Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Устройство содержит генератор СВЧ, передающую и приемную антенны, направленные через радиопрозрачные окна в трубопроводе под углом к направлению потока среды, первый смеситель и соединенный с ним вычислительный блок, дополнительно содержит второй смеситель, первый и второй делители мощности, фазовращатель на π/2, при этом вход первого делителя мощности соединен с выходом генератора СВЧ, а его выходы с первыми входами первого и второго смесителей и с передающей антенной, вход второго делителя мощности соединен с приемной антенной, его первый выход соединен со вторым входом первого смесителя напрямую, а второй выход соединен с вторым входом второго смесителя через фазовращатель на π/2, выход второго смесителя соединен с вычислительным блоком. Технический результат - повышение точности. 3 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др.

В настоящее время известны и применяется много типов анеометров и расходомеров, основанных на разных физических принципах действия, среди которых актуальны доплеровские радиоволновые способы измерения скорости потока из-за своей способности работать в сложных эксплуатационных условиях (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 133-144 с.). Эти устройства не предполагают применение элементов внутри труб, контактирующих со средой, создающих препятствия и неоднородности в потоке, устойчивы к температурным характеристикам эксплуатации. Обычно для измерения расхода используется эффект Доплера. Излучаемые антенной волны через радиопрозрачное окно в стенке трубопровода излучаются под углом α по направлению потока, рассеиваются на неоднородностях движущегося вещества и поступают на приемную антенну с частотой ƒ, отличной от частоты ƒ0 зондирующей волны на частоту ƒд. Неоднородностями вещества при этом могут быть частицы сыпучего материала, газовые и твердые включения в жидкости, твердые частицы и капли жидкости в потоке газа, обладающие электрофизическими параметрами ε, отличными от таковых для контролируемого вещества. Направления движения неоднородностей образуют различные углы с направлением этой волны. Произвольная ориентация неоднородностей, случайные значения фазы отраженных каждой неоднородностью сигналов приводят к образованию доплеровского сигнала сложной формы. Тем не менее, некоторая средняя доплеровская частота связана со средней скоростью потока по формуле:

где α - угол между направлением излучения и потоком в трубе, - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, с - скорость света в вакууме. Зная объемную плотность ρ вещества и скорость ν потока, можно определить массовый расход:

где А - площадь поперечного сечения потока на измерительном участке. Подставив значение ν из выражения (1) в (2), получим выражение для среднего массового расхода

Как видно из формулы, на точность определения расхода при постоянных величинах плотности и диэлектрической проницаемости сильно влияет точность определения средней доплеровской частоты.

Известно техническое решение - доплеровское радиоволновое устройство для измерения расхода, по технической сущности наиболее близкое к предлагаемому устройству и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 136-137 с.). Согласно устройству, радиоволновое излучение от генератора СВЧ направляется с помощью передающей антенны через радиопрозрачное окно под углом к потоку, затем отраженные волны принимаются приемной антенной и передаются на первый вход смесителя, на второй его вход направляется часть мощности излучаемого сигнала, на выходе смесителя выделяется доплеровский сигнал. После фильтрации и записи доплеровского сигнала вычисляется его спектр, по максимуму которого определяется средняя доплеровская частота, по которой вычисляется расход в соответствии с формулой (3).

Данное измерительное устройство имеет существенный недостаток. Поскольку поток вещества имеет заметную турбулентность и локальные неоднородности, спектр доплеровского сигнала имеет сложный вид, зачастую с рядом равноценных пиков, что затрудняет определение максимума. Это происходит еще и из-за того, что в полосу частот фильтра попадают паразитные сигналы от вибраций трубопрововода, которые имеют место при использовании расходомера в условиях технологического процесса. Сглаживание спектра доплеровского сигнала также не приводит к повышению точности, поскольку при наличии диаграммы направленности антенны и ненулевого угла между направлениями движения потока и излучения существует смещение между доплеровской частотой и максимумом его спектра. Все это снижает точность определения массового расхода.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат достигается тем, что устройство, содержащее генератор СВЧ, передающую и приемную антенны, направленные через радиопрозрачные окна в трубопроводе под углом к направлению потока среды, первый смеситель и соединенный с ним вычислительный блок, дополнительно содержит второй смеситель, первый и второй делители мощности, фазовращатель на π/2, при этом вход первого делителя мощности соединен с выходом генератора СВЧ, а его выходы с первыми входами первого и второго смесителей и с передающей антенной, вход второго делителя мощности соединен с приемной антенной, его первый выход соединен со вторым входом первого смесителя напрямую, а второй выход соединен с вторым входом второго смесителя через фазовращатель на π/2, выход второго смесителя соединен с вычислительным блоком.

На Фиг. 1 представлена структурная схема устройства, реализующего способ.

На Фиг. 2 изображены временные диаграммы сигналов на выходах первого и второго смесителя (кривые 1 и 2) в относительных единицах.

На Фиг. 3 изображена взаимно-корреляционная функция между сигналами с выходов первого и второго смесителя в нормированном виде.

Устройство содержит генератор СВЧ 1, делитель мощности на 3-2, передающую антенну 3, приемную антенну 4, делитель мощности на 2-5, смесители 7 и 8, вычислительный блок 9.

Устройство работает следующим образом.

Электромагнитные колебания генератора СВЧ 1 с частотой углом ƒ0 поступают через делитель мощности 2 (примерно 0,8 от входной мощности) на передающую антенну 3, направленную под углом α по направлению движения потока через радиопрозрачное окно 10 в трубопроводе 11. Также два выхода первого делителя мощности (примерно по 0,1 от входной мощности каждый) соединены с первыми входами смесителей 7 и 8. Отраженные от потока волны принимаются приемной антенной 4 и поступают на вход делителя мощности на 2-5, с его первого выхода волны поступают на второй вход первого смесителя 7 напрямую, а с его второго выхода на первый вход второго смесителя 8 через фазовращатель на π/2 6. С выходов смесителей сигналы поступают на выислительный блок 9. В результате на выходе первого и второго смесителя образуются доплеровские сигналы, сдвинутые между собой по фазе π/4 (см. кривые 1 - S1(t) и 2 - S2(t) на фиг. 3). При этом в рассматриваемом примере используется временная выборка N=2000 значений, с длительностью каждой выборки - Δt. Функция r12(tз) взаимной корреляции сигналов S1(t) и S2(t) от времени задержки tp за время T=NΔt будет выглядеть следующим образом:

В нормированном дискретном виде коэффициента взаимной корреляции r12(j) от дискретного сдвига j функция (4) она примет вид:

График этой функции представлен на Фиг. 3. В процессе движения потока оба доплеровских сигнала будут полностью идентичными, а время задержки между ними будет соответствовать четверти периода доплеровской частоты. Это время можно определить по максимуму коэффициента взаимной корреляции (6) tmax=jmaxΔt, как показано на Фиг. 3. Далее можно определить доплеровскую частоту , а затем по формуле (2) - массовый расход по формуле:

Таким образом, ошибка, связанная с неточным определением доплеровской частоты из-за стохастического и асимметричного характера спектра доплеровского сигнала при измерении массового расхода в трубопроводе, устраняется, а точность измерения по сравнению с прототипом увеличивается. Благодаря этому способу в отличие от прототипа удается определить направление движения потока. При движении потока навстречу направлению излучения, как в рассматриваемом примере максимум коэффициента взаимной корреляции будет при положительном временном сдвиге tmax, а при движении потока в обратном направлении - при отрицательном.

Устройство для измерения массового расхода жидких и сыпучих сред, содержащее генератор СВЧ, передающую и приемную антенны, направленные через радиопрозрачные окна в трубопроводе под углом к направлению потока среды, первый смеситель и соединенный с ним вычислительный блок, отличающееся тем, что содержит второй смеситель, первый и второй делители мощности, фазовращатель на π/2, при этом вход первого делителя мощности соединен с выходом генератора СВЧ, а его выходы с первыми входами первого и второго смесителей и с передающей антенной, вход второго делителя мощности соединен с приемной антенной, его первый выход соединен со вторым входом первого смесителя напрямую, а второй выход соединен с вторым входом второго смесителя через фазовращатель на π/2, выход второго смесителя соединен с вычислительным блоком.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др.

Заявленная группа изобретений относится к способам и устройству для сварки, используемым при сваривании. Конкретнее, изобретение относится к изготовлению расходомеров, которые измеряют параметры, относящиеся к потоку жидкости или газа.

Заявленная группа изобретений относится к способам и устройству для сварки, используемым при сваривании. Конкретнее, изобретение относится к изготовлению расходомеров, которые измеряют параметры, относящиеся к потоку жидкости или газа.

Изобретение относится к метрологии, в частности к расходомерам. Устройство содержит канал, заполненный жидкой средой, и преобразователи сигнала для приема звуковых волн, сгенерированных текущей средой.

Изобретение относится к измерению расхода жидких и газообразных сред по трубопроводу. Ультразвуковой расходомер с металлическим датчиком, содержащий электронный блок и металлический датчик, включающий измерительный участок в виде отрезка трубопровода с проточной частью, имеющей квадратное поперечное сечение для трубопроводов диаметром меньше 30 мм и круглое сечение для трубопроводов диаметром больше 30 мм, и поглотитель акустических помех на поверхности измерительного участка, на противоположных концах которого в поперечном углублении в материале стенки проточной части установлены два прямоугольных электроакустических преобразователей параллельно друг другу с одинаковыми углами наклона к продольной оси, соединенных с коммутатором, последовательно соединенные синхронизатор и генератор зондирующих сигналов, выход которого подключен к входу коммутатора, по одному временному дискриминатору в каждом канале измерения по и против потока, вход которого соединен с выходом коммутатора.

Изобретение относится к расходомеру для жидкой или газовой среды. Расходомер (23) для жидкой и газовой среды (3) содержит корпус (24) и измерительный вкладыш (25), который вставлен в упомянутый корпус (24).

Изобретение относится к расходомеру для жидкой или газовой среды. Расходомер (23) для жидкой и газовой среды (3) содержит корпус (24) и измерительный вкладыш (25), который вставлен в упомянутый корпус (24).

Изобретение относится к ультразвуковому расходомеру для измерения скорости потока и/или расхода текучей среды. Ультразвуковой расходомер содержит: измерительный преобразователь, имеющий соединительные фланцы для присоединения трубопроводов текучей среды и среднюю часть, выполненную с возможностью пропускания текучей среды, по меньшей мере два помещенных в среднюю часть ультразвуковых преобразователя, которые образуют пару ультразвуковых преобразователей и между которыми установлена измерительная цепь, проходящая через поток, датчик давления, удерживаемый в средней части в гнезде датчика давления и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, калибровочный вывод, удерживаемый в средней части в гнезде калибровочного вывода и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, причем поршень в гнезде поршня выполнен с возможностью приведения в два положения, при этом в первом положении датчик давления имеет сообщение по текучей среде с внутренностью средней части, а во втором положении датчик давления через гнездо поршня имеет сообщение по текучей среде с калибровочным выводом.

Изобретение относится к ультразвуковому расходомеру для измерения скорости потока и/или расхода текучей среды. Ультразвуковой расходомер содержит: измерительный преобразователь, имеющий соединительные фланцы для присоединения трубопроводов текучей среды и среднюю часть, выполненную с возможностью пропускания текучей среды, по меньшей мере два помещенных в среднюю часть ультразвуковых преобразователя, которые образуют пару ультразвуковых преобразователей и между которыми установлена измерительная цепь, проходящая через поток, датчик давления, удерживаемый в средней части в гнезде датчика давления и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, калибровочный вывод, удерживаемый в средней части в гнезде калибровочного вывода и имеющий сообщение по текучей среде с внутренностью средней части через гнездо поршня, причем поршень в гнезде поршня выполнен с возможностью приведения в два положения, при этом в первом положении датчик давления имеет сообщение по текучей среде с внутренностью средней части, а во втором положении датчик давления через гнездо поршня имеет сообщение по текучей среде с калибровочным выводом.

Изобретение относится к области измерительной техники и может быть преимущественно использовано для измерения расхода и количества природного газа при коммерческом учете.
Наверх