вариант осуществления изобретения

Все используемые электронные блоки устройства, реализующего представленный способ, построены на основе стандартных электронных элементах с использованием логических схем, микропроцессорных схем и микропроцессорных сборок с перепрограммируемыми запоминающими устройствами (см. например, Угрюмов Е.П. Цифровая схемотехника: учебн. пособие для вузов. - 3-е изд. перераб. и доп. - СПб.: - БХВ - Петербург, 2010.).

В качестве блока измерения сигнала и порогового устройства использован ультразвуковой низкочастотный дефектоскоп марки УСД-60 (фиг. 5) с бесконтактными преобразователями БП-4 (www.kropus.ru). Могут использоваться датчики, регистрирующие иные (кроме ультразвукового) поля, как указано выше.

Способ заключается в следующем. Сканирующая система 6 осуществляет сканирование (просмотр) контролируемого изделия 1 блоком измерения сигнала 3. Сигнал, который измеряется блоком 3, характеризует состояние сплошности изделия 1, в т.ч. наличие в контролируемом изделии дефекта 2 (фиг. 2).

Сигналы с блока измерения 3 поступает на вход коммутатора 8.

На второй управляющий вход коммутатора 8 поступает сигнал с блока позиционирования 7.

Вход блока позиционирования связан со сканирующей системой 6. Блок позиционирования 7 осуществляет позиционирование точки регистрации сигнала блоком измерения сигнала 3 на поверхности контролируемого изделия 1.

На начальном этапе контроля, когда регистрация сигнала с поверхности изделия 1 блоком измерения сигнала 3, осуществляется вблизи эталонного дефекта 2, по соответствующему сигналу с блока позиционирования 7 коммутатор 8 передает сигнал с блока измерения сигнала 3 на первое пороговое устройство 4.

Первое пороговое устройство 4 осуществляет определение порогового значения сигнала на эталонном дефекте 2 (Un). Определение величины Un осуществляется по алгоритму, описанному в патенте РФ 2171469 (прототип).

Сигнал, соответствующий величине Un из порогового устройства 4, поступает на вход пятого блока сравнения 22.

Сигнал, соответствующий координатам сканирования изделия 1 с блока позиционирования 7, поступает одновременно на второй блок задержки 23 и первый сумматор 9.

Второй блок задержки 23 осуществляет задержку одного из сигналов xi+1, соответствующих координате сканирования изделия 1, который далее поступает в первый сумматор 9. В первом сумматоре 9 производится измерение шага дискретности измерения сигналов по траектории сканирования:

Δxi=xi+1-xi.

Одновременно сигнал, соответствующий координатам сканирования изделия 1, с блока позиционирования 7 поступает на вход коммутатора 8 и управляет работой коммутатора 8, распределяя сигналы с блока измерения 3 на соответствующие блоки обработки сигналов.

Сигнал Ui, измеренный блоком измерения сигнала 3 в текущей точке «i» сканирования изделия 1 поступает одновременно на вход первого блока задержки 10, второй сумматор 12 и четвертый блок сравнения 16.

Одновременно, сигнал, соответствующий координатам сканирования изделия 1, с блока позиционирования 7 поступает на первый блок задержки 10.

Первый блок задержки 10 осуществляет задержку одного из сигналов Ui+1, соответствующих координате сканирования изделия 1, который далее через инвертор 11 поступает во второй сумматор 12. В инверторе 11 сигнал Ui меняет знак на противоположный.

Во втором сумматоре 12 производится измерение разности сигналов между соседними точками (i и i+1 сканирования изделия:

ΔUi=Ui+1-Ui.

Измеренный сигнал ΔUi поступает первый блок сравнения 13, где сравнивается с нулем (0), т.е. определяется знак величины ΔUi:

ΔUi: >0 или ΔUi: <0.

Эти сигналы поступают в блоки сравнения 14 и 15. В этих блоках осуществляется регистрация начала и окончания j-го по градиентному признаку следующим образом.

В блоке 14 осуществляется регистрация начала j-го дефекта:

где ΔUпор - пороговое изменение значения сигнала на дефекте.

Данная величина определяется до проведения контроля и хранится в блоке памяти 20. При выполнении операций блоками 14 и 15 величина ΔUпор передается из блока памяти в блоки 14 и 15.

Одновременно в блоке 14 фиксируется сигнал Uk - сигнал в точке k начала j-го дефекта.

Здесь k - точка начала j-го дефекта.

В блоке сравнения 15 осуществляется регистрация окончания j-го дефекта:

,

Сигналы начала и окончания j-го дефекта из блоков 14 и 15 поступают, соответственно, на умножители - блоки 17 и 18. В этих блоках осуществляется измерение физических координат начала xнj (блок 18) и окончания xкj - (блок 17) j-го дефекта на контролируемом изделии 1.

Для этого в умножители 17 и 18 передаются сигналы о шаге дискретности измерения сигналов по траектории сканирования из первого сумматора 9

Δxi=xi+1-xi

и сигналы из блока позиционирования 7: количество импульсов (целочисленная координата) k - начала j-го дефекта и количество импульсов (целочисленная координата) p - окончания j-го дефекта.

В блоке 18 осуществляется операция:

xнj=Δxixk

В блоке 17 осуществляется операция:

xкj=Δxixp

Сигналы, соответствующие значениям начала xнj и окончания xкj j-го дефекта, поступают в четвертый сумматор 21, где производится измерение сигнала Δxдj, соответствующего протяженности j-го дефекта на изделии 1:

Δxдj=xкj-xнj,.

Сигнал, соответствующий результатам сравнения

ΔUi: >0 или ΔUi: <0,

из первого блока сравнения 13 поступает в четвертый блок сравнения 16. Одновременно в четвертый блок сравнения 16 поступает сигнал с коммутатора 8 - Ui сигнал, измеренный блоком 3 в i-й точке на изделии 1.

В четвертом блоке сравнения 16 осуществляется определение наибольшего сигнала на j-м дефекте Ujmax следующим образом:

Ujmax=Uji если Ui+1>Ui и Ui+2>Ui+1

Сигнал, соответствующий наибольшему сигналу на j-м дефекте Ujmax из четвертого блока сравнения 16 поступает в третий сумматор 19. Одновременно из второго блока сравнения 14 в третий сумматор 19 передается сигнал Uk - сигнал в точке k начала j-го дефекта.

В третьем сумматоре 19 осуществляется измерение величины наибольшего изменения сигнала на j-м дефекте следующим образом:

ΔU j max =(Ujmax-Uk).

Величина ΔUjmax из третьего сумматора 19 передается в пятый блок сравнения 22.

Таким образом, в пятом блоке сравнения 22 собирается вся информация о j-м дефекте. Эта информация анализируется следующим образом и по результатам анализа формируется сигнал о достоверном наличии или отсутствии j-го дефекта:

Сигнал, свидетельствующий о наличии j-го дефекта, поступает в регистратор 5. Одновременно в регистратор 5 из блока позиционирования 7 поступает информация о координатах j-го дефекта.

В пятом блоке сравнения 22 производится анализ наличия j-го дефекта по признакам: наличия начала дефекта, наличия окончания дефекта, превышение протяженности дефекта минимального значения и превышения изменения сигнала на дефекте минимального порогового значения.

Таким образом, осуществляется достоверное обнаружение дефектов в материале, имеющем большой разброс информационных сигналов по поверхности.

Теоретический анализ показывает следующее.

Предлагаемый способ и реализующее его устройство позволяют значительно повысить достоверность контроля за счет повышения вероятности обнаружения дефектов на изделии, имеющем существенные неоднородности материала и других характеристик.

Пусть, например, обнаружение дефекта по каждому из признаков имеет вероятность δi=0,9 (что характерно для способа, описанного в качестве прототипа).

Тогда вероятность обнаружения дефекта при совпадении всех признаков будет равна:

δΣ=1-(1-δi)4=0,9999.

Это является практически достоверной вероятностью обнаружения дефекта.

В пятом блоке сравнения 22 производится анализ наличия j-го дефекта по признакам: наличия начала дефекта, наличия окончания дефекта, превышение протяженности дефекта минимального значения и превышения изменения сигнала на дефекте минимального порогового значения.

Такое сравнение позволяет практически достоверно обнаруживать наличие дефекта.

Экспериментальные исследования проводились на примере контроля трубы из ПКМ длиной 9 метров, предназначенной для эксплуатации в нефтепроводе. На фиг. 4 приведена фотография автоматизированной системы контроля.

В качестве блока измерения сигнала и порогового устройства применялся ультразвуковой дефектоскоп УСД-60, модернизированный и доработанный в соответствии со схемой (фиг. 3) заявляемого устройства. Для контроля использовались бесконтактные ультразвуковые преобразователи БП-4, информация о которых размещена в Интернете, www.kropus.ru.

Методика экспериментальных исследований заключалась в следующем.

На цилиндрическом изделии из ПКМ закладывались искусственные дефекты типа нарушения сплошности с различными параметрами.

Изделие устанавливалось на механизированную сканирующую систему (фиг. 4). С помощью установки фиг. 4 осуществлялось спиральное сканирование поверхности изделия. Таким образом, производилось измерение сигнала с каждой точки по всей площади поверхности изделия. Дискретность измерения определялась блоком позиционирования 7 (датчиками координат) и равна 10×10 мм (фиг. 2).

Далее это изделие подвергалось неразрушающему контролю по двум методикам:

- по известной методике (способу), принятой в качестве прототипа,

- по изобретению.

Сигнал при контроле по обеим методикам измерялся одним и тем же блоком измерения сигнала 3.

Результаты представлены на дефектограммах, приведенных на фиг. 5.

Анализ дефектограмм наглядно показывает, что способ по изобретению позволяет выявлять все заложенные в изделие искусственные дефекты. В то время, как способ принятый в качестве прототипа обеспечивает выявление ориентировочно только 40% заложенных по всей поверхности изделия дефектов.

В качестве примера в таблице 1 приведены результаты обработки экспериментальных исследований.

Экспериментальные исследования подтверждают достижение поставленной цели: способ по изобретению повышает достоверность и производительность автоматизированного контроля изделий.

1. Способ автоматизированного неразрушающего контроля качества изделий, в котором выполняют следующие действия:

- сканируют поверхность контролируемого объекта по крайней мере одним информационным датчиком физического поля,

- измеряют величины сигналов излучения физического поля с каждой точки поверхности контролируемого объекта,

- разбивают весь диапазон величин сигналов излучения физического поля по их значениям на I интервалов,

- регистрируют измеренные сигналы по принадлежности к соответствующим интервалам,

- определяют количество измеренных сигналов в каждом интервале КI,

- рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах ΔКII+1I по всему диапазону значений величин измеренных сигналов,

- а в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля,

отличающийся тем, что

- измеряют величину сигнала в начале сканирования изделия на эталонном дефекте Un,

- измеряют значение сигнала на качественном участке изделия вблизи эталонного дефекта U0 в точке i=1,

где i - целочисленная координата траектории сканирования на поверхности контролируемого изделия,

- измеряют изменение сигнала на эталонном дефекте

ΔUn=|Un-U0|,

- измеряют шаг дискретности измерения сигналов по траектории сканирования:

Δxi=xi+1-xi,

- измеряют значение сигнала в текущей точке «i» сканирования изделия (Ui),

- измеряют разность сигналов между соседними точками:

ΔUi=Ui+1-Ui,

- регистрируют начало j-го дефекта по градиентному признаку следующим образом:

- регистрируют координату (xнj) начала j-го дефекта по градиентному признаку:

xнj=Δxixk,

где k - целочисленная координата начала j-го дефекта,

j - номер дефекта,

- измеряют величину наибольшего сигнала в области j-го дефекта:

Ujmax=Uji, если Ui+1>Ui и Ui+2>Ui+1,

- измеряют величину наибольшего изменения сигнала (ΔUmax∂j) на j-м дефекте следующим образом:

ΔU∂jmax=(Ujmax-Uk),

- регистрируют окончание j-го дефекта по градиентному признаку следующим образом:

,

- регистрируют координату (xкj) окончания j-го дефекта по градиентному признаку:

xкj=Δxixр,

где p - целочисленная координата окончания j-го дефекта,

- измеряют протяженность j-го дефекта по градиентному признаку:

Δхдjкjнj,

- регистрируют наличие j-го дефекта на изделии следующим образом:

где Δхn - протяженность минимального дефекта.

2. Устройство автоматизированного неразрушающего контроля качества изделий, включающее блок измерения сигнала, пороговое устройство, сканирующую систему и регистратор, при этом сканирующая система установлена с возможностью обеспечения относительного перемещения изделия и блока измерения сигналов для сканирования поверхности изделия, выход блока измерения сигналов подключен к входу порогового устройства, а выход порогового устройства подключен к входу регистратора, отличающееся тем, что в него дополнительно введены блок позиционирования, коммутатор, первый-четвертый сумматоры, первый-второй блоки задержки, инвертор, первый-пятый блоки сравнения, первый-второй умножители и блок памяти, при этом сканирующая система жестко связана с контролируемым изделием, выход сканирующей системы подключен к входу блока позиционирования, блок измерения сигналов выполнен с возможностью регистрации физического поля от контролируемого изделия и выходом подключен к первому входу коммутатора, первый выход блока позиционирования подключен к второму входу коммутатора, второй выход коммутатора подключен к входу первого порогового устройства, выход первого порогового устройства подключен к третьему входу пятого блока сравнения, второй выход блока позиционирования подключен к второму входу регистратора, третий выход блока позиционирования подключен одновременно к первым входам первого и второго умножителей, четвертый выход блока позиционирования подключен к второму входу блока задержки, пятый выход блока позиционирования подключен к одновременно входу второго блока задержки и к второму входу первого сумматора, выход второго блока задержки подключен к первому входу первого сумматора, выход первого сумматора подключен одновременно к вторым входам первого и второго умножителей, первый выход коммутатора подключен одновременно к первому входу первого блока задержки, к первому входу второго сумматора и к второму входу четвертого блока сравнения, выход первого блока задержки подключен к входу инвертора, выход инвертора подключен к второму входу второго сумматора, выход второго сумматора подключен одновременно к входу первого блока сравнения, к первому входу второго блока сравнения и первому входу третьего блока сравнения, первый выход первого блока сравнения подключен одновременно к второму входу второго блока сравнения и к второму входу третьего блока сравнения, второй выход первого блока сравнения подключен к первому входу четвертого блока сравнения, выход четвертого блока сравнения подключен к входу третьего сумматора, выход третьего блока сравнения подключен одновременно к третьему входу первого умножителя и к третьему входу пятого блока сравнения, первый выход второго блока сравнения подключен одновременно к третьему входу второго умножителя и к пятому входу пятого блока сравнения, второй выход второго блока сравнения подключен к входу третьего сумматора, выход первого умножителя подключен к первому входу четвертого сумматора, выход второго умножителя подключен к второму входу четвертого сумматора, выход четвертого сумматора подключен к четвертому входу пятого блока сравнения, выход блока памяти, в который заложены параметры контролируемого изделия и минимальные размеры допустимого дефекта, подключен к первому входу пятого блока сравнения, выход пятого блока сравнения подключен к первому входу регистратора, второй выход блока памяти подключен одновременно к третьим входам второго и третьего блоков сравнения, а выход третьего сумматора подключен к шестому входу пятого блока сравнения.



 

Похожие патенты:

Изобретение относится к области неразрушающего контроля при реализации ультразвуковых бесконтактных методов дефектоскопии для обнаружения дефектов в рельсах на значительных скоростях сканирования.

Использование: для неразрушающего контроля материалов ультразвуковыми методами. Сущность изобретения заключается в том, что выполняют генерацию серии оптических импульсов, преобразование их в акустические сигналы, излучение полученных сигналов в исследуемый материал, возбуждение продольных и сдвиговых волн в приповерхностном слое исследуемого материала, прием отраженных сигналов приемником, выполненным в виде решетки, собранной из локальных пьезоэлементов, обработку принятых сигналов в реальном масштабе времени в цифровой форме с сохранением их фаз, при этом генерацию серии оптических импульсов осуществляют в диапазоне от 10 Гц до 100 кГц, а сканирование производят через решетку из оптически прозрачных пьезоэлементов, акустический импеданс которых согласован с акустическим импедансом оптико-акустического генератора.

Изобретение относится к области ультразвукового контроля изделий, имеющих плоскую или цилиндрическую поверхность. Для расширения области применения на нижней поверхности корпуса устройства имеется продольный паз, стенки которого являются опорами и боковыми стенками локальной ванны, торцевыми стенками которой являются сменные планки.

Изобретение относится к области ультразвукового неразрушающего контроля железнодорожных рельсов. Способ заключается в том, что на поверхности катания рельса устанавливают три наклонных электроакустических преобразователя, смещенных от продольной оси рельса в сторону, противоположную от рабочей грани головки рельса.

Изобретение раскрывает контактную жидкость для ультразвуковой дефектоскопии, которая содержит хлорид металла или смесь хлоридов металлов с низкой температурой замерзания в водном растворе, жидкое стекло, полиакриламид, антикоррозионные добавки и воду, при этом она дополнительно содержит формиат металла или смесь формиатов металлов, имеющих низкую температуру замерзания в водном растворе, пропиленгликоль и глицерин, при следующем соотношении компонентов, мас.

Настоящее изобретение относится к области техники обнаружения дефектов на колесах железнодорожных транспортных средств. Установка для обнаружения дефектов с функцией параллельного поддомкрачивания выполнена с возможностью обнаружения дефектов без демонтажа колес и содержит тележку, выполненную с возможностью скольжения вдоль двух стальных рельсов, между которыми она предусмотрена.

Использование: для ультразвуковой диагностики вертикально ориентированных дефектов в объекте контроля с ребром поверхности. Сущность изобретения заключается в том, что прямой излучающий преобразователь и приемный преобразователь располагают на сопряженных по ребру сторонах объекта контроля.

Изобретение относится к измерительной техники и может быть использовано для поиска места прохождения и глубины трубопроводов водоснабжения и теплосети, газо- и нефтепроводов, находящихся под землей.

Использование: для получения ультразвукового изображения объекта. Сущность изобретения заключается в том, что ультразвуковая диагностическая система визуализации создает пространственно составные изображения в трапецеидальном секторе посредством объединения составляющих кадров, собранных с разных направлений наблюдения.

Использование: для автоматизированного контроля многослойных конструкций больших габаритов, изготовленных методом намотки. Сущность изобретения заключается в том, что выполняют определение ориентации дефектов на различных слоях изделия, создание атласа ориентации дефектов, регистрацию дефекта посредством создания контура и отнесение дефекта определенному слою путем сравнения ориентации обнаруженного дефекта с ориентацией возможных дефектов на различных слоях конструкции.

Группа изобретений относится к способам и устройствам для бесконтактного контроля качества протяженных объектов из электропроводящих материалов при производстве и эксплуатации, а также в других отраслях промышленности, где требуется контроль протяженных электропроводящих объектов бесконтактным методом.

Группа изобретений относится к способам и устройствам для бесконтактного контроля качества протяженных объектов из электропроводящих материалов при производстве и эксплуатации, а также в других отраслях промышленности, где требуется контроль протяженных электропроводящих объектов бесконтактным методом.

Группа изобретений относится к области регистрации электропроводных частиц в жидкости, текущей в трубе со скоростью. Сущность изобретений заключается в том, что устройство для регистрации электропроводных частиц в жидкости, текущей в трубе со скоростью, дополнительно содержит блок самотестирования, предназначенный для осуществления автоматически или по внешнему запросу систематического количественного контроля функций обработки сигналов блока обработки сигналов и/или систематического количественного контроля передающих катушек и/или улавливающих катушек и/или для осуществления по внешнему запросу калибровки блока обработки сигналов посредством калибровочного эталона, устанавливаемого вместо передающих и/или улавливающих катушек.

Группа изобретений относится к области регистрации электропроводных частиц в жидкости, текущей в трубе со скоростью. Сущность изобретений заключается в том, что устройство для регистрации электропроводных частиц в жидкости, текущей в трубе со скоростью, дополнительно содержит блок самотестирования, предназначенный для осуществления автоматически или по внешнему запросу систематического количественного контроля функций обработки сигналов блока обработки сигналов и/или систематического количественного контроля передающих катушек и/или улавливающих катушек и/или для осуществления по внешнему запросу калибровки блока обработки сигналов посредством калибровочного эталона, устанавливаемого вместо передающих и/или улавливающих катушек.

Изобретение относится к измерительной технике и может быть использовано для контроля положения движущихся металлических частей роторных машин в энергетике, турбонасосных агрегатов в нефтегазовой промышленности и других областях.

Изобретение относится к методам неразрушающего контроля и позволяет обнаруживать дефекты малых размеров и глубокого залегания в сварных швах, соединяющих, преимущественно, неферромагнитные материалы.

Изобретение относится к методам неразрушающего контроля и позволяет обнаруживать дефекты малых размеров и глубокого залегания в сварных швах, соединяющих, преимущественно, неферромагнитные материалы.

Область применения: изобретение относится к геофизическим исследованиям технического состояния нефтегазовых скважин и может быть использовано для обнаружения различных дефектов в нескольких колоннах скважин.

Изобретение относится к области неразрушающего контроля технического состояния рельсовых путей. Согласно способу мониторинга рельсового пути в рельсы передают акустический сигнал, отраженный сигнал принимают акустическими датчиками, обрабатывают сигнал с помощью системы обработки сигналов.

Использование: для контроля качества сверхпроводящей проволоки с медной оболочкой и сверхпроводящей сердцевиной из сплава ниобий-олово. Сущность изобретения заключается в том, что способ измерения отношения Cu/non Cu в сверхпроводящей проволоке с заданными наружным диаметром DH, удельной электрической проводимостью σм медной оболочки и удельной электрической проводимостью σс сверхпроводящей сердцевины, заключается в том, что предварительно в полость проходного вихретокового преобразователя поочередно вводят выполненные из отрезков проволоки контрольные образцы с такими же параметрами Dн, σм и σс, что и у контролируемой проволоки и с известным, изменяющимся от образца к образцу отношением Cu/non Сu, измеряют с помощью электронного блока, подключенного к выходу вихретокового преобразователя, вносимый образцами вихретоковый сигнал и по совокупности измерений получают градуировочную зависимость между вихретоковым сигналом и отношением Cu/non Сu, контролируемую проволоку перемещают через проходной вихретоковый преобразователь, измеряют с помощью электронного блока, подключенного к выходу вихретокового преобразователя, вихретоковый сигнал, регистрируют с помощью датчика перемещения текущую линейную координату контролируемого участка проволоки, получают зависимость изменения вихретокового сигнала вдоль контролируемой проволоки, а по ней, с помощью предварительно полученных градуировочных характеристик, и отношение Cu/non Сu, согласно изобретению периодически выполняют контрольное измерение отношения Cu/non Cu электрическим методом, для чего создают электрический ток I вдоль участка контролируемой проволоки, измеряют создаваемое этим током на участке заданной длины падение напряжение U и по отношению U/I, с учетом параметров Dн, σм, σс и , вычисляют среднее отношение Cu/non Cu на этом участке, затем ставят в соответствие полученную величину Cu/non Cu со средней величиной вихретокового сигнала, измеренного на этом же участке, и по полученному соответствию корректируют градуировочную характеристику.

Изобретение относится к области технологий, предназначенных для контроля механических деталей. Устройство для контроля поверхности электропроводной детали содержит множество вихретоковых датчиков, размещенных на выпуклой поверхности устройства вместе со средством прикладывания для прикладывания зондов к контролируемой поверхности, в которую вставляется устройство, при этом зонды закреплены на гибких полосках, продолжающихся рядом друг с другом в продольном направлении устройства, средство прикладывания содержит деформируемый материал, который при сжатии вдоль продольного направления приводит к расширению в поперечном направлении относительно продольного направления, при этом расширение деформирует полоски таким образом, чтобы зонды прикладывались к поверхности. Технический результат – упрощение конструкции устройства контроля, упрощение способа контроля детали. 2 н. и 9 з.п. ф-лы, 6 ил.
Наверх