Способ измерения уровня воды в скважине и устройство для его осуществления

Группа изобретений относится к акустическим методам измерения и контроля и может быть использована для определения уровня жидкости в скважинах, колодцах и резервуарах. Технические результаты: повышение точности измерения уровня жидкости в скважине за счет устранения влияния помех от муфт и переводников, изменяющих диаметр скважины, на результаты измерений и расширение номенклатуры средств определенного назначения. Способ измерения уровня воды при помощи уровнемера звукового бесконтактного включает в себя подачу звукового сигнала через открытое устье скважины, прием отраженного сигнала и расчет по времени прохождения сигнала глубины зеркала воды. При этом перед использованием уровнемера производят его калибровку высокоточным уровнемером, контактного типа, и осуществляют коррекцию введением корректирующего множителя, а из принятого отраженного звукового сигнала выделяют сигнал, имеющий наибольшее время прохождения с наибольшей амплитудой, и расчет глубины скважины производят, используя этот сигнал. Устройство содержит приемник - излучатель, расположенный в общем корпусе, и основной прибор, содержащий контроллер, к которому присоединены индикатор и генератор зарядки, а также схему излучения, усилитель приемного сигнала, коммутатор, таймер, АЦП, и память. 2 н. и 4 з.п. ф-лы, 8 ил., 1 табл.

 

Группа изобретений относится к акустическим методам измерения и контроля и может быть использована для определения уровня жидкости в скважинах, колодцах и резервуарах.

Известно устройство для измерения уровня воды в скважине по патенту РФ на полезную модель №2115892, МПК Е21В 47/04, опубл. 10.01.2004 г.

Это устройство для измерения уровня жидкости в скважине содержит барабан, гальванометр, источник питания, измерительный градуированный кабель, контакт заземления и наконечник с расположенной на его переднем торце звукообразующей поверхностью и вмонтированным в него электродом, отличающееся тем, что звукообразующая поверхность выполнена в виде открытой колоколообразной полости, внутри которой размещен электрод, при этом острие электрода углублено относительно переднего торца наконечника.

Недостатки: необходимость применения геофизического кабеля, что значительно увеличивает время проведения измерения и стоимость аппаратуры.

Известны способ и устройство для измерения уровня воды в скважине по патенту РФ на изобретение №2115892, МПК G01F 23/296, опубл. 20.076.1998 г.

Способ предусматривает излучение акустического зондирующего импульса и регистрацию сигналов, отраженных от муфтовых соединений труб и от поверхности жидкости в скважине. При этом муфты выполняют функцию фиксированных отражателей-реперов. Глубина расположения любой из муфт определяется согласно паспорту скважины по известной длине плеча буровых труб, находящихся выше данного муфтового соединения. Акустический уровнемер содержит последовательно соединенные генератор импульсов, усилитель, коммутатор и обратимый акустический преобразователь, который располагают на обвязке фонтанной арматуры скважины. Коммутатор через фильтр нижних частот соединен с блоком сравнения. Выходы блока сравнения соединены с регистрирующим блоком и микропроцессором. Микропроцессор соединен с генератором импульсов, фильтром нижних частот, и блоком сравнения. Предлагаемые способ и устройство существенно упрощают процесс измерения при сохранении высокой точности и надежности определения уровня.

Недостатки: относительно низкая точность измерения уровня жидкости в скважине из-за влияния колебаний температуры и давления воздуха в межтрубном пространстве на скорость звука и помех от муфт и переводников, изменяющих диаметр скважины, на результаты измерений. Также применялось данное устройство чаще всего в нефтяных скважинах с зарытым от атмосферного воздуха внутренним пространством, в результате чего могут создаваться условия разрежения газовой смеси в измеряемом объеме пространства, создающим дополнительные погрешности. Также неудобством данного метода является его узкоспециальное применение, так как сообщение с внутренним пространством скважины происходит через узкую герметичную врезку в колонне. К тому же определяется уровень в основном по привязке к отражениям от муфтовых соединений, так как в измеряемом пространстве может изменяться давление непредсказуемым образом.

Задачи создания изобретения: увеличение точности измерения уровня жидкости в скважине и уменьшение влияния помех на результаты измерений и расширение номенклатуры средств определенного назначения (измерителей уровня воды).

Технический результат: повышение точности измерения уровня жидкости в скважине за счет устранения влияния помех от муфт и переводников, изменяющих диаметр скважины на результаты измерений.

Решение указанных задач, а именно, измерение уровня в гидрогеологических скважинах широкого распространения, достигнуто в способе измерения уровня воды в скважине при помощи уровнемера звукового бесконтактного, включающем подачу звукового сигнала через открытое устье скважины, прием отраженного сигнала и расчет по времени прохождения сигнала глубины зеркала воды, тем, что перед использованием уровнемера звукового бесконтактного производят его калибровку высокоточным уровнемером, например, контактного типа, и осуществляют коррекцию введением корректирующего множителя, а из принятого отраженного звукового сигнала выделяют сигнал, имеющий наибольшее время прохождения с наибольшей амплитудой, и расчет глубины уровня производят, используя этот сигнал.

Решение указанных задач достигнуто в устройстве для измерения уровня воды в скважине, содержащем приемник - излучатель, расположенный в общем корпусе, и основной прибор, содержащий контроллер, к которому присоединены каналами связи индикатор и генератор зарядки, к выходу которого присоединена схема излучения, выход усилителя приемного сигнала и коммутатор, тем, что контроллер содержит таймер и АЦП, соединенные между собой, и память, а выходы из коммутатора соединены с входами в генератор зарядки и в схему излучения.

Устройство для измерения уровня воды в скважине может содержать источник питания в корпусе основного прибора, соединенный электрическими проводами с контроллером, генератором импульсов и усилителем приемного сигнала. Устройство для измерения уровня воды в скважине может содержать кнопку включения режима измерения, размещенную на корпусе. Устройство для измерения уровня воды в скважине может содержать две кнопки коррекции для увеличения и уменьшения корректирующего множителя. Устройство для измерения уровня воды в скважине может содержать кнопку записи в память контроллера.

Сущность изобретения поясняется чертежами (фиг. 1-8), где:

- на фиг. 1 приведена общая блок-схема устройства,

- на фиг. 2 приведена подробная блок-схема генератора зарядки,

- на фиг. 3 приведена конструкция приемника-излучателя,

- на фиг. 4 приведен вид А на фиг. 3,

- на фиг. 5 приведен алгоритм работы измерителя уровня воды,

- на фиг. 6 приведена схема установки устройства в скважине, первый вариант,

- на фиг. 7 приведена схема установки устройства в скважине, второй вариант,

- на фиг. 8 приведена диаграмма отраженного сигнала.

Устройство для измерения воды в скважине (фиг. 1) представляет собой приемник-излучатель 1, выполненный в общем корпусе 2 и основной прибор 3. Приемник-излучатель 1 и основной прибор 3 соединены кабелем 4.

Основной прибор 3 содержит контроллер 5, в состав которого входят АЦП 6 (аналого-цифровой преобразователь), таймер 7 и память 8. Кроме того основной прибор 3 имеет индикатор 9, подсоединенный к контроллеру 5 линией связи 10.

К контроллеру 5 также присоединены вход генератора зарядки 11 и выход усилителя 12. К выходу генератора зарядки 11 присоединена схема излучения 13. В состав основного прибора 3 входит коммутатор 14 который своими выходами соединен с входом в контроллер 5, в генератор зарядки 11 и в схему излучения 13.

Приемник-излучатель 1 содержит динамик 15 и микрофонный блок 16.

В состав основного прибора 3 входит блок питания 17 (батарея типа Крона). Блок питания 17 электрическими проводами 18 соединен с контроллером 5, усилителем 12, генератором зарядки 11 и коммутатором 14.

Основной прибор 3 имеет четыре кнопки:

Кнопка управления 19,

Кнопка коррекции «-» 20,

Кнопка коррекции «+» 21,

Кнопка записи 22.

Кнопки коррекции 20-22 предназначены для уменьшения и увеличения поправочного коэффициента в процессе периодически проводящейся калибровки устройства и введения его в память. Генератор зарядки 11 (фиг. 2) содержит высоковольтный генератор 23, к выходу которого подключен конденсатор 24, а к входу по питанию переменный резистор 25.

На фиг. 3 и 4 приведена более детально конструкция приемника-излучателя 1, который содержит корпус 2 конической формы с крышкой 26 параболической формы, на которой закреплены динамик 15 и микрофонный блок 16.

На фиг. 5 приведен алгоритм работы устройства.

На фиг. 6 приведена схема установки устройства, точнее излучателя-приемника 1, в скважине, первый вариант. В скважине 27 установлена обсадная колонна 28, имеющая муфты 29. На поверхности 30 выполнено устье 31. Уровень воды показан поз. 32.

На фиг. 7 приведена схема установки устройства в скважине 27, второй вариант. Обсадная колонна 28 имеет переходник 33 с большого диаметра на меньший.

На фиг. 8 приведена диаграмма отраженного сигнала 34 по времени.

Видны пики 35 отраженных от муфт 29 сигналов и сигнал с максимальной амплитудой 36, отраженный от поверхности воды.

РАБОТА УСТРОЙСТВА

Прибор с рабочим названием - «УЗБК-250» - уровнемер звуковой бесконтактный предназначен для измерения уровня жидкости в скважинах в диапазоне 5-250 м по отраженному звуковому сигналу. При разработке прибора решалась задача создания компактного, удобного прибора для измерений уровней в гидрогеологических скважинах. Основную рабочую функцию выполняет контроллер 5. В схему контроллера 5 входят также таймер 7 и АЦП 6. Устройство состоит из приемника - излучателя 1 и основного прибора 3, которые соединены многожильным кабелем 4 длиной 3 м (фиг. 6). Приемник-излучатель 1 устанавливают в устье 31 скважины 27 (фиг. 6 и 7).

Питание основного прибора 3 осуществляется от батарейки «Крона» напряжением 9В - блок питания 17 (фиг. 1).

Ток потребления составляет 3 мА в режиме просмотра значений и 100 мА в режиме зарядки конденсатора 24 (фиг. 2). Управление рабочими функциями прибора осуществляется посредством кнопок управления 19-22 (фиг. 1). Для включения режима измерения служит кнопка 19 - работа.

При нажатии на нее выполняется рабочий цикл измерений и контроллер 5 на 2 сек. подает питание на высоковольтный генератор - 23, а затем производит излучение импульса и в течение 2-х сек принимает все отраженные сигналы.

Контроллер 5 рассчитывает расстояние до уровня воды по формуле Н=0,5 Т×С,

где: Н - расстояние до зеркала воды - уровня,

Т - время прохождения сигнала,

С - скорость звука в воздухе.

Скорость звука зависит от температуры воздуха и может быть определена из табл. 1.

Для исключения температурной погрешности и введена функция калибровки, при этом исходим из предположения, что температура воздуха во всех скважинах гидрогеологического назначения постоянна.

Мощность излучения регулируется посредством управления величиной тока заряда в пределах 20-100 мА, для чего используется переменный резистор 25, включенный в цепь питания высоковольтного генератора 23 (фиг. 2). Измерения следует начинать с минимальной или близкой к ней мощности излучения до получения уверенных повторяемых показаний. После зарядки конденсатора 24, подается импульс управления на схему излучения -13 и высоковольтный импульс напряжения поступает на динамик 15. Динамик 15 расположен в металлическом корпусе 2 конусообразной формы, для уменьшения электромагнитных помех. В этом же корпусе 2 расположен и приемник отраженных сигналов - микрофонный блок 16, представляющий собой чувствительный микрофонный усилитель порогового типа. Излучатель в момент измерения располагается на уровне устья скважины. После излучения рабочего импульса, контроллер 5 в течение 2 сек. фиксирует и записывает в память 8 времена и амплитуды всех отражений от неоднородностей в скважине. Для просмотра всего массива измеренных значений предназначена кнопка коррекции 20, последовательное нажатие на которую будет приводить к отображению на экране глубины расположения всех отражений и значений их амплитуд, начиная с последнего. Согласно заложенному алгоритму, контроллер 5 выбирает из массива измеренных значений последнюю поверхность с наибольшим коэффициентом отражения и выдает значение на экран как измеренное значение расстояния до зеркала воды в сантиметрах. Существует также функция коррекции глубины, которая заключается в подгонке показаний уровнемера к контрольным значениям путем введения и записи в память дополнительного множителя. Диапазон коррекции глубины выбран +/-5 м. Для введения корректирующего множителя служат кнопки коррекции 20 и 21, соответственно для увеличения и уменьшения множителя. Для проведения операции калибровки - коррекции необходимо знать точную величину уровня воды в данной скважине, измеренную уровнемером контактного типа. Нажимаем на кнопку коррекции 21 и на экране индикатора 9 отображается увеличение поправочного коэффициента. Для осуществления операции коррекции следует всегда сначала нажимать на кнопку коррекции 21, так как кнопка 20 также служит для просмотра массива измерений. Останавливаемся на некотором значении и производим измерение. Выполняем операцию до полного совпадения измеренного значения с контрольным. По окончании операции нажимаем на кнопку записи 22 и записываем поправочный коэффициент в память контроллера. В дальнейшем потребность в коррекции отпадает и можно использовать кнопку коррекции 20 только для просмотра массива измерений, если в этом есть необходимость.

Использование такого прибора существенно упрощает процесс замера уровней в скважинах при достаточной точности, не требует намоточного оборудования. А также позволяет получить результат в условиях, когда контактный уровнемер бессилен, например, при разгерметизации колонны и наличия перетоков внутри полости скважины или переходов диаметров труб в сухой части скважины.

Применение группы изобретений позволило:

- повысить точности измерения уровня жидкости в скважине за счет периодической тарировки прибора и внесения в его память корректирующего множителя,

- устранения влияния помех от муфт и переводников, изменяющих диаметр скважины, на результаты измерений, за счет введения в алгоритм управления выбора сигнала, имеющего максимальное время прохождения.

- уменьшить энергопотребление устройства за счет применения современных микросхем,

- расширить номенклатуру измерителей уровня воды в скважине.

Изготовлен и испытан опытный образец устройства - «УЗБК-250».

1. Способ измерения уровня воды в скважине при помощи уровнемера звукового бесконтактного, включающий подачу звукового сигнала через открытое устье скважины, прием отраженного сигнала и расчет по времени прохождения сигнала глубины зеркала воды, отличающийся тем, что перед использованием уровнемера звукового бесконтактного производят его калибровку высокоточным уровнемером, например, контактного типа, и осуществляют коррекцию введением корректирующего множителя, а из принятого отраженного звукового сигнала выделяют сигнал, имеющий наибольшее время прохождения с наибольшей амлитудой и расчет глубины скважины производят, используя этот сигнал.

2. Устройство для измерения уровня воды в скважине, содержащее приемник-излучатель, расположенный в общем корпусе, и основной прибор, содержащий контроллер, к которому присоединены каналами связи индикатор, генератор зарядки, к выходу которого присоединена схема излучения, выход усилителя приемного сигнала и коммутатор, отличающееся тем, что контроллер содержит таймер и АЦП, соединенные между собой, и память, а выходы из коммутатора соединены с входами в генератор зарядки и в схему излучения.

3. Устройство для измерения уровня воды в скважине по п. 2, отличающееся тем, что оно содержит источник питания в корпусе основного прибора, соединенный электрическими проводами с контроллером, генератором зарядки и усилителем приемного сигнала.

4. Устройство для измерения уровня воды в скважине по п. 2, отличающееся тем, что оно содержит кнопку включения режима работы, размещенную на корпусе.

5. Устройство для измерения уровня воды в скважине по п. 2, отличающееся тем, что оно содержит две кнопки коррекции для увеличения и уменьшения корректирующего множителя.

6. Устройство для измерения уровня воды в скважине по п. 2, отличающееся тем, что оно содержит кнопку записи в оперативную память контроллера.



 

Похожие патенты:

Изобретение относится к измерительной технике и предназначено для измерения уровней границ раздела диэлектрических сред в различных отраслях промышленности - нефтеперерабатывающей, газовой, химической и др.

Представлена система регулирования уровня жидкости в технологической установке. Система регулирования уровня жидкости содержит: подвижный узел, содержащий стержень, при этом стержень подвижного узла включает в себя ближний конец и дальний конец; поплавок, прикрепленный к дальнему концу стержня; приводной механизм, функционально связанный с подвижным узлом; процессор, связанный с приводным механизмом и выполненный с возможностью перемещения поплавка с помощью подвижного узла; датчик, содержащий вход и выход, причем вход датчика функционально связан с подвижным узлом для приема входного сигнала, представляющего характеристику поплавка или рабочей среды, а выход датчика функционально связан с процессором для создания выходного сигнала, связанного с входным сигналом; запоминающее устройство, связанное с процессором; приводящий в действие модуль, сохраненный в запоминающем устройстве, который, будучи выполняемым в процессоре, приводит в действие приводной механизм; устройство вывода данных, соединенное с процессором, и демонстрирующий модуль, сохраненный в запоминающем устройстве, который, будучи выполняемым в процессоре, демонстрирует выходной сигнал датчика на устройстве вывода данных.

Изобретение относится к области измерительной техники, а именно к устройствам, позволяющим провести измерения объемного расхода не только газа, но и газовых смесей.

Изобретение относится к ультразвуковому расходомеру для измерения скорости потока и/или расхода текучей среды. Ультразвуковой расходомер содержит: измерительный преобразователь, имеющий соединительные фланцы для присоединения трубопроводов текучей среды и среднюю часть, выполненную с возможностью пропускания текучей среды, по меньшей мере два помещенных в среднюю часть ультразвуковых преобразователя, которые образуют пару ультразвуковых преобразователей и между которыми установлена измерительная цепь, проходящая через поток, датчик давления, удерживаемый в средней части в гнезде датчика давления и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, калибровочный вывод, удерживаемый в средней части в гнезде калибровочного вывода и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, причем поршень в гнезде поршня выполнен с возможностью приведения в два положения, при этом в первом положении датчик давления имеет сообщение по текучей среде с внутренностью средней части, а во втором положении датчик давления через гнездо поршня имеет сообщение по текучей среде с калибровочным выводом.

Изобретение относится к измерительной технике и может служить метрологическим обеспечением для счетчиков газа, а также использоваться в специальных технологических процессах.

Изобретение относится к транспортировке газа по магистральным газопроводам, снабженным компрессорными станциями, а именно к устройству и способу для поверки и калибровки измерительных приборов, контролирующих расход газа, транспортируемого по магистральным газопроводам.

Изобретение относится к технологическим процессам. Способ мониторинга устройства управления процессом, реализуемый в системе мониторинга устройства управления процессом, включает измерение параметров рабочих состояний устройства управления процессом.

Мерник // 2631027
Изобретение относится к средствам измерения объема жидкостей, и может быть использовано для поверки топливораздаточных колонок (ТРК). Мерник содержит резервуар с фланцем, горловину с фланцем, пеногаситель с фланцем и патрубком для отвода газа из полости пеногасителя в атмосферу, опорную раму с тремя установочными винтами, первый кран для слива рабочей жидкости из резервуара, емкость для сбора розлива рабочей жидкости, уровень, измерительную емкость для измерения плотности и температуры рабочей жидкости, второй кран для заполнения измерительной емкости рабочей жидкости, первую металлическую трубку, соединяющую второй кран с тройником, третий сливной кран со штуцером, ручки на резервуаре, вторую металлическую трубку с просветом и четырьмя шкалами вместимости, внутри которой установлена стеклянная трубка напротив просвета, рамку со шкалами погрешности топливораздаточной колонки, направляющую до дна резервуара с участками перфорации, посредством которых происходит дополнительное растекание рабочей жидкости в горловину мерника и полость пеногасителя при снижении напора на последнем литре отпуска жидкости потребителю.

Изобретение относится к способу поверки точности измерений, обеспечиваемой системой измерения уровня. Способ включает получение результата первого измерения, определяющего время прохождения первого отраженного электромагнитного сигнала от измерительного блока до референтного отражателя и обратно, до измерительного блока; определение результата измерения для поверки измерительного блока по сигналу отклика, формируемому поверочным устройством; получение результата второго измерения, определяющего время прохождения второго отраженного электромагнитного сигнала от измерительного блока до референтного отражателя и обратно, до измерительного блока, и определение результата поверки на основе результатов первого измерения, второго измерения и измерения для поверки измерительного блока.

Изобретение относится к способам и диагностике для поверки измерителей в вибрационных расходомерах. Вибрационный расходомер (5) для поверки измерителя включает в себя: измерительную электронику (20), соединенную с первым и вторым тензометрическими датчиками (170L, 170R) и соединенную с приводом (180), при этом измерительная электроника (20) выполнена с возможностью: возбуждать колебания сборки (10) расходомера в одномодовом режиме с помощью привода (180), определять ток (230) одномодового режима привода (180) и определять первое и второе напряжения (231) отклика, генерируемые соответственно первым и вторым тензометрическими датчиками (170L, 170R), вычислять амплитудно-частотные характеристики для упомянутых определенных первого и второго напряжений (231) отклика на основе упомянутого определенного тока (230) одномодового режима, аппроксимировать генерируемые амплитудно-частотные характеристики моделью с вычетом в полюсе и поверять надлежащую работу вибрационного расходомера (5) с использованием значения (216) жесткости измерителя, остаточной упругости (218) и массы (240) измерителя в вариантах осуществления.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения динамического или статического уровня жидкости в водозаборных скважинах.

Способ относится к области измерительной техники и может быть использован для оперативного контроля уровня и плотности жидкости в баках резервуарного парка, что актуально для предприятий нефтедобывающей, нефтеперерабатывающей, авиационной, медицинской, пищевой промышленности.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения динамического или статического уровня жидкости в нефтедобывающей или водозаборной скважинах.

Представлен песочный сепаратор, который включает в себя разделительную камеру и слив. Песочный сепаратор содержит измеритель, гидравлически связанный с внутренним пространством разделительной камеры, причем измеритель сконфигурирован для регистрации границы раздела жидкой и твердой сред.

Группа изобретений относится к технике контроля параметров жидких сред в резервуарах для промышленных производств. В способе контроля используют по меньшей мере вторую пару приемник-излучатель, образующую с первой парой фигуру четырехугольной формы, горизонтальные стороны которой параллельны уровню жидкости, при этом дополнительно вычисляют значения энергетических характеристик волн Лэмба, распространяемых одновременно как между каждой из горизонтальных пар излучатель-приемник, так и второй вертикальной парой излучатель-приемник, используя значения, полученные от по меньшей мере одних горизонтальных пар для определения начальных и конечных значений измерительной шкалы других пар, с помощью которых определяют и/или измеряют положения уровня жидкости по высоте.

Изобретение относится к технической области измерения уровня заполнения. В частности, настоящее изобретение относится к устройству измерения уровня заполнения, к способу определения и читаемому компьютером носителю.

Изобретение относится к подающему устройству с датчиком уровня наполнения для жидкой добавки. Подающее устройство (1) для извлечения жидкой добавки из бака (2), которое может быть установлено на баке (2), имеет датчик (3) уровня наполнения для измерения уровня наполнения жидкой добавки в баке (2).

Изобретение относится к устройству для измерения уровня (17) наполнения емкости (1) для мочевины путем определения пути с помощью испускаемых датчиком (5) звуковых волн и их эха (16), имеющему дно (2) емкости для мочевины и поддон (3) с конструктивной высотой (9), причем поддон (3) примыкает к дну (2) емкости для мочевины и расположен ниже уровня (14) дна (2) емкости для мочевины, и, кроме того, поддон (3) открыто соединен с емкостью (1) для мочевины и в направлении вниз ограничен дном (4) поддона.

Изобретение относится к измерительной технике и может быть использовано при метрологическом обеспечении скважинной геофизической аппаратуры, в качестве образцового средства измерения при градуировке и калибровке скважинных жидкостных расходомеров. Техническим результатом изобретения является расширение функциональных возможностей, калибровка как для нагнетательных, так и для эксплуатационных скважин в условиях, максимально приближенным к реальным в трубах различного диаметра при любом значении расхода скважинной жидкости. Технический результат достигается тем, что установка для калибровки скважинных жидкостных расходомеров содержит компьютерный пульт управления, соединенную через входной трубопровод с блоком приемных камер параллельную проточную систему сличения, состоящую из образцовых расходомеров с разными диапазонами измерений, установленных последовательно с регуляторами гидравлического сопротивления и регулировочными вентилями в параллельных трубопроводах, а через выходной трубопровод, соединенную через электронасос и регулировочный вентиль со сливным резервуаром, сливной резервуар соединен с электронасосом и через регулировочный вентиль с фильтром-газоотделителем, который входным трубопроводом блока приемных камер соединен с ними через регулировочные вентили, причем регулировочные вентили смонтированы с возможностью подключения любого из образцовых расходомеров в единую гидравлическую цепь с калибруемым скважинным расходомером, расположенным в любой приемной камере как на восходящем, так и на нисходящем потоке, а пульт управления соединен с электронасосами и образцовыми расходомерами.

Группа изобретений относится к устройствам и способу контроля состояния пипетки. Способ контроля состояния пипетки, которая включает всасывающую трубку и наконечник пипетки, состоит в том, что вводят ультразвуковой сигнал в стенку всасывающей трубки, при этом ультразвуковой сигнал генерируют пьезоактюатором, установленным на указанной стенке всасывающей трубки, причем пьезоактюатор находится в контакте с дополнительной массой на стороне, обращенной от всасывающей трубки, при этом дополнительная масса выполнена для повышения чувствительности пьезоактюатора, в зависимости от частоты измеряют зависящее от частоты затухания затухание ультразвукового сигнала в стенке всасывающей трубки в заданном частотном диапазоне, содержащем множество частот, посредством сравнения измеренного зависящего от частоты затухания в заданном частотном диапазоне, по меньшей мере, с одним опорным измерением зависящего от частоты затухания или с основанной на опорных измерениях калибровочной кривой определяют, содержит ли пипетка жидкость или контактирует ли с ней.

Изобретение относится к области термометрии и может быть использовано в процессе скважинных измерений. Предложены способы и устройство для распределенного измерения температуры вдоль оптического волновода, размещенного в осевом направлении по отношению к трубопроводу, с использованием распределенного датчика температуры и набора датчиков температуры.
Наверх